With Specific Filter Structure Patents (Class 455/307)
  • Patent number: 9036752
    Abstract: A method of frequency-domain filtering is provided that includes a plurality of filters, the plurality of filters including at least one constrained filter(s) W=I, I and at least one unconstrained filter(s) W=1,K? The method includes cascading the W k=i,K unconstrained filter(s). A single constraint window C is applied to the cascaded W=i,K unconstrained filter(s). The W=1,I constrained filter(s) are cascaded with the constrained cascaded Wk=1,K unconstrained filter(s) to form a resulting filter Wll=C(W 1{circle around (x)} . . . {circle around (x)} W){circle around (x)} W . . . W. The frequency domain representation of the single constraint window C may be based, at least in part, on a time domain representation of a single constraint window C that has been circularly shifted such that the frequency domain representation of the constraint window matches a property of the frequency domain representation of the cascaded W=1,K unconstrained filters.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: May 19, 2015
    Assignee: NUANCE COMMUNICATIONS, INC.
    Inventors: Markus Buck, Tobias Wolff
  • Publication number: 20150133069
    Abstract: Methods, systems, and devices are described for wireless communications in a frequency modulation (FM) receiver with a frequency deviation-dependent adaptive channel filter. A maximum frequency deviation of an FM broadcast signal may be estimated. One or more coefficients of a channel filter may be adapted based at least in part on the maximum frequency deviation. The coefficient adaptation may include identifying a set of coefficients corresponding to the maximum frequency deviation and applying the set of coefficients to the channel filter. The set of coefficients may be identified by selecting one of multiple sets of coefficients stored in memory. In some instances, a signal quality metric (e.g., signal-to-noise ratio (SNR)) may be identified and may be used to modify a value of one or more of the set of coefficients applied to the channel filter.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Eunmo Kang, Yossef Tsfaty, Le Nguyen Luong
  • Patent number: 9031527
    Abstract: Apparatus, systems, and methods implementing techniques for calibrating a filter circuit. A comparator generates an output based on a filter output amplitude signal and a reference amplitude signal. A calibration logic unit receives the comparator output and produces a component code that is used by the filter circuit to adjust one or more component values.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 12, 2015
    Assignee: Marvell International Ltd.
    Inventors: King Chun Tsai, Sang Wong Son, Wayne A. Loeb
  • Patent number: 9032449
    Abstract: The present invention concerns a method and associated apparatus for reducing the time required to scan an incoming satellite transmission power spectrum for available signals and to determine the characteristics of those signals. The frequency range of interest is scanned in narrow slices to determine approximate input power within each slice. Center frequencies and symbol rates of individual transponders are then estimated based upon these input power approximations.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: May 12, 2015
    Assignee: Thomson Licensing
    Inventor: Brian David Bajgrowicz
  • Patent number: 9020023
    Abstract: The present technique relates to a reception device and a reception method which can improve equalization performance. An equalization processing unit has a time domain equalization unit which equalizes a received signal in a time domain and a frequency domain equalization unit which is provided in parallel to the time domain equalization unit and which equalizes the received signal in a frequency domain, and performs control of switching between the time domain equalization unit and the frequency domain equalization unit. The present technique can be applied to, for example, equalize a signal of data transmitted by way of single carrier transmission or data transmitted by way of multicarrier transmission.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: April 28, 2015
    Assignee: Sony Corporation
    Inventors: Katsumi Takaoka, Naoki Yoshimochi, Hidetoshi Kawauchi, Ryo Hasegawa, Hirofumi Maruyama
  • Patent number: 9014124
    Abstract: A wireless transmit/receive unit (WTRU) is described. The WTRU includes a front-end unit (FEU), a signal processing unit (SPU), and a resource management unit (RMU). The FEU receives a radio frequency (RF) signal, generates time-interleaved samples, an includes: a first array of first time-interleaved samplers, a second array of second time-interleaved samplers, and a third array of third time-interleaved samplers. The SPU receives and combines the plurality of time-interleaved samples and generates a signal quality measurement and in-phase and quadrature-phase (IQ) complex samples. The RMU receives the signal quality measurement and allocates FEU resources in conjunction with a front-end unit controller (FEUC) based on the signal quality measurement. The FEUC generates control signals based on the received signal quality measurement from the RMU.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: April 21, 2015
    Assignee: InterDigital Patent Holdings, Inc.
    Inventors: Tanbir Haque, Leonid Kazakevich, Scott M. Newton
  • Patent number: 9014653
    Abstract: A novel and useful reconfigurable superheterodyne receiver that employs a 3rd order complex IQ charge-sharing band-pass filter (BPF) for image rejection and 1st order feedback based RF BPF for channel selection filtering. The operating RF input frequency of the receiver is 500 MHz to 1.2 GHz with a varying high IF range of 33 to 80 MHz. The gain stages are inverter based gm stages and the total gain of the receiver is 35 dB and in-band IIP3 at mid gain is +10 dBm. The NF of the receiver is 6.7 dB which is acceptable for the receiver without an LNA. The architecture is highly reconfigurable and follows the technology scaling.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: April 21, 2015
    Assignee: Technische Universiteit Delft
    Inventors: Iman Madadi, Massoud Tohidian, Robert Bogdan Staszewski
  • Patent number: 9014652
    Abstract: Embodiments provide a mobile communication device comprising an adaptive filter for filtering a RF signal and a controller. The adaptive filter comprises a first terminal, a second terminal, a reference terminal for providing a reference potential, a first filter structure connected in series between the first terminal and the second terminal, a second filter structure connected in series between the first terminal and the reference terminal, and a third filter structure connected in series between the second terminal and the reference terminal, wherein at least one filter structure of the first, second and third filter structures comprises at least one switchable filter element. The controller is configured to selectively activate or deactivate the at least one switchable filter element based on the RF signal or a baseband version thereof.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: April 21, 2015
    Assignee: Infineon Technologies AG
    Inventor: Winfried Bakalski
  • Patent number: 9008249
    Abstract: Techniques are provided which may be implemented using various methods and/or apparatuses in a device comprising a receiver to scan a spectral band of a received signal comprising a desired signal contribution to determine whether signal data associated with at least a sub-band of the spectral band further comprises at least one undesired signal contribution. In response to determining that the signal data comprises at least one undesired signal contribution, the mobile station may initiate at least one notch filter to affect the undesired signal contribution in subsequent signal data associated with the received signal.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 14, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Jie Wu, Emilija M. Simic, Timothy Paul Pals, Duong A. Hoang
  • Publication number: 20150099471
    Abstract: A receiver and a transmitter that copes with interference in a super-regenerative communication system, and a method of using the receiver and the transmitter, are provided. A super-regenerative receiver includes a resonance frequency adjusting unit configured to adjust a resonance frequency associated with a filtering band of a transmission signal that is received from a transmitter. The super-regenerative receiver further includes an oscillation signal generating unit configured to generate an oscillation signal, using a positive feedback amplification, based on the resonance frequency and the transmission signal. The super-regenerative receiver further includes an oscillation characteristic detecting unit configured to detect a characteristic of the oscillation signal. The super-regenerative receiver further includes a determining unit configured to determine whether interference is included in the transmission signal based on the characteristic of the oscillation signal and the resonance frequency.
    Type: Application
    Filed: November 13, 2014
    Publication date: April 9, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Joon Seong KANG, Jae Sup LEE, Hyo Sun HWANG
  • Patent number: 9000969
    Abstract: A received plurality of signals may be filtered to select an in-band signal and/or an out-of-band. A signal strength of the selected signal(s) may be measured. A resolution of an analog-to-digital converter may be controlled based on the measured signal strength(s). The selected in-band signal may be converted to a digital representation via the analog-to-digital converter. The resolution may be decreased when the strength of the in-band signal is higher, and increased when the strength of the in-band signal is lower. The resolution may be increased when the strength of the out-of-band signal is higher, and decreased when the strength of the out-of-band signal is lower. A signal-to-noise ratio and/or dynamic range of the selected signal(s) may be determined based on the measured signal strength(s), and may be utilized to adjust the resolution of the analog-to-digital converter.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: April 7, 2015
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza Rofougaran
  • Patent number: 9002309
    Abstract: A tunable multi-band receiver supporting operation on a plurality of frequency bands is disclosed. In an exemplary design, the tunable multi-band receiver includes an antenna tuning network, a tunable notch filter, and at least one low noise amplifier (LNA). The antenna tuning network tunes an antenna (e.g., a diversity antenna) to a receive band in a plurality of receive bands. The tunable notch filter is tunable to a transmit band in a plurality of transmit bands and attenuates signal components in the transmit band. One LNA among the at least one LNA amplifies an output signal from the tunable notch filter. The tunable multi-band receiver may further include one or more additional tunable notch filters to further attenuate the signal components in the transmit band.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: April 7, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Gurkanwal Singh Sahota, Steven C. Ciccarelli, Sang-June Park, Charles J. Persico
  • Publication number: 20150094009
    Abstract: A branch circuit includes a common antenna port and separates a first communication signal including a signal in a low band and a signal in a high band and a second communication signal that is a signal in a frequency band between the low band and the high band. The branch circuit includes a first-communication-signal-line-side band elimination filter and a second-communication-signal-line-side band elimination filter and SAW filter.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 2, 2015
    Inventors: Kuniaki YOSUI, Noboru KATO
  • Publication number: 20150072635
    Abstract: A circuit and method for filtering adjacent channel interferers. One embodiment of an adjacent channel filtering circuit for reducing adjacent channel interference with an in-band signal, includes: (1) a radio frequency (RF) circuit configured to receive and down-convert an RF signal to a baseband signal containing an in-band signal and adjacent channel components, (2) a controlled single pole filter electrically coupled to the RF circuit and configured to reject the adjacent channel components and cause a predetermined attenuation in the in-band signal, (3) a baseband circuit coupled to the controlled single pole filter and configured to condition the baseband signal for conversion to a digital signal, and (4) a digital circuit coupled to the baseband circuit and configured to receive the digital signal and compensate for the predetermined attenuation.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 12, 2015
    Applicant: Nvidia Corporation
    Inventors: Essam Atalla, Abdellatif Bellaouar
  • Patent number: 8971835
    Abstract: Some embodiments of the invention relate a circuit having a first and a second electrically connected voltage domains, respectively biased at different supply voltages (e.g., the first voltage domain biased at a low bias voltage and the second voltage domain biased at a second, different supply voltage). The apparatus further comprises a first DC current source coupled to one of the voltage domains (e.g., the first voltage domain having a low DC voltage potential) and a second DC current source coupled to the other voltage domain (e.g., the second voltage domain having a high DC voltage potential). The first and second DC current sources are configured to provide a DC cancellation current having a value that cancels a DC current generated by the potential difference between the first and second voltage domains.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: March 3, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Krzysztog Dufrene, Elmar Wagner
  • Patent number: 8971834
    Abstract: Third-order intermodulation products (IM3) are attenuated in RF receivers by providing a typical main signal path and a parallel auxiliary signal path in which the IM3 products are accentuated, and the output from the main signal path is adaptively filtered to attenuate the IM3 products. In one embodiment, a multirate filter bank (MRFB) with asymmetric analysis and synthesis sections is used to detect and isolate the IM3 products. In another embodiment an analog nonlinear term generator is placed at the front of the auxiliary signal path. The analog nonlinear term generator takes advantage of the nonlinearities of a differential MOSFET circuit and a multiplier to extract the IM3 products in the RF input signal. The outputs of the main signal path and the auxiliary signal path are inputs to a complex least mean squares filter to attenuate the IM3 products in the resulting signal.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 3, 2015
    Assignee: California Institute of Technology
    Inventors: Edward Keehr, Seyed Ali Hajimiri
  • Patent number: 8965321
    Abstract: A stage is provided for a receiver of a wireless device. The stage comprises a matching network that separates amplified signals of interest received from an amplifier from amplified unwanted signals received from the amplifier in conjunction with additional downstream filters. The stage also comprises a signal path that comprises components for receiving and processing the amplified signals of interest, and a shunt path that comprises components for adjusting reflected energy sent back to the amplifier for limiting the output swing of the amplifier in a frequency band corresponding to the amplified unwanted signals.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: February 24, 2015
    Assignee: BlackBerry Limited
    Inventors: Wen-Yen Chan, Nasserullah Khan
  • Publication number: 20150044981
    Abstract: A system and method for multi-notch filtering for a communication device are provided. The system includes an input node to receive a signal directed to the communication device; a time delay element to delay the signal by a predetermined time delay; a summation element to sum the signal and the time-delayed signal; and a gain element to output the summed signal to the communication device.
    Type: Application
    Filed: August 12, 2013
    Publication date: February 12, 2015
    Inventor: Yao H. Kuo
  • Patent number: 8954026
    Abstract: An electronic device includes an adjustable filter with a first filter element, and a second filter element coupled to the first filter element. The second filter element includes a field effect transistor (FET) including a source terminal, a drain terminal, and a gate terminal. The source terminal and the gate terminal are coupled to a reference voltage. A control circuit is coupled to the drain terminal and is configured to apply a control voltage thereto to vary a capacitance between the source and drain terminals to adjust the adjustable filter.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: February 10, 2015
    Assignee: Harris Corporation
    Inventors: Andrew Mui, Anthony C. Manicone
  • Patent number: 8954025
    Abstract: A communications radio has an IF stage with an associated filter array. The array includes at least one narrowband filter whose passband is less than 3 MHz, at least one wideband filter whose passband is 3 MHz or greater, a first switch with a common pole connected to an input terminal of the array, a second switch with a common pole connected to an output terminal of the array, a third switch whose common pole is operatively connected to the input terminal, and a fourth switch whose common pole is operatively connected to the output terminal. The first and the second switches cooperate to insert a selected filter between the first and second terminals. The third and the fourth switches cooperate to insert the filter array into either a receive signal path when the radio is in a receive mode, or a transmit signal path when in a transmit mode.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: February 10, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Michael S. Vogas
  • Patent number: 8952748
    Abstract: An embodiment integrated circuit includes a first capacitive element including a first metal-oxide-semiconductor (MOS) capacitor and a second capacitive element coupled in parallel with the first capacitive element, where the second capacitive element includes a second MOS capacitor. Also, the integrated circuit includes a third capacitive element coupled in parallel with the first capacitive element and the second capacitive element, where the third capacitive element includes a first metal-insulator-metal (MIM) capacitor and a fourth capacitive element coupled in parallel with the first capacitive element, the second capacitive element, and the third capacitive element, where the fourth capacitive element includes a second MIM capacitor.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: February 10, 2015
    Assignee: FutureWei Technologies, Inc.
    Inventors: Homero Guimaraes, Matthew Richard Miller
  • Publication number: 20150017942
    Abstract: A communication system includes an omnidirectional antenna to receive a wideband primary signal, a nulling antenna to receive a secondary signal and a controller. The nulling antenna is oriented to place a null in a direction of a desired communication signal and the controller subtracts a processed secondary signal from a processed wideband primary signal to produce a jamming cancelled signal.
    Type: Application
    Filed: November 26, 2013
    Publication date: January 15, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Michael Joseph Dell'Anno, Richard Louis Zinser
  • Patent number: 8929848
    Abstract: An interference-robust receiver includes an RF signal processor, a frequency conversion interface and an analog signal processor. The RF signal processor provides an RF signal. The frequency conversion interface includes a passive mixer for generating an intermediate frequency signal by down-converting an in-band part of the RF signal to a passband of a filter and down-converting an out-of-band part of the RF signal to a stopband of the filter. The filter can thus filter the intermediate frequency signal with the passband and the stopband.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: January 6, 2015
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: George Chien, Yen-Horng Chen, Chi-Yao Yu, Lan-Chou Cho, Chih-Chun Tang, Siu-Chuang Ivan Lu
  • Patent number: 8923794
    Abstract: Embodiments of apparatuses, systems and methods relating to temperature compensation of acoustic resonators in the electrical domain are disclosed. Other embodiments may be described and claimed.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 30, 2014
    Assignee: TriQuint Semiconductor, Inc.
    Inventor: Robert Aigner
  • Patent number: 8923364
    Abstract: In general, the subject matter described in this disclosure can be embodied in methods, systems, and program products for transmitting data over discontiguous portions of radio frequency spectrum. Data that is to be wirelessly transmitted to a remote computing device is received. A first signal that encodes the data across a band of radio frequencies is generated. The first signal is split into multiple signals, each of the multiple signals being associated with a different portion of the band of radio frequencies. Each of the multiple signals is filtered to isolate each respective one of the multiple signals to its associated portion of the band of radio frequencies. At least one of the multiple signals is frequency translated. Each of the multiple signals are combined after the filtering of each of the multiple signals. The second signal is provided for wireless transmission by an antenna.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 30, 2014
    Assignee: Google Inc.
    Inventor: C. Philip Gossett
  • Patent number: 8923793
    Abstract: A wireless communication device includes a demodulation unit which demodulates a predetermined reception frequency, an S/N improvement processing unit which performs an S/N improvement process on a demodulated signal output from the demodulation unit, a first filter which performs an adaptive operation with respect to a frequency having a largest amplitude in a signal output from the S/N improvement processing unit, and outputs a filter coefficient updated by the adaptive operation, a controller which calculates the frequency of the largest amplitude defined by the filter coefficient output from the first filter, and controls the demodulation unit to update the reception frequency so as to reduce a difference between the frequency having the largest amplitude and a predetermined frequency, and a second filter which limits a range of a frequency bandwidth of the demodulated signal based on the frequency having the largest amplitude.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 30, 2014
    Assignee: JVCKenwood Corporation
    Inventor: Yasunori Suzuki
  • Publication number: 20140364078
    Abstract: Systems, methods, apparatuses, and computer readable media are disclosed for providing interference rejection in ultra-wideband real time locating systems. In one embodiment, an ultra-wideband (UWB) receiver is configured to: receive a composite signal, the composite signal comprising a UWB signal transmitted from within a monitored region and an interference signal transmitted from a source positioned outside the monitored region; filtering at least a first component of the composite signal representing the interference signal with a tunable notch filter to generate a filtered signal; determining an interference level in the filtered signal; and adjust the tunable notch filter to reduce the interference level. Corresponding systems, methods, and computer-readable storage medium are also provided.
    Type: Application
    Filed: July 15, 2013
    Publication date: December 11, 2014
    Inventor: Edward A. Richley
  • Patent number: 8902962
    Abstract: A method for compensating frequency response of a filter unit in remote radio unit in real time, said remote radio unit comprises filter unit equalizer, transmitter observation receiver and antenna calibration receiver, said method comprising the steps of: receiving input signal of said filter unit by transmitter observation receiver; receiving output signal of said filter unit by antenna calibration receiver; calculating coefficients of filter unit equalizer in real time based on said input signal and said output signal; updating said filter unit equalizer based on said calculated coefficients in order to compensate frequency response of said filter unit. A device to carry out the above method, remote radio unit comprising said device and a telecommunication system comprising said remote radio unit are also provided.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: December 2, 2014
    Assignee: Unwired Planet, LLC
    Inventor: Jack Xu
  • Patent number: 8891710
    Abstract: A method of channel estimation includes receiving a signal after transmission over a media having a plurality of sub-carriers in a frequency band. The signal is preprocessed including performing a fast Fourier transform (FFT) to generate a plurality of frequency-domain samples. Channel estimating is applied to the plurality of frequency-domain samples using (i) least squares (LS) estimation, wherein the LS estimation generates intermediate LS channel estimates for each of the sub-carriers, and (ii) frequency-domain filtering and scaling the intermediate LS channel estimates. The frequency-domain filtering uses a common frequency-domain filter consisting of a single filter coefficient vector having a plurality of frequency-domain filter coefficients to generate refined channel estimates for each of the plurality of sub-carriers.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: November 18, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: June Chul Roh
  • Publication number: 20140335812
    Abstract: A radio reception device and a radio receiving method are provided that, when a frequency band assigned to a different radio system is shared, can effectively suppress the influence of interfering waves from this different radio system.
    Type: Application
    Filed: November 8, 2012
    Publication date: November 13, 2014
    Inventor: Yasunori Futatsugi
  • Publication number: 20140335811
    Abstract: Undesired variations in a signal are removed by initializing two boundaries comprising an upper boundary and a lower boundary to track the signal level. At least one of the upper boundary and the lower boundary is adjusted encapsulate/track the received signal between the two boundaries when the signal level is outside of the two boundaries. A value computed with reference to at least one of the boundaries is provided as a filter output. As a result, the output comprises desired variations that cross the boundaries and the undesired variations that are within the boundaries are eliminated. In one embodiment, an altimeter sensor signal is filtered such that the undesired variations due to noise and instability of the altimeter are removed and the desired variations representing the change in the altitude are detected and provided without any delay to the navigation subsystem.
    Type: Application
    Filed: May 13, 2013
    Publication date: November 13, 2014
    Applicant: Texas Instruments Incorporated
    Inventor: Jayawardan Janardhanan
  • Patent number: 8885453
    Abstract: Enhanced stomp-and-restart techniques are provided. At a plurality of antennas of a wireless communication device, energy is received in a channel in which one or more frames may be transmitted to the wireless communication device from any one of a plurality of other wireless communication devices. A first frame is acquired from the received energy. Channel state information is computed for the first frame and the channel state information associated with the first frame is stored. Interference suppression parameters are computed for the first frame from the channel state information. It is determined whether a stronger second frame is being received by the wireless communication device. The received energy associated with the first frame is nulled-out using the interference suppression parameters when the stronger second frame is determined to be received so that start-of-packet processing and decoding is performed on the stronger second frame.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: November 11, 2014
    Assignee: Cisco Technology, Inc.
    Inventor: Paul J. Stager
  • Publication number: 20140329462
    Abstract: Systems and apparatuses are provided for negating the degradation effects of fundamental coupling between at least two near field communication (NFC) enabled devices, at least one of which can receive frequency modulation (FM) signals. Due to the fundamental coupling, strong NFC signals can mix with blocking signals associated with a desired/tuned-to FM frequency causing degradation in FM receiver performance. By utilizing a notch filter at the front end of the FM receiver, the degradation in FM receiver performance caused by the fundamental coupling phenomenon can be avoided.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 6, 2014
    Applicant: Broadcom Corporation
    Inventors: Shahla Khorram, Fazal Haq, Thomas Francis Baker, Bojko Frederik Marholev, Razieh Roufoogaran
  • Patent number: 8879983
    Abstract: The present invention relates to a communication system and methods of use thereof. The system includes sets of complementary radios for transmitting and receiving signals to achieve high reliability and reduced costs. The sets of complementary radios are in wireless communication with each other. A new connection is made by selecting from amongst the complementary radios. Switching between complementary radios during a connection is also permitted. Optimized protocols and hardware for implementing the system are disclosed.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: November 4, 2014
    Assignee: HMicro, Inc.
    Inventors: Louis C. Yun, Ali Niknejad, Venkateswara R. Sattiraju, James Beck, Surendar Magar
  • Patent number: 8879461
    Abstract: Blank subframe link design uses reduced bandwidth either explicit or derived for Closed Subscriber Group (CSG) cell interference mitigation, enabling a non-allowed User Equipment (UE) to co-exist with CSG cells on the same carrier. One could specify UL blank subframes to orthogonalize non-allowed UE and allowed UE transmissions on UL either via explicit UL blank subframe definition or derived from DL blank subframe definition. Scheduling can orthogonalize data transmissions. A femto cell temporarily reducing uplink bandwidth can mitigate uplink control channel residual interference from a non-allowed UE. A relay configures RACH occasion to coincide with non-blank UL subframes as much as possible. UE knowledge of RACH occasion is sufficient to start RACH and hand over procedure. RACH occasions with 10 ms periodicity are supported by assigning all odd/even uplink HARQ interlaces to relay. RACH occasions with 20 ms periodicity are supported by assigning any of the 1/4 UL HARQ interlaces to relay.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 4, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Tingfang Ji, Peter Gaal
  • Publication number: 20140323076
    Abstract: A system and method for wideband tunable notch cancellation that is passive and does not require feedback or feed forward circuitry. An input spectrum containing interference is split into two signals that are 180 degrees out of phase with each other. The preferred signal is filtered out of the 180 degree out of phase signal using a notch filter while the original signal is sent through a delay line. Then the two signals are summed with a power summer so that the interference signals that are 180 degrees out of phase with those in the original signal are cancelled out and the preferred signal remains. The notch filter is tunable to different preferred signals.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 30, 2014
    Applicant: Northrop Grumman Systems Corporation
    Inventors: Mark Kintis, Xing Lan
  • Patent number: 8874059
    Abstract: A method for reducing power consumption on a wireless communication device is described. The wireless communication device includes a first stage active filter and a second stage active filter. A condition measurement is obtained that includes a signal measurement condition. If it is determined that the condition measurement is above a threshold, the second stage active filter is bypassed.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 28, 2014
    Assignee: QUALCOMM, Incorporated
    Inventors: Li Liu, Steven C Ciccarelli, Shrenik Patel, Prasad Srinivasa Siva Gudem, Zixiang Yang, Frederic Bossu, Wu-Hsin Chen, Chiewcharn Narathong
  • Patent number: 8874061
    Abstract: A filtering apparatus and method for dual-band sensing circuit are disclosed. The invention features a dual-band sensing unit disposed in a filtering device that receives the signals from a sub-system with variable frequency spectrum. The signals are split up into several bands. After that, one or more frequency detecting units are used to detect the power of high-band and low-band signals, and convert the power into a voltage signal. Users can externally adjust the gain of a tunable gain amplifier for the voltage signal. Further, a comparison operation is processed by a comparator, and a signal resulted from the comparison operation is used to control the switch timing for an RF switching unit. Consequently, this like adaptive notch filter is achieved to determine the intensity of noise and thereby to turn on the high-band or low-band notch filters, so as to reduce the in-band loss.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: October 28, 2014
    Assignee: Azurewave Technologies, Inc.
    Inventors: Chung-Er Huang, Huang-Chan Chien
  • Publication number: 20140315509
    Abstract: A wireless communication device includes a base board, a metal zone, and a filter. The metal zone and the filter are disposed on the base board. The metal zone defines a slot. The filter is connected to the slot to divide the slot into a first slot section and a second slot section. When a current having a first frequency flows through the first slot section and the second slot section, the filter is in an open circuit state, and the first slot section and the second slot section are activated to receive/transmit wireless signals having a first central frequency. When a current having a second frequency only flows through the first slot section, the filter is in a closed circuit state, and the first slot section is activated to receive/transmit wireless signals having a second central frequency.
    Type: Application
    Filed: September 25, 2013
    Publication date: October 23, 2014
    Applicant: CHIUN MAI COMMUNICATION SYSTEMS, INC.
    Inventors: TZE-HSUAN CHANG, CHO-KANG HSU
  • Patent number: 8868019
    Abstract: A method includes receiving an input signal carrying transmitted values by a receiver, which includes a decision device that produces estimates of the transmitted values. The input signal is filtered using a forward filter to produce a forward-filtered signal, and the estimates of the transmitted values are filtered using a backward filter to produce a backward-filtered signal. The decision device is applied to a composite signal produced from the forward-filtered and backward-filtered signals, so as to produce the estimates of the transmitted values. An accuracy of the estimates of the transmitted values is assessed, and coefficients of the forward filter are adapted depending on the assessed accuracy.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: October 21, 2014
    Assignee: Siano Mobile Silicon Ltd.
    Inventors: Tomer Yablonka, Roy Oren
  • Patent number: 8862086
    Abstract: A mixer is configured to sample a received input signal at a predefined oscillator frequency to generate a sampled input signal, and to switch a polarity of the sampled input signal at a predefined polarity switching frequency to generate a polarity switched sampled input signal.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: October 14, 2014
    Assignee: Intel Mobile Communicatons GmbH
    Inventors: Christoph Schultz, Markus Hammes, Rainer Kreienkamp, Stefan Van Waasen
  • Patent number: 8862089
    Abstract: A circuit for a front-end tunable filter of a communication and broadcast receiver and a tuning method thereof are described herein. In one aspect, the circuit of the tunable filter may be independent of the signal reception link of the receiver. The pre-filter (104) includes a variable capacitance (146) which is adjusted by a tuning signal (160). A negative resistance element (144) and the pre-filter (104) may form an oscillator. The negative resistance element (144) is controlled by an amplitude control signal (162) outputted from an oscillation amplitude control circuit (142). The oscillation amplitude control circuit (142) stabilizes the amplitude of a radio frequency signal (130) in a preset range. An oscillation frequency control circuit (140) stabilizes the frequency of the signal (130) in a preset frequency range by a tuning signal (160). The tuning is completed until both of the amplitude and the frequency of the oscillation signal meet the preset ranges.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: October 14, 2014
    Assignee: Beijing KT Micro, Ltd.
    Inventors: Han Wang, Yi Yang, Zhen Li, Pei Yang, Dianyu Chen, Haiqing Lin, Yihai Xiang, Zhongzhi Liu
  • Patent number: 8862088
    Abstract: An amplifier circuitry having adjustable parameters is presented. The present amplifier circuitry includes a feed-back loop, wherein the feedback loop converts (26) a signal to another frequency, filters (20) the signal in the other frequency, and restores (24) the filtered signal back to the original frequency for inputting the signal to an input of the amplifier (22). The feed-back loop implements a band-stop filter (20) having an adjustable stopband causing the amplifier circuitry to have an adjustable band-pass response. A passband of the amplifier circuitry is changed from one operating frequency to another operating frequency by changing frequency conversion parameters of the feedback loop.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: October 14, 2014
    Assignee: Nokia Corporation
    Inventors: Mikko Kaltiokallio, Jussi Ryynanen
  • Publication number: 20140302809
    Abstract: Embodiments include a novel receiver architecture to optimize receiver performance in the presence of interference. In various embodiments, the presence of interference is detected, and the relative frequency location of the interference is detected. The relative frequency location specifies whether the frequency of the interference is high side (above the desired signal, i.e., at a higher frequency) or low side (below the desired signal). The receiver is configured based on the detected interference and relative location thereof. For a device such as a cellular phone that operates in a dynamic and changing environment where interference is variable, embodiments advantageously provide the capability to modify the receiver's operational state depending on the interference.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Applicant: Spreadtrum Communications USA Inc.
    Inventors: David Haub, Zhigang Xu, Jarrett Malone
  • Patent number: 8855592
    Abstract: A method is disclosed for mitigating narrowband interference within a system for wideband communications. The method can include separating a wideband signal into a plurality of sub bands, detecting energy levels in the sub-bands, and activating a control signal if the energy levels of the sub-bands differ by a predetermined amount. Such a difference in energy levels can indicate that narrowband interference is present and interference mitigation features can be activated. In another embodiment, a system is disclosed that has a band splitter and a plurality of energy level detectors to detect energy differences in the sub bands. Other embodiments are also disclosed.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: October 7, 2014
    Assignee: Intel Corporation
    Inventors: Andrey V Belogolovy, Mikhail Lyakh, Alan E. Waltho, Anu Hannele Huttunen, Risto Kaunisto
  • Patent number: 8855593
    Abstract: A circuit includes a local oscillator of a transmitter, the local oscillator to generate a transmitter local oscillator signal. A switch controlled by the transmitter local oscillator signal connects with a baseband impedance element to generate a notch frequency signal. The notch frequency signal is added to a transmitter leakage signal to attenuate the transmitter leakage signal prior to demodulation of a desired receiver signal by a receiver.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: October 7, 2014
    Assignee: Broadcom Corporation
    Inventors: Ahmad Mirzaei, Mohyee Mikhemar, Hooman Darabi
  • Patent number: 8848847
    Abstract: One embodiment of the present invention relates to a combined mixer filter circuit. The circuit includes a sampler, a plurality of filter branches, and a coefficient generator. The sampler is configured to provide a sampled signal by sampling a received signal at a specified rate. The plurality of filter branches has selectable filter coefficients. The plurality of filter branches are configured to receive the sampled signal and generate a mixed and filtered output signal without a separate mixer component. The coefficient generator is coupled to the plurality of filter branches. The coefficient generator is configured to assign filter coefficient values to the selectable filter coefficients to yield a selected mixing function for the mixed filtered output signal.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: September 30, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Christoph Schultz, Markus Hammes, Rainer Kreienkamp
  • Patent number: 8843098
    Abstract: The present invention provides a filter that may be used as a reconstruction filter with a built-in balun. One embodiment of the filter includes first and second input nodes for receiving balanced radiofrequency signals and an inductive-capacitive (LC) circuit coupled between the first and second input nodes and first and second intermediate nodes. This embodiment of the filter also includes a coupling circuit that couples the first and second intermediate nodes to an output node. Balanced signals within a filter bandwidth are transmitted from the first and second input nodes to the output node and balanced signals outside the filter bandwidth are substantially shorted to ground.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: September 23, 2014
    Assignee: Alcatel Lucent
    Inventor: Michael G. Zierdt
  • Patent number: 8843094
    Abstract: Aspects of a method and system for integrated blocker detection and automatic gain control are provided. In this regard, a communication device may generate one or more first signal strength indications based on a strength of a received signal at a first point in the analog front-end of the communication device. The communication device may generate one or more second signal strength indications based on a strength of the received signal at a second point in a digital processing module of the communication device. The first point in the analog front-end may be an input or an output of a down-conversion mixer. The second point in the digital processing module may be an output of an analog-to-digital converter or an output of a channel selection filter. The communication device may control, utilizing the first signal strength indication(s) and the second signal strength indication(s), a gain of one or more components of the communication device.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: September 23, 2014
    Assignee: Broadcom Corporation
    Inventors: Walid Ahmed, John Leung, Theodoros Georgantas, Morten Damgaard, Nelson Sollenberger
  • Publication number: 20140273907
    Abstract: A method of configuring at least one frequency dependent (FD), in-phase/quadrature (I/Q), imbalance compensation filter within a radio frequency (RF) module is described. The method includes applying an input signal to an input of the RF module, receiving a filtered I-path signal for the RF module and deriving at least one I-path filtering estimate value therefrom, receiving a filtered Q-path signal for the RF module and deriving at least one Q-path filtering estimate value therefrom, and configuring the at least one FD I/Q imbalance compensation filter based at least partly on at least one ratio between the derived I-path and Q-path filtering estimate values.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: MediaTek Singapore Pte. Ltd.
    Inventors: Balachander Narasimhan, Charles Chien, Sheng-Hong Yan, Paul Cheng Po Liang