Common Antenna Patents (Class 455/82)
  • Patent number: 10374669
    Abstract: Disclosed are antenna systems and related methods. An antenna system includes a plurality of near-end electromagnetic (EM) radiating elements, a tunable medium, and control circuitry. The tunable medium is positioned relative to the plurality of near-end EM radiating elements and a plurality of far-end EM radiating elements to scatter EM radiation transmitted between the plurality of near-end EM radiating elements and the plurality of far-end EM radiating elements. The control circuitry includes a controller operably coupled to the tunable medium. A method includes modifying EM properties of the tunable medium to modify the EM radiation transmitted between the plurality of near-end EM radiating elements and the plurality of far-end EM radiating elements.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: August 6, 2019
    Assignee: Elwha LLC
    Inventors: Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Patent number: 10236932
    Abstract: Methods and apparatus for transmitting signals that are magnetically latched at a receiver. In embodiments, a signal isolator comprises a transmitter and a receiver on separate die. Signal disruptions may be minimized. In embodiments, the transmitter and/or receiver can be monitored for proper operation.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: March 19, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventor: Robert A. Briano
  • Patent number: 10200073
    Abstract: One example described herein includes a launchable communications device. The device includes an electronic payload comprising a communication system configured to receive a first communications signal and to transmit a second communications signal along a communications path between a first communication station and a second communication station. The device also includes deployment equipment configured to deploy the launchable communications device and to sustain a deployment state of the launchable communications device with respect to a predetermined operational environment. The device further includes a rigid housing configured to substantially enclose the electronic payload and the conveyance equipment prior to and during at least a portion of deployment of the launchable communications device to the predetermined operational environment.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: February 5, 2019
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Peter Bennett Houser, Mary Anne Lorraine Domm, Charles Jackson Nesbitt, IV
  • Patent number: 10129915
    Abstract: A wireless communication system, in some embodiments, comprises: a receiver; one or more tunable elements, coupled to the receiver, to adjust an impedance of the system; and a processor, coupled to the one or more tunable elements, to tune said one or more tunable elements based on the strength of a received signal.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: November 13, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammad-Reza Nezhad-Ahmadi, Andrew Kuikman
  • Patent number: 10050662
    Abstract: A radio frequency switch circuit with improved harmonic suppression and low insertion loss has an antenna port and a plurality of signal ports. A plurality of transistor switch circuits, are connected to a respective one of the plurality of signal ports and to the antenna port. Each of the transistor switch circuits has a transistor, which in an off state, together with a harmonic suppression capacitor and a parallel inductor both connected thereto, define a tank circuit that suppresses RF signals applied to the corresponding transistor switch circuit from a different one of the transistor switch circuits. The harmonic suppression capacitor is tuned to distribute large signal voltage swings in the RF signal amongst parasitic diodes of the transistor.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: August 14, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventors: Huan Zhao, Qiang Li
  • Patent number: 9954399
    Abstract: Exemplary embodiments are directed to wireless power transfer including generating an electromagnetic field at a resonant frequency of a transmit antenna to create a coupling-mode region within a near-field of the transmit antenna. A receive antenna placed within the coupling-mode region resonates at or near the resonant frequency. The receive antenna extracts energy from a coupling between the two antennas. Signaling from the receive antenna to the transmit antenna is performed by generating a first power consumption state for the receive antenna to signal a first receive signal state and generating a second power consumption state for the receive antenna to signal a second receive signal state. Signaling from the transmit antenna to the receive antenna is performed by enabling the resonant frequency on the transmit antenna to signal a first transmit signal state and disabling the resonant frequency on the transmit antenna to signal a second transmit signal state.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: April 24, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Stanley Slavko Toncich, William Henry Von Novak, III
  • Patent number: 9935677
    Abstract: Devices and methods are disclosed, related to high power diode switches. In some embodiments, a radio-frequency switch circuit can include a first switchable path implemented between a pole and a first throw, the first switchable path including one or more PIN diodes, and a second switchable path implemented between the pole and a second throw, the second switchable path including one or more PIN diodes. The radio-frequency switch circuit can further include a switchable shunt path implemented between the second throw and a ground, the switchable shunt path including at least one shunt PIN diode and a capacitance between the second throw and the at least one shunt PIN diode. The pole can be an antenna port, and the first and second throws can be transmit and receive ports, respectively.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 3, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventors: Richard Mark Puente, Stephen Richard Moreschi, Shuping Zhang
  • Patent number: 9854539
    Abstract: A radio communication device including a memory that stores information on a strength of interference between a beam output by a first base station and a beam output by a second base station for each of a plurality of combinations, each of the plurality of combinations including at least one of a plurality of beams output by the first base station and at least one of a plurality of beams output by the second base station, emitting directions of each of the plurality of beams output by the first base station being different each other, emitting directions of each of the plurality of beams output by the second base station being different each other, and a processor configured to identify one or more combinations having the interference strength higher than a threshold, and assign different radio resources to each of beams included in the identified one or more combinations.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: December 26, 2017
    Assignee: FUJITSU LIMITED
    Inventor: Dai Kimura
  • Patent number: 9743406
    Abstract: Techniques for resource block allocation in a multi-user MIMO High Efficiency WLAN system are provided. Specifically, teachings that when taken alone or together, provide a device or a group of devices with an improved resource allocation for the reduction of usable tone waste, are presented. The present disclosure includes a system that provides a user with a technique allocating data tones prior to the encapsulation unit or overhead tones on a resource block unit. Further, the total allocated bandwidth can be reduced prior resource allocation to overcome modulation and coding scheme downgrading caused by severe puncturing. Alternatively, only band edge basic resource blocks are reduced to account for overhead tones which largely reside on band edges.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: August 22, 2017
    Assignee: INTEL IP CORPORATION
    Inventors: Xiaogang Chen, Qinghua Li, Robert Stacey, Yuan Zhu
  • Patent number: 9634716
    Abstract: Enhanced granularity operational parameters adjustment of components and modules in a multi-band, multi-standard communication device. For supporting two-way communications, a communication device includes receiver and transmitter modules. Each module includes various components that are configurable and/or programmable based on a protocol and band pair by which the communication device is operating. The communication device is a multi-protocol and multi-band capable communication device capable to operate in accordance with any one protocol and band at a first time and another protocol and band at a second time. The various components within each of the receiver and transmitter modules can be adjusted using one or more operational parameters. In some instances, a given component can be controlled by more than one operational parameter. Alternatively, certain components are controlled only one operational parameter.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: April 25, 2017
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd
    Inventors: Nikolaos C. Haralabidis, Theodoros Georgantas
  • Patent number: 9507979
    Abstract: A system and method that combines RFID tag reader circuitry and a touch sensor, wherein the system and method may reduce power consumption of a battery powered system by detecting the presence of an RFID tag by using a lower power consumption touch sensor instead of scanning for the RFID tag by using higher power RFID tag detection and reading circuitry, controlling activation and deactivation of the RFID tag detection and reading circuitry when the touch sensor has detected the presence of the RFID tag, and reconfiguring sensor electrodes so that the electrodes may form a touch sensor or an antenna as needed.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: November 29, 2016
    Assignee: CIRQUE CORPORATION
    Inventors: Keith L. Paulsen, Andrew Paulsen
  • Patent number: 9480024
    Abstract: A user equipment in wireless communication system is provided. The user equipment includes an antenna unit including a plurality of antennas, a control unit for grouping the plurality of antennas into a predetermined number of antenna groups and controlling separately transmission power of each of the predetermined number of antenna groups, and a transmitting unit, connected to the control unit, for transmitting at least one of data and control information to a base station via at least one of the predetermined number of antenna groups.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: October 25, 2016
    Assignee: LG ELECTRONICS INC.
    Inventors: Moon Il Lee, Jae Hoon Chung, Hyun Soo Ko, Bin Chul Ihm, Yeong Hyeon Kwon
  • Patent number: 9450665
    Abstract: A diversity receiver capable of receiving a CDMA system (e.g., a W-CDMA system) and a TDMA system (e.g., a GSM system), with receive diversity for at least one system, is described. W-CDMA is often referred to as UMTS. In one design, the diversity receiver includes a first receiver for GSM and a second receiver for UMTS. The first receiver may be implemented with one receiver design, may be spec-compliant for GSM, and may also support UMTS. The second receiver may be implemented with another receiver design, may be spec-compliant for UMTS, and may also support GSM. The first receiver may include a lowpass filter having a bandwidth that is adjustable for GSM and UMTS. The second receiver may include a bandpass filter used to attenuate a transmit frequency range for UMTS. Each receiver may include circuit blocks that are used for both GSM and UMTS.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: September 20, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Wesley Alan Sampson, Aristotele Hadjichristos, Gurkanwal S Sahota
  • Patent number: 9439152
    Abstract: A user equipment in wireless communication system is provided. The user equipment includes an antenna unit including a plurality of antennas, a control unit for grouping the plurality of antennas into a predetermined number of antenna groups and controlling separately transmission power of each of the predetermined number of antenna groups, and a transmitting unit, connected to the control unit, for transmitting at least one of data and control information to a base station via at least one of the predetermined number of antenna groups.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: September 6, 2016
    Assignee: LG ELECTRONICS INC.
    Inventors: Moon Il Lee, Jae Hoon Chung, Hyun Soo Ko, Bin Chul Ihm, Yeong Hyeon Kwon
  • Patent number: 9396426
    Abstract: Techniques that enable a device to advertise its mode of operation using an RFID tag attached to the device. Techniques are provided for programmatically controlling an RFID tag. An RFID tag attached to a device is programmatically enabled or disabled depending upon the mode(s) of operation of the device. The RFID tag is able to transmit a signal when enabled and not able to transmit a signal when disabled. Using such a controllable RFID tag, a device can efficiently indicate or advertise its mode of operation to an RFID reader or sensor.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: July 19, 2016
    Assignee: Ricoh Company, Ltd.
    Inventors: Kurt Piersol, Ken Gudan
  • Patent number: 9351285
    Abstract: A convergence property as ability of removing inter-user interference of turbo equalization is improved in case of using a transmission method in which overlapping of a part of spectrum is allowed among a plurality of users.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 24, 2016
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Jungo Goto, Hiroki Takahashi, Osamu Nakamura, Kazunari Yokomakura, Yasuhiro Hamaguchi
  • Patent number: 9326320
    Abstract: Systems and methods are provided for an antenna switch module (300) for an electronic device (302) including wireless communication circuitry (308) and an antenna (304) configured to transmit and receive signals over a plurality of frequency bands. The antenna switch module may include a plurality of antenna switches (310, 312) positioned in series and configured to pass signals between the antenna and wireless communication circuitry and to selectively operate in one of the bands. The first antenna switch (310) may include a plurality of pins (314) arranged in a first configuration, and the second antenna switch (312) may include a plurality of pins (316) arranged in a second configuration that is a mirror image of the first configuration. The antenna switch module may further include a plurality of non-overlapping signal paths (318) configured to selectively deliver signals between the antenna switches, each signal path being associated with a respective band.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: April 26, 2016
    Assignee: Google Technology Holdings LLC
    Inventors: Soo Won Hong, Ik Hee Park, Benjamin O White
  • Patent number: 9318805
    Abstract: An apparatus that employs a directional antenna system updates a beam pattern table that includes entries corresponding to each of the other apparatuses with which the apparatus communicates. For example, for each of the other apparatuses, the beam pattern table may specify the antenna weights to be used to provide a quasi-omni-directional beam pattern, a sector level beam pattern, and a refined beam pattern when communicating with that other apparatus. In some aspects, the beam pattern table includes one or more characteristics associated with each of the beam patterns. These characteristics may be used in conjunction with a beam search criterion to trigger updating of the beam pattern table.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: April 19, 2016
    Assignee: QUALCOMM Incorporated
    Inventor: Zhanfeng Jia
  • Patent number: 9270347
    Abstract: A system and method of receiving a channel state information reference signal (CSI-RS) is presented. At a user equipment, a first CSI-RS transmitted from a base station is received. In some implementations, the first CSI-RS is transmitted at a first periodicity using a first set of antenna ports. At the user equipment, a second CSI-RS transmitted from the base station is received. In some implementations, the second CSI-RS is transmitted at a second periodicity using a second set of antenna ports. At least one of the first CSI-RS and the second CSI-RS is used to perform channel measurement.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: February 23, 2016
    Assignee: BlackBerry Limited
    Inventors: Mo-han Fong, Dongsheng Yu, Hua Xu, Robert Novak, Shiguang Guo, Zhijun Cai, Youn Hyoung Heo
  • Patent number: 9246722
    Abstract: A device, which provides a differential output signal having a first output signal component and a second output signal component based on a plurality of input signals, includes a pair of signal sources and a controller. The pair of signal sources includes a first activatable signal source for providing the first output signal component and a second activatable signal source for providing the second output signal component. The controller is operably coupled to the pair of signal sources and is configured to activate either the first signal source or the second signal source of the pair of signal sources depending on the plurality of input signals.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 26, 2016
    Assignee: Intel Deutschland GmbH
    Inventors: Bernd-Ulrich Klepser, Martin Simon
  • Patent number: 9196945
    Abstract: The disclosure describes a dual hybrid duplexer including two hybrid couplers, two intra-filters, a tunable isolation load, and a phase shifter. The phase shifter may be located at the isolation port. The phase shifter may be located at the antenna port. In one embodiment, a dual hybrid duplexer includes two hybrid couplers, two intra-filters, a tunable isolation load, a first phase shifter located at the isolation port, and a second phase shifter located at the antenna port. The first and second phase shifters have a difference of 90 degrees (plus or minus 10 degrees).
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: November 24, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Nadim Khlat, Marcus Granger-Jones, Ruediger Bauder
  • Patent number: 9172440
    Abstract: An antenna device of a mobile terminal for enabling to receive a wireless signal of a new frequency band by appropriately connecting a plurality of antennas through a switch is provided. The antenna device includes a plurality of communication units for transmitting and receiving a wireless signal of a plurality of frequency bands through a plurality of antennas, a plurality of switches for turning on/off an electrical connection between the plurality of antennas and the plurality of communication units, and a controller for controlling the plurality of switches to turn off an electrical connection between the plurality of antennas and the plurality of communication units.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: October 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sungryong Park
  • Patent number: 9172422
    Abstract: A communication system has multiple paths including one or more Tx paths for processing Tx signals and one or more Rx paths for processing Rx signals, one or more PAs coupled respectively to the one or more Tx paths for amplifying the Tx signals, one or more LNAs coupled respectively to the one or more Rx paths for amplifying the Rx signals, one or more Tx filters coupled respectively to the one or more Tx paths for filtering the Tx signals, one or more Rx filters coupled respectively to the one or more Rx paths for filtering the Rx signals, and an antenna comprising multiple feeds coupled to the multiple paths, respectively, to provide physical separation of the multiple paths from each other. Physical separation among the multiple paths and impedance matching provides isolation among the multiple paths, and relaxes rejection considerations on the filters.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: October 27, 2015
    Assignee: ETHERTRONICS, INC.
    Inventors: Laurent Desclos, Alexandre Dupuy
  • Patent number: 9118367
    Abstract: Embodiments provide transmitter topologies that improve the power efficiency and bandwidth of RF transmitters for high transmission power applications. In an embodiment, the common-emitter/source PA of conventional topologies is replaced with a current-input common-base/gate PA, which is stacked on top on an open-collector/drain current-output transmitter. The common-base/gate PA protects the output of the transmitter from large output voltage swings. The low input impedance of the common-base/gate PA makes the PA less susceptible to frequency roll-off, even in the presence of large parasitic capacitance produced by the transmitter. At the same time, the low input impedance of the common-base/gate PA reduces the voltage swing at the transmitter output and prevents the transmitter output from being compressed or modulated. In an embodiment, the DC output current of the transmitter is reused to bias the PA, which results in power savings compared to conventional transmitter topologies.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: August 25, 2015
    Assignee: Broadcom Corporation
    Inventors: Ray (Ramon) Gomez, Leonard Dauphinee, Massimo Brandolini, Jianhong Xiao, Dongsoo Koh, Young Shin, Chonghua Zhong, Reza Rahman Khan
  • Patent number: 9077388
    Abstract: A system for near field communication (NFC) and frequency modulation (FM) communication includes a NFC microchip, a FM microchip, a control microchip, a switch module. The switch module switches between the NFC matching module and the FM matching module under control of the control microchip. A NFC matching module electronically connected to the antenna modulates working frequency of the NFC microchip to match with an antenna. A FM matching module electronically connected to the antenna modulates working frequency of the FM microchip to match with the antenna.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: July 7, 2015
    Assignee: Chi Mei Communication Systems, Inc.
    Inventor: Yu-Chang Kao
  • Patent number: 9042844
    Abstract: A transceiver includes: a power amplifying circuit arranged to generate differential output signals during a transmitting mode of the transceiver; a balance-unbalance circuit arranged to convert the differential output signals into a single-ended output signal; a switchable matching circuit arranged to receive the single-ended output signal on a signal port of the transceiver during the transmitting mode, and to convert a single-ended receiving signal on the signal port into a single-ended input signal during a receiving mode of the transceiver; and a low-noise amplifying circuit arranged to convert the single-ended input signal into a low-noise input signal during the receiving mode. The power amplifying circuit, the Balun, the switchable matching circuit, and the low-noise amplifying circuit are configured as a single chip.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: May 26, 2015
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Ti-Ku Yu, Sang Won Son, Chia-Hsin Wu, Tsung-Ming Chen, Wei-Chia Chan
  • Patent number: 9042949
    Abstract: A mobile wireless communications device may include a portable housing, a circuit board carried by the portable housing, a wireless communications circuit carried by the circuit board, and an audio circuit carried by the circuit board. The mobile wireless communications device may further include an antenna assembly including an antenna carrier frame coupled to the circuit board and defining a cavity therein, and an antenna element carried on the antenna carrier frame and having a plurality of spaced apart signal feed points coupled to the wireless communications circuit. In addition, an audio transducer may be carried within the cavity of the antenna carrier frame and coupled to the audio circuit.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: May 26, 2015
    Assignee: BLACKBERRY LIMITED
    Inventors: Ying Tong Man, Yihong Qi, Joshua Kwan Ho Wong
  • Patent number: 9002296
    Abstract: A communication terminal and a driving method thereof are provided. The driving method of a communication terminal includes: forming a transmitting path and an absorption path by controlling a time division duplex (TDD) switch in a transmitting mode to isolate the transmitting path and the receiving path from an absorption path, the transmitting path transmitting a transmitting signal in a wireless scheme, and the absorption path diverged from the transmitting path through a circulator of the TDD switch to block a reflecting signal in the transmitting signal reversely transferred to the transmitting path; processing the transmitting signal through the transmitting path. Because a TDD switch has an isolation function, insertion loss in a transmitting path may be suppressed.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: April 7, 2015
    Assignee: Samsung Electronics Co., Ltd
    Inventor: Hyun Su Yoon
  • Patent number: 8989817
    Abstract: Method and apparatus related to implementing and/or utilizing different polarization antennas with different corresponding average transmit power levels are described. Inter-cell interference is mitigated by having different cells with different power relationships between polarizations antennas. For example, a first base station transmits at a high average power level on its vertical polarization antenna and transmits at a low average power level on its horizontal polarization antenna. Concurrently, a second base station, which is adjacent to the first base station, transmits at a low average power level on its vertical polarization antenna and transmits at a high average power level on its horizontal polarization antenna. In some hexagonal deployment schemes a base station has at most two adjacent base stations using the same power level to antenna polarization direction relationship as it is using.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: March 24, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Xinzhou Wu, Vikram Reddy Anreddy, Junyi Li, Rajiv Laroia
  • Patent number: 8989655
    Abstract: A method in which user equipment transmits a signal in a distributed antenna system in which a plurality of antennas is distributed in a cell, comprises the following steps: receiving uplink antenna information from a base station; controlling uplink power on the basis of the uplink antenna information; and transmitting an uplink signal on the basis of the uplink power control, wherein the uplink antenna information indicates a receiving antenna of the base station that receives the uplink signal.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 24, 2015
    Assignee: LG Electronics Inc.
    Inventors: Ji Won Kang, Jin Young Chun, Su Nam Kim, Bin Chul Ihm, Sung Ho Park
  • Patent number: 8981872
    Abstract: An antenna duplexer includes a transmission filter which operates in a transmission frequency band and has a transmission filter output. A reception filter operates in a reception frequency band and has a reception filter output. An antenna connection is connected to the transmission filter output and a matching element is connected between the antenna connection and the reception filter input. The circuit formed from the transmission filter, reception filter and matching element attenuates transmission signals in a frequency band whose frequencies f are in the interval 0.50*f0<=f<=0.75*f0, where f0 is the mid-frequency of the reception frequency band.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: March 17, 2015
    Assignee: EPCOS AG
    Inventors: Helmut Klamm, Peter Selmeier
  • Patent number: 8977312
    Abstract: A user equipment in wireless communication system is provided. The user equipment includes an antenna unit including a plurality of antennas, a control unit for grouping the plurality of antennas into a predetermined number of antenna groups and controlling separately transmission power of each of the predetermined number of antenna groups, and a transmitting unit, connected to the control unit, for transmitting at least one of data and control information to a base station via at least one of the predetermined number of antenna groups.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: March 10, 2015
    Assignee: LG Electronics Inc.
    Inventors: Moon Il Lee, Jae Hoon Chung, Hyun Soo Ko, Bin Chul Ihm, Yeong Hyeon Kwon
  • Patent number: 8970445
    Abstract: There is provided a radio device including an antenna, a first impedance converting circuit, a second impedance converting circuit and a differential output unit. The antenna has a first terminal and a second terminal to receive a signal. The first impedance converting circuit and the second impedance converting circuit have a first impedance and a second impedance, respectively. The first impedance and the second impedance each are controllable. One end of the first impedance converting circuit and one end of the second impedance converting circuit are connected to the first terminal and the second terminal of the antenna, respectively. The differential output unit is connected to the other end of the first impedance converting circuit and the other end of the second impedance converting circuit through which the signal received by the antenna is input to the differential output unit, and transform the signal into a differential signal.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: March 3, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshiya Mitomo, Yukako Tsutsumi, Hideo Kasami
  • Patent number: 8954019
    Abstract: A mobile wireless communications device may include an antenna, LTE RF differential inputs, and a front end circuit. The front end circuit may include band pass filters coupled to the antenna, LNAs coupled respectively to the band pass filters, and RF switching circuits. Each RF switching circuit may be respectively coupled between each LNA and a pair of LTE RF differential inputs and configured to switch to one or both of the pair of LTE RF differential inputs.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: February 10, 2015
    Assignee: BlackBerry Limited
    Inventors: Liviu George, Simon Andrew Hughes, Christopher Robert Little, Tajinder Manku
  • Patent number: 8942644
    Abstract: Electronic devices may be provided that contain wireless communication circuitry. The wireless communications circuitry may include microelectromechanical systems (MEMS) switches that receive radio-frequency antenna signals from antennas. The wireless communications circuitry may include switching circuitry interposed between the MEMS switches and the antennas. The switching circuitry may protect the MEMS switches from radio-frequency signals that are received by the antennas by temporarily isolating the MEMS switches from the radio-frequency signals during MEMS switch configuration processes. The switching circuitry may include a crossbar switch formed from solid state circuitry. The wireless communications circuitry may include control circuitry that controls the MEMS switches and the switching circuitry.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: January 27, 2015
    Assignee: Apple Inc.
    Inventor: Stephan V. Schell
  • Patent number: 8929952
    Abstract: A wireless communication apparatus of the present invention comprises a switching unit, provided between a transmitting circuit and/or a receiving circuit of at least one communication system and a demultiplexer, for connecting the transmitting circuit and/or the receiving circuit of the communication system to antenna either directly or by way of the demultiplexer. When a communication system having the switching unit is solely operated, the transmitting circuit and/or the receiving circuit of the operating communication system is connected directly to the antenna without the demultiplexer. Therefore, it is possible to reduce insertion loss of the circuit and thus to improve receiving sensitivity and reduce power consumption.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: January 6, 2015
    Assignee: KYOCERA Corporation
    Inventor: Hideto Kanou
  • Patent number: 8907680
    Abstract: A voltage detector for detecting a voltage generated in a second resonant coil that is disposed to face a first resonant coil and that performs at least one of electric power transmission and electric power reception to and from the first resonant coil in a contactless manner by means of electromagnetic resonance includes: a first high-impedance element having one end connected to one end of the second resonant coil; a second high-impedance element having one end connected to the other end of the second resonant coil; a low-impedance element connected between the other end of the first high-impedance element and the other end of the second high-impedance element and having an impedance smaller than each of those of the first and second high-impedance elements; and an output terminal for outputting a signal associated with a voltage applied across the low-impedance element.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 9, 2014
    Assignees: Nippon Soken, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Sakakibara, Shinji Ichikawa
  • Patent number: 8909165
    Abstract: Isolation techniques for multiple co-located radio modules are disclosed. For example, an apparatus may include an antenna, a first transceiver to communicate wirelessly across a first link, a second transceiver to communicate wirelessly across a second link, a shared antenna structure operative to allow the first transceiver and the second transceiver to share the antenna for simultaneous operations, and an active signal canceller operative to generate a cancellation signal to cancel an interference signal for a radio-frequency coupling channel between the first and second transceivers. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: December 9, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Neil Hendin
  • Patent number: 8909169
    Abstract: A single pole double throw (SPDT) switch is fabricated on an integrated circuit (IC) and may comprise two radio frequency (RF) switching devices each having a separate DC blocking capacitor coupled between respective RF switching devices and a common node. A DC connection is provided between the two RF switching devices with a thin electrically conductive line. This thin electrically conductive line provides for increased isolation between the two RF switching devices and decreased insertion loss. The increased isolation and/or decreased insertion loss is accomplished by tuning the thin electrically conductive line through the characteristic impedance of the line when impedance matching conditions are met. Undesired circuit resonance(s) in the SPDT switch may be substantially reduced by using two or more thin electrically conductive lines that further reduce the thin electrically line(s) inductance.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: December 9, 2014
    Assignee: Microchip Technology Incorporated
    Inventor: Yon-Lin Kok
  • Patent number: 8872972
    Abstract: A router module is arranged in a housing of a smart television. The router module is externally connected to a modem for surfing the Internet. The router module is electrically connected to a micro processing unit of the smart television. Therefore, the smart television is connected to the Internet through the router module. A wireless transmission chip of the router module is configured to process Internet signals. An antenna module is configured to wirelessly transmit the Internet signals, so that wireless network is shared to outside.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 28, 2014
    Inventor: Nai-Chien Chang
  • Patent number: 8872600
    Abstract: The high frequency circuit module includes an RFIC configured to transmit and receive a high frequency signal, a power amplifier IC configured to amplify a transmission signal outputted from the RFIC, and a duplexers configured to separate the transmission signal outputted from the power amplifier IC and inputted to an antenna and a reception signal from the antenna and inputted to the RFIC from each other, in which at least one of the RFIC and power amplifier IC is embedded in the circuit substrate, and the duplexers are disposed between the RFIC and the power amplifier IC.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: October 28, 2014
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Hiroshi Nakamura, Tomohiro Igarashi
  • Patent number: 8868010
    Abstract: A synthetic-frequency RF transmitter is provided for transmitting an electromagnetic signal via an electrically short antenna. The transmitter comprises a reactive energy storage with an effective reactance adapted to form with the antenna a resonance circuit with a resonance frequency and a driver adapted to provide to the resonance circuit an electric transmission signal having an instantaneous frequency that varies in dependence on an information signal. The transmitter is characterized in that the transmitter is adapted to dynamically change the resonance frequency by changing the effective reactance in dependence on the information signal. Thus, the instantaneous pass-band of the resonance circuit may be controlled to substantially always comprise the instantaneous frequency of the electric transmission signal and thus of the electromagnetic signal.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: October 21, 2014
    Assignee: Oticon A/S
    Inventor: Kåre Tais Christensen
  • Patent number: 8861498
    Abstract: A high-frequency switch module includes a first diplexer arranged to receive a GPS signal and to send/receive a GSM 1800 communication signal and a GSM 1900 communication signal, and a switch element arranged to switch between the sending/receiving of the GSM 1800 and the sending/receiving of the GSM 1900 communication signal. A SAW filter having a passage band corresponding to the frequency band of the GSM 1900 communication signal and a SAW filter having a passage band corresponding to the frequency band of the GSM 1800 communication signal are connected to the switch element. A line length of a transmission line for connection to the SAW filter which provides a reflection phase closer to the open side for the GPS signal as viewed from the switch element is greater than that of a transmission line for connection to the other SAW filter.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: October 14, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Hiromichi Kitajima
  • Patent number: 8855097
    Abstract: It is described a communication end device comprising (a) a radio transceiver comprising a receiver for receiving radio signals from a transmitting network entity of a cellular telecommunication network and a transmitter (110, 120, 130) for transmitting radio signals to a receiving network entity of the cellular telecommunication network, (b) a further receiver (140) for receiving a further radio signal, and (c) a control circuit (150, 162, 164), which is coupled to the radio transceiver and to the further receiver (140). The control circuit (150, 162, 164) is configured for generating a control signal for controlling the operation of the further receiver (140). Thereby, the control signal is based on a synchronization signal being related to a time dependent transmission scheme of the transmitter (110, 120, 130) and on an information about the current operational state of the radio transceiver.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: October 7, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventor: Markus Neumann
  • Patent number: 8848385
    Abstract: The present disclosure relates to reducing unwanted RF noise in a printed circuit board (PCB) containing an RF device. An isolation filter is embedded in a PCB containing an RDF device. By placing the isolation filter as close as possible to the RF device in order to dramatically reduce unwanted RF noise due to unavoidable coupling between Vias and planes in the PCB structure.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: September 30, 2014
    Assignee: R&D Sockets, Inc
    Inventors: Thomas P. Warwick, James V. Russell
  • Patent number: 8838044
    Abstract: An attenuating antenna switch may be used to suppress increase in the scale and power consumption of an RFIC. The antenna switch has a first terminal, a second terminal, and an antenna terminal coupled to the first and second terminals and configured to be connected to an antenna. The first switch switches between a first state in which a high frequency signal is propagated between the first terminal and the antenna terminal, and a second state in which the high frequency signal is interrupted. A second switch switches between the first and second states between the second terminal and the antenna terminal. The first and second switches are controlled in a mutually exclusive manner such that only one of the two switches can be in the first state at any given time. When in the first state, each switch adjusts an attenuation amount of the high frequency signal.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: September 16, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Goto, Kazuaki Hori, Satoshi Sakurai
  • Patent number: 8838045
    Abstract: Embodiments disclosed herein relate to programmable duplexers. The frequency pass band of the programmable duplexer is changed according to a selection of a channel-pair selection to control or maximize the transition band between the receiver path and the transmitter path. The programmable duplexer permits selections of desired pass bands without the need for multiple duplexer filters. As an additional advantage, the transmission band requirements become less sensitive to manufacturing tolerances and temperature variations.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: September 16, 2014
    Assignee: RF Micro Devices, Inc.
    Inventors: Joshua J. Caron, Julio Costa, Todd Gillenwater
  • Patent number: 8830010
    Abstract: The high frequency circuit module includes an RFIC configured to transmit and receive a high frequency signal, a power amplifier IC configured to amplify a transmission signal outputted from the RFIC, and a duplexers configured to separate the transmission signal outputted from the power amplifier IC and inputted to an antenna and a reception signal from the antenna and inputted to the RFIC from each other, in which at least one of the RFIC and power amplifier IC is embedded in the circuit substrate, and the duplexers are disposed between the RFIC and the power amplifier IC.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: September 9, 2014
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Hiroshi Nakamura, Tomohiro Igarashi
  • Patent number: 8831537
    Abstract: An apparatus comprising a first substrate, a second substrate, and one or more embedded devices. A lower surface of the first substrate generally has disposed thereon a plurality of first lines comprising a thin-film conductive material. An upper surface of the second substrate generally has disposed thereon a plurality of second lines comprising the thin-film conductive material. The plurality of second lines is generally arranged orthogonally to the plurality of first lines. The lower surface of first substrate generally faces the upper surface of the second substrate and the substrates are generally separated by a predefined distance. The one or more embedded devices are generally coupled between one or more of the first lines and one or more of the second lines. The embedded devices are generally configured to temporarily electrically connect the respective lines to form a radiating structure during an RF operation.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: September 9, 2014
    Assignee: LSI Corporation
    Inventor: Roger A. Fratti
  • Patent number: RE45273
    Abstract: A transceiver system includes a first section coupled to a first antenna, a second section coupled to a second antenna, and a radio frequency (RF) unit. The first section includes a transmit path and a first receive path for a first (e.g., GSM) wireless system, a transmit path and a first receive path for a second (e.g., CDMA) wireless system, and a transmit/receive (T/R) switch that couples the signal paths to the first antenna. The second section includes a second receive path for the first wireless system and a second receive path for the second wireless system. The first and second receive paths for the first wireless system are for two frequency bands. The first and second receive paths for the second wireless system are for a single frequency band and provide receive diversity. The transceiver system may include a GPS receive path coupled to a third antenna.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: December 2, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Robert Lloyd Robinett