Common Antenna Patents (Class 455/82)
  • Patent number: 8532646
    Abstract: A mobile communication system using an adaptive multiantenna realizes improvement of reception characteristics, effective use of the band, and optimization of the throughput in comparison with a system in which application of the same multiantenna communication method is continued irrespective of a variation of the number of radio relay stations. The mobile communication system comprises a radio base station, a radio relay station, and mobile terminal stations for communicating with the radio base station through a radio relay station.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: September 10, 2013
    Assignee: Fujitsu Limited
    Inventors: Masahiro Watanabe, Makoto Yoshida, Hiroshi Fujita
  • Patent number: 8515362
    Abstract: Techniques for designing a single-balanced mixer coupled to a dummy portion with a dummy load to improve noise rejection. In an aspect, a single-ended signal (RF) from a stage preceding the mixer, e.g., a low-noise amplifier (LNA), is coupled to the input of the single-balanced mixer to be mixed with a local oscillator (LO) signal. A dummy portion replicating the topology of the single-balanced mixer is coupled to the single-balanced mixer to improve noise rejection, with the LO signal also provided to the dummy portion. The input of the dummy portion may be coupled, e.g., to a dummy load, which is designed to replicate the loading characteristics of the preceding stage, e.g., the LNA.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: August 20, 2013
    Assignee: QUALCOMM, Incorporated
    Inventors: Himanshu Khatri, Li Liu
  • Patent number: 8509708
    Abstract: A multi-antenna station has multiple remote front-ends coupled to multiple antennas. Each remote front-end includes a power amplifier (PA), a low noise amplifier (LNA), and first and second coupling units. On the transmit path, a first RF signal is received via a first port, routed by the first coupling unit to the power amplifier, amplified to obtain the desired output power level, and routed by the second coupling unit to a second port for transmission via the antenna. On the receive path, a second RF signal is received via the second port, routed by the second coupling unit to the LNA, amplified to obtain a higher signal level, and routed by the first coupling unit to the first port for transmission to the transceiver.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: August 13, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Xiangdong Zhang, Jay Rodney Walton
  • Patent number: 8504111
    Abstract: In various embodiments of the present disclosure, an apparatus for wirelessly transmitting or receiving communication signals may include multiple active elements to transmit or receive communication signals wirelessly; and multiple active modules correspondingly coupled to the multiple active elements and configured to cooperate with respective ones of the multiple active elements; in which the respective ones of the multiple active modules include a power amplifier configured to amplify communication signals to be transmitted and a low noise amplifier configured to amplify communication signals received, and in which the respective ones of the multiple active modules further include a first phase shift configured to shift phases of the communication signals to be transmitted and a second phase shift configured to shift phases of the communication signals received. Other embodiments may be described and claimed.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: August 6, 2013
    Assignee: Empire Technology Development LLC.
    Inventor: Jigang Liu
  • Patent number: 8489025
    Abstract: Front bandpass filters that are essentially transmissive only between a minimum frequency and a maximum frequency filter the magnetic resonance signals. Front frequency mixers mix output signals of each of the bandpass filters with a front LO frequency that is standard for all the magnetic resonance signals. Rear bandpass filters that are essentially transmissive only around a front intermediate frequency filter the output signals of the front frequency mixers. Rear frequency mixers mix output signals of each of the rear bandpass filters with a respective constant rear LO frequency. Frequency filters that are transmissive for frequencies in the range of the difference of the rear LO frequency that is supplied to the rear frequency mixer arranged upstream thereof and the front intermediate frequency filter the output signals of the rear frequency mixers. Output signals of the frequency filters are combined into a common signal, which is transmitted onward.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: July 16, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stephan Biber, Jan Bollenbeck, Ralph Oppelt, Markus Vester
  • Patent number: 8467738
    Abstract: A radio frequency (RF) front end circuit for connecting an antenna to a transceiver having multiple operating modes is disclosed. The circuit has a first transmit input receptive to signals of a first operating mode and a second operating mode from the transceiver. There is also a second transmit input receptive to signals of a third operating mode from the transceiver. The circuit has a first power amplifier for the first and second operating modes, a second power amplifier for the first operating mode, and a third power amplifier for the second and third operating mode. A first switch network selectively interconnects the first transmit input to a one of the second and third power amplifiers.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: June 18, 2013
    Assignee: RFaxis, Inc.
    Inventor: Oleksandr Gorbachov
  • Patent number: 8467740
    Abstract: A high-frequency module includes a switch IC. An antenna filter is connected to a common terminal of the switch IC and arranged adjacent to an antenna. The antenna filter is a low-pass filter whose attenuation band includes higher harmonic frequency bands of GSM1800/GSM1900 transmission signals and TDS-CDMA transmission signals. An individual-terminal filter is connected to one individual terminal of the switch IC. The individual-terminal filter is a low-pass filter whose attenuation band includes higher harmonic frequency bands of GSM850/GSM900 transmission signals.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: June 18, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Takanori Uejima
  • Patent number: 8463200
    Abstract: In a wireless communication apparatus, when a first switch electrically connects a second antenna to an impedance matching circuit and a second switch electrically connects a first antenna to a reception circuit, a frequency signal output from an oscillator of the reception circuit is received by the second antenna and applied to the impedance matching circuit. Then, a controller controls the impedance of the impedance matching circuit so as to bring a RSSI voltage output from a signal strength detection circuit of the reception circuit into agreement with a reference RSSI voltage, thereby bringing the reference frequency of the first antenna into agreement with a reference frequency.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: June 11, 2013
    Assignees: DENSO CORPORATION, Nippon Soken, Inc.
    Inventors: Yuuji Kakuya, Akira Takaoka, Munenori Matsumoto, Tomotsugu Sekine
  • Patent number: 8451858
    Abstract: A method for collision avoidance in multiple protocol networks using a shared communication medium begins by determining a first protocol probable active time period. The method continues by determining a first protocol probable inactive time period. The method continues by generating a transmit blocking indication based on the first protocol probable active time period and the first protocol probable inactive time period.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: May 28, 2013
    Assignee: Broadcom Corporation
    Inventors: Mark Gonikberg, Matthew J. Fischer, Manoj M. George
  • Patent number: 8452300
    Abstract: Apparatuses and methods of transmitting a signal with reduced interference in a femto base station including a plurality of antennas having different radiation patterns are provided. A method includes transmitting common information through the plurality of antennas having the different radiation patterns; receiving feedback information corresponding to the common information; analyzing the feedback information; temporarily selecting one of the plurality of antennas as a transmission antenna, based on a result of the analyzing; and transmitting user information through the transmission antenna.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: May 28, 2013
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Yu Suk Yun, Dong Hee Kang, Dae Whan Back, Dae Ryong Lee, Kwang Jin Ahn, Byung Wan Yu
  • Publication number: 20130122832
    Abstract: A communication terminal and a driving method thereof are provided. The driving method of a communication terminal includes: forming a transmitting path and an absorption path by controlling a time division duplex (TDD) switch in a transmitting mode to isolate the transmitting path and the receiving path from an absorption path, the transmitting path transmitting a transmitting signal in a wireless scheme, and the absorption path diverged from the transmitting path through a circulator of the TDD switch to block a reflecting signal in the transmitting signal reversely transferred to the transmitting path; processing the transmitting signal through the transmitting path. Because a TDD switch has an isolation function, insertion loss in a transmitting path may be suppressed.
    Type: Application
    Filed: August 1, 2011
    Publication date: May 16, 2013
    Inventor: Hyun Su Yoon
  • Patent number: 8422972
    Abstract: In an antenna combining module, coupling of an inductor and individual signal lines provided in a matching circuit is prevented and minimized and isolation of lines from one another and communication performance are improved. The antenna combining module includes a duplexer DUP and a multilayer substrate. The multilayer substrate includes a reception signal line, a transmission signal line, an antenna common line, a matching line and a ground line. A wiring electrode for an inductor is inserted into the matching line from the mounting electrode for grounding up to the position where it combines with the antenna common line. The wiring electrode for the inductor wraps around the outside of a via hole filled with a conductive material of the antenna common line. The ground line is arranged between the wiring electrode for the inductor and the reception signal line, and the transmission signal line.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 16, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Koji Furutani, Yuji Takematsu
  • Patent number: 8421554
    Abstract: A filtering device comprises an analogue quadrature splitter together with a first filtering element and a second filtering element. The filtering device is adapted to transform filtering characteristics of the first filtering element and filtering characteristics of the second filtering element into an effective filtering characteristic present in an output signal at an output terminal of the analogue quadrature splitter. The first filtering element and the second filtering element comprise filtering elements of high accuracy, with a steep roll-off but poor power handling capabilities. Using a high power quadrature splitter it is possible to transform the filtering characteristics of the first filtering element and/or the second filtering characteristic of the second filtering element into the effective filtering characteristics.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 16, 2013
    Assignee: Ubidyne, Inc.
    Inventor: Peter Kenington
  • Patent number: 8416034
    Abstract: A signal splitting apparatus comprises a micro-strip line, a first inductor and a second inductor. A first end and a second end of the micro-strip line are grounded via a first capacitor and a second capacitor, respectively. The first end and the second end of the micro-strip line are electrically coupled to a receiving part of a transceiver and a transmitting part of the transceiver, respectively. One end of the first inductor is coupled to the first end of the micro-strip, and the other end of the first inductor is electrically coupled to an antenna module and grounded via a third capacitor. One end of the second inductor is coupled to the second end of the micro-strip, and the other end of the second inductor is electrically coupled to the antenna module.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: April 9, 2013
    Assignee: Ralink Technology Corporation
    Inventors: Shen Yi Liao, Shao Chin Lo
  • Patent number: 8401495
    Abstract: A high-frequency module has a configuration in which a diplexer is capable of separating the frequency bands of first and second communication systems from the frequency band of a third communication system, a first high-frequency switch is capable of separating a transmission signal of the first or second communication system from a reception signal thereof, a second high-frequency switch is capable of separating a transmission signal of the third communication system from a reception signal thereof, and a third high-frequency switch is capable of separating the reception signal of the first communication system from the reception signal of the second communication system. A reception-signal output port for the second communication system of the high-frequency module is terminated with a chip capacitor to configure the double-band high-frequency module supporting the first and third communication systems.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: March 19, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Masashi Hayakawa
  • Patent number: 8396442
    Abstract: A directional pattern table memory stores combined directional pattern groups in each of which combined directional patterns are ordered by different predetermined priority according to a different radio propagation environment. A controller computes a communication performance expected value based on RSSIs for when an initial combined directional pattern is set on steerable antenna apparatuses; selects one combined directional pattern group based on relative strengths of RSSIs; and according to the priority, sequentially sets combined directional patterns of the selected one combined directional pattern group, on the steerable antenna apparatuses, computes a communication performance value based on a PHY rate and a PER at each of sequential settings, and performs communication using a combined directional pattern with a communication performance value that first exceeds the communication performance expected value.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 12, 2013
    Assignee: Panasonic Corporation
    Inventors: Toyoshi Yamada, Osamu Tanaka, Wataru Noguchi, Nobuhiko Arashin, Hiroyuki Yurugi, Masahiko Nagoshi, Akihiko Shiotsuki
  • Patent number: 8385847
    Abstract: A switching element is provided that realizes an stabilize a potential between the gates of the multi-gates without an increase in the insertion loss, and an antenna switch circuit and a radio frequency module each using the switch element. The switching element includes two ohmic electrodes 39, 40 formed on a semiconductor substrate, at least two gate electrodes 41, 42 disposed between the two ohmic electrodes, and a conductive region 45 disposed between the adjacent gate electrodes among the at least two gate electrodes, a field effective transistor being structured by the two ohmic electrodes, the at least two gate electrodes, and the conductive region. The conductive region has a wider portion that is wider in width than the conductive region interposed between the adjacent gate electrodes on one end thereof. The distance between the adjacent gate electrodes is narrower than the width of the wider portion. Resistors 44, 46 are connected in series between the two ohmic electrodes through the wider portion.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: February 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Ogawa, Shinichiro Takatani, Shigeki Koya, Hiroyuki Takazawa, Shinya Osakabe, Akishige Nakajima, Yasushi Shigeno
  • Patent number: 8385851
    Abstract: A radio communication method includes generating a first transmit RF signal and a second transmit RF signal from a data signal to be transmitted. Each of the first and second transmit RF signals have a power spectrum in symmetric shape in the frequency domain. The first transmit RF signal and the second transmit RF signal are transmitted at a different time. The first transmit RF signal and the second transmit RF signal are received to generate a first received RF signal and a second received RF signal. The data signal from the first received RF signal and the second received RF signal are reproduced.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: February 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ren Sakata, Koji Akita, Koichiro Ban, Noritaka Deguchi
  • Patent number: 8380139
    Abstract: An exemplary radio frequency interface switching device includes a plurality of signal interfaces, a plurality of switches electrically connected to the signal interfaces, and a switch unit electrically connected to the switches. The signal interfaces are electrically connected with each other by operating different combinations of the switches and the switch unit to receive/send corresponding signals.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: February 19, 2013
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., Chi Mei Communication Systems, Inc.
    Inventor: Jian-Yan Feng
  • Patent number: 8369268
    Abstract: A multiple device to one-antenna combining circuit for transferring wireless communication signals from a first and second wireless communication device connected to a donor antenna is described. The circuit comprises a first single-stage circulator configured to be coupled to a transmission-reception path of the first wireless communications device; a two-stage circulator coupled to the first single-stage circulator and configured to be coupled a transmission-reception path of the second wireless communications device; a two-way splitter coupled to the two-stage circulator and configured to be coupled a transmission-reception path of the donor antenna; and a second single-stage circulator coupled between the two-way splitter and the first single stage circulator. The wireless transmissions of the first wireless communications device travel from the first signal stage circulator to the two-stage circulator to the two-way splitter to the donor antenna. The first wireless device can be a repeater.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: February 5, 2013
    Assignee: Clearwire IP Holdings LLC
    Inventor: Walter F. Rausch
  • Patent number: 8369796
    Abstract: A wireless device using natural higher order harmonics on multi-band reconfigurable antenna designs where the antenna higher order resonance is used to build a multi-band to multi-band frequency reconfigurable antenna.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: February 5, 2013
    Assignee: Intel Corporation
    Inventors: Helen K. Pan, Songnan Yang, Debabani Choudhury, Vijay K. Nair
  • Patent number: 8369889
    Abstract: Aspects of a method and system for sharing a single antenna for frequency modulation (FM) transmission, FM reception and near field communication (NFC) are presented. Aspects of a system may include at least one circuit that enables, via a single antenna, simultaneous transmission of an FM signal and reception of an FM signal, and transmission of an NFC signal or reception of an NFC signal.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: February 5, 2013
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Publication number: 20130016632
    Abstract: A wireless electronic device having first and second baseband processors is provided. In one suitable arrangement, radio-frequency power splitters and adjustable low noise amplifiers may be form in the receive paths. The use of power splitters allow signals associated with the first and second baseband processors to be received in parallel. In another suitable arrangement, radio-frequency switches are used in place of the power splitters. The states of the switches may be controlled using at least one of the first and second baseband processors. The use of switches instead of power splitters requires that wake periods associated with the first baseband processor and wake periods associated with the second baseband processor are non-overlapping. To ensure minimal wake period collision, a wake period associated with the second baseband processor may be positioned at a midpoint between two successive wake periods associated with the first baseband processor.
    Type: Application
    Filed: January 11, 2012
    Publication date: January 17, 2013
    Inventors: Syed A. Mujtaba, Madhusudan Chaudhary, Thanigaivelu Elangovan, Karthik Anantharaman, Weiping Dou, Isabel G. Mahe
  • Patent number: 8339216
    Abstract: The present disclosure provides a duplexer for separating a transmit signal and a receive signal. The duplexer comprises a transmit filter, a receive filter and an analogue quadrature splitter, a first filtering element and a second filtering element. By choosing the first filtering element and the second filtering element substantially identical, it is possible to transform filtering characteristics of the first and second filtering element such that stop bands are substantially transformed into an effective pass band, and vice versa. The analogue quadrature splitter is adapted to increase an attenuation of the transmit signals outside the transmit band, such as in the receive band. Therefore out-of-band emissions by the transmitter will be substantially reduced. The present disclosure further provides a method for separating a transmit signal and a receive signal, and computer program products for the manufacture for carrying out the method of separating transmit signals and receive signals.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: December 25, 2012
    Assignee: Ubidyne, Inc.
    Inventor: Peter Kenington
  • Patent number: 8335478
    Abstract: Provided are a first filter 63a and a second filter 63b each having a pass band in the range of a frequency band that is obtained by, for example, substantially bisecting a frequency band of f1 to f4. In that case, the regions of the first filter 63a and the second filter 63b partially overlap with each other with the center frequency f5 interposed therebetween. In practice, even if the division is not bisection, a configuration is adopted in which a frequency region of the wider band (the first frequency band 61a) closer to a second frequency band 61b side is covered by the second filter 63b. Accordingly, it is possible to suppress the influence of load fluctuation in a multiband-compatible radio communication device.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: December 18, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hiroki Kashiwagi
  • Patent number: 8326235
    Abstract: There is provided a communication device including: a first node connected to an antenna; a transmission unit outputting a signal to the antenna via the first node; a reception unit having a signal input thereto from the antenna via the first node; a first switch provided between the first node and the transmission unit; and a second switch provided between the first node and the reception unit, and in which the second switch is alternately turned on and off repeatedly, and the reception unit includes an amplifier amplifying a signal that the transmission unit outputs via the first and second switches and a mixer mixing a signal amplified in the amplifier and a local signal.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 4, 2012
    Assignee: Fujitsu Limited
    Inventor: Masaru Sato
  • Patent number: 8311477
    Abstract: According to one embodiment of the present invention, there is provided a high-frequency switching circuit including a first differential line and third line. The differential line includes a first line configured to have one end and an other end, a second line configured to have one end and an other end and a first switch configured to switch electrical connection between the one ends of the first and second lines. The differential line receives or outputs differential signals by the other ends of the first and second lines. The third line is configured to be electromagnetically coupled with the first differential line when the first switch is turned on. The first switch is arranged at a position where an electrical length from the other end of the first line and an electrical length from the other end of the second line are approximately equal.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: November 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tong Wang, Toshiya Mitomo
  • Patent number: 8295774
    Abstract: Methods and apparatuses for determining uplink receive signal path characteristics in a wireless communication system are disclosed. In one embodiment, a tower-top noise source (TTNS) is provided such that it is permanently affixed in close proximity to a receive antenna. The TTNS preferably has an output that includes a wideband noise signal having predetermined characteristics. The TTNS output is selectively connected to a receive signal path that includes a tower-top low-noise amplifier (TTLNA). An altered version of the wideband noise signal is received at the output of the receive signal path, and a characteristic of the altered wideband noise signal is measured.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: October 23, 2012
    Assignee: Clearwire IP Holdings LLC
    Inventors: Walter F. Rausch, Douglas A. Hyslop, David A. Maples, Ivy Y. Kelly
  • Patent number: 8295784
    Abstract: A semiconductor switching device includes, on one semiconductor substrate: a switching circuit configured to switch connection states between a plurality of terminals; a negative voltage generating circuit; and a control circuit connected to the switching circuit and the negative voltage generating circuit and configured to supply a control signal to the switching circuit, the control circuit including: a level shift circuit with a low-potential power supply terminal connected to the negative voltage generating circuit and an output node connected to the switching circuit, the level shift circuit being configured to supply a negative potential signal as a control signal at a low level to the switching circuit; a diode with its anode connected to the output node of the level shift circuit; and a transistor with its drain-source path connected between the cathode of the diode and ground, the drain-source path switching from a blocking state to a conducting state before the potential of the output node of the le
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: October 23, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshiki Seshita
  • Patent number: 8290451
    Abstract: In a noise reduction circuit, a transistor circuit amplifies an input signal and outputs an output signal with supply of power from the DC voltage source via a power supply line circuit. The canceling signal adding circuit acquires and attenuates a part of the output signal, to generate a canceling signal having a phase substantially opposite to a phase of a leakage signal leaking to the power supply line circuit, and having an amplitude substantially the same as an amplitude of the leakage signal.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: October 16, 2012
    Assignee: Panasonic Corporation
    Inventors: Naoki Komatsu, Hideki Iwaki, Toru Yamada
  • Patent number: 8280316
    Abstract: In a wireless transmitting/receiving device of TDD system etc., a transmission signal is detected on the transmitting side in a specified transmission period, a signal reflected from an antenna through a circulator is detected on the receiving side in the transmission period and a reception signal is detected on the receiving side in a specified reception period. In this case, in a part of the transmission period a transmission signal having been detected on the transmitting side is selected while in the remaining part of the transmission period a reflection signal having been detected on the receiving side through a circulator from an antenna is selected, and in the reception period a reception signal having been detected on the receiving side through the circulator from the antenna is selected and outputted.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: October 2, 2012
    Assignee: Fujitsu Limited
    Inventors: Yoichi Endo, Hideyuki Kannari
  • Patent number: 8274342
    Abstract: A duplexer includes a transmission filter connected between a common terminal and a transmission terminal, a reception filter connected between the common terminal and a reception; and a capacitor connected in parallel with the transmission filter and the reception filter between the transmission terminal and the reception terminal and has a capacitance so that a phase difference between a signal passing from the transmission terminal to the reception terminal through the transmission filter and the reception filter and a signal passing from the transmission terminal to the reception terminal through the capacitor, or connected in parallel with the reception filter between the common terminal and the reception terminal and has a capacitance so that a phase difference between a signal passing from the common terminal to the reception terminal through the reception filter and a signal from the common terminal to the reception terminal through the capacitor.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: September 25, 2012
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Jun Tsutsumi, Kazuhiro Matsumoto, Shogo Inoue
  • Patent number: 8270907
    Abstract: Aspects of a method and system for matching an integrated system to an antenna utilizing on-chip measurement of reflected signals are provided. In a chip comprising at least a portion of a receiver and at least a portion of a transmitter, a best impedance match between an antenna and the chip may be determined based on on-chip measurement of one or more signals reflected from the antenna. The best impedance match between the antenna and the chip may be determined utilizing a correction algorithm. The correction algorithm may be determined utilizing data from an external test set that measures signals transmitted by the chip via the antenna. The reflected signals may be routed to a signal analyzer via on on-chip directional coupler. The best impedance match may be determined for each of a plurality of frequencies and/or each of a plurality of transmit signal strengths.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: September 18, 2012
    Assignee: Broadcom Corporation
    Inventor: Thomas Baker
  • Patent number: 8264298
    Abstract: The present disclosure teaches a filtering device. The filtering device comprises a transforming unit, at least a first filtering element and a complementary filtering unit. The filtering device of the present disclosure allows an isolation of radio signals within a selected frequency band. Frequency bands closely-spaced to the selected frequency band may be suppressed. The present disclosure provides a reliable and almost identical response to temperature changes for the pass band within the selected frequency band and the stop bands closely-spaced to the selected frequency band. The filtering device withstands temperature changes without affecting a filtering performance different to the prior art. The present disclosure further provides a method for filtering an input signal as well as a computer program product for the manufacture of the filtering device and a computer program product for the carrying out of the method of filtering.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: September 11, 2012
    Assignee: Unidyne, Inc.
    Inventor: Peter Kenington
  • Patent number: 8265571
    Abstract: A circuit arrangement includes a component having a closed signal path, that closed signal path connected to a first port, a second port and at least a third port. The component has a directed signal flow of a signal applied to one of that ports. Such a coupling device can be connected to a transmitter and to a receiver path, respectively.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: September 11, 2012
    Assignee: Intel Mobile Communications GmbH
    Inventors: Bernd Adler, Zdravko Boos
  • Patent number: 8260347
    Abstract: One embodiment relates to a circuit for efficient wireless communication. The circuit includes a communication port adapted to be coupled to an antenna feed. Multiple communication paths stem from the communication port, where different communication paths are associated with different frequency bands. Multiple phase shift selection circuits are respectively associated with the multiple communication paths. The phase shift selection circuits have different respective impedances relative to the communication port and the respective impedances vary for the different frequency bands. Other methods and systems are also disclosed.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: September 4, 2012
    Assignee: Intel Mobile Communications GmbH
    Inventors: Weimin Tang, Ern Tang Chu, Chao Li
  • Patent number: 8249524
    Abstract: A near field communication (NFC) transceiver contains a transmitter portion to generate a transmit wireless signal, and a receiver portion to receive and process a receive wireless signal. The circuit further contains a shunt capacitor, a switch, and an antenna interface to couple the transmitter portion and the receiver portion to an antenna designed to communicate with external antennas by inductive coupling. The switch couples the shunt capacitor in parallel with the antenna in one operational mode, and decouples the shunt capacitor from the antenna in another operational mode. Transmit and receive performance of the NFC transceiver are enhanced as a result.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: August 21, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Yogesh Darwhekar, Alok Prakash Joshi, Gireesh Rajendran, Subhashish Mukherjee, Apu Sivadas
  • Patent number: 8238825
    Abstract: Aspects of a method and system for sharing a single antenna for frequency modulation (FM) transmission or FM reception, and near field communication (NFC) are presented. Aspects of a system may include at least one circuit that enables, via a single antenna, simultaneous transmission of an FM signal and transmission of an NFC signal or reception of an NFC signal.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: August 7, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 8238976
    Abstract: A base station arrangement for a cellular communication system comprises a plurality of antennas (101-105) where each antenna (101-105) has a different coverage area. The base station arrangement can operate in a sectorised mode and a non-sectorised mode controlled by a mode controller (119). When in the sectorised mode, the base station arrangement provides an individual broadcast control carrier to each antenna (101-105) of the plurality of antennas (101-105) thereby supporting a plurality of cells each having a coverage area of the corresponding antenna (101-105). When in the non-sectorised mode, the base station arrangement provides a common broadcast carrier to all antennas (101-105) of the plurality of antennas (101-105) thereby supporting a single cell having a coverage area corresponding to a combined coverage area of the plurality of antennas (101-105). The invention may allow reduced power consumption at low loading without sacrificing peak capacity.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: August 7, 2012
    Assignee: Motorola Mobility LLC
    Inventors: Jing Wang, Conroy L. Brown, Jeffrey Hebden, Olatunde O. Williams
  • Patent number: 8238841
    Abstract: A wireless transceiver chip and calibration method thereof are disclosed. The wireless transceiver chip comprises at least one receiver, at least one transmitter, and at least one switch. The switch is connected to the receiver and the transmitter respectively for being applied to switch between the receiver and the transmitter. Practically, the switch is provided within the wireless transceiver chip, such that the pin count of the wireless transceiver chip can be reduced.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: August 7, 2012
    Assignee: Airoha Technology Corp.
    Inventors: Po-Yuan Chiu, Kuan-Hung Chen, Chan-Sheng Yang
  • Patent number: 8233950
    Abstract: A handheld device may include one or more antennas and a connector both disposed at a base of the handheld device. The connector may have a shell comprising a conductive material. The connector shell may include at least one opening in a portion of the conductive material to reduce electromagnetic interference between the connector shell and the one or more antennas.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: July 31, 2012
    Assignee: Apple Inc.
    Inventors: Phillip M. Hobson, Robert J. Hill, Robert W. Schlub, Juan Zavala, Tang Yew Tan, Richard Hung Minh Dinh, Kenneth A. Jenks, Robert Sean Murphy, Erik L. Wang
  • Patent number: 8233466
    Abstract: A system and method are provided for more effectively utilizing modems in a WiMAX environment, so as to improve network connectivity while providing access for both fixed as well as portable computing devices. The apparatus connects one or more computing devices to a network-based information system through at least a first WiMAX modem that is located within the apparatus. A second WiMAX modem can be removably coupled to the apparatus so as to improve network connectivity and operability. In the event, the second WiMAX modem is removed and coupled to a portable computing device, network connectivity provided by the first WiMAX modem is maintained.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: July 31, 2012
    Assignee: Clearwire IP Holdings LLC
    Inventors: Doug A. Olding, Warren B. Cope, Shane Robert Werner, Ahsan Habib, Arun Santharam
  • Patent number: 8228137
    Abstract: A demultiplexer has a common terminal, a transmission terminal, and a reception terminal, and furthermore includes a transmission filter connected between the common terminal and the transmission terminal, a reception filter connected between the common terminal and the reception terminal, and a phase shift circuit connected in series to the reception filter connected between the common terminal and the reception terminal. A node on the line from the phase shift circuit to the common terminal or the transmission terminal, and a node on the line from the phase shift circuit to the reception terminal are coupled via a reactance. Accordingly, it is possible to fundamentally reduce or eliminate the situation in which transmission signals from the transmission filter arrive at the reception circuit, and improve isolation.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: July 24, 2012
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Shogo Inoue, Jun Tsutsumi, Takashi Matsuda, Masanori Ueda
  • Patent number: 8204451
    Abstract: A transceiver for use in a wireless device. The transceiver may include a receive portion for receiving an input RF signal. The receive portion may include at least one receive filter which may include a first filter. The transceiver may also include a transmit portion for transmitting an output RF signal. The transmit portion may include at least one transmit filter, which may include the first filter used in the receive portion. The transceiver may further include a plurality of switches, which may include a first switch coupled to an input of the first filter and a second switch coupled to an output of the first filter. The plurality of switches may be configurable to enable use of the first filter in the receive portion for receiving the input RF signal and use of the first filter in the transmit portion for transmitting the output RF signal.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: June 19, 2012
    Assignee: QUALCOMM Atheros, Inc.
    Inventors: Alireza Kheirkhahi, Hirad Samavati, Srenik Mehta, David Su, Brian Kaczynski
  • Patent number: 8200168
    Abstract: A programmable antenna assembly includes a configurable antenna structure, a configurable antenna interface, and a control module. The configurable antenna structure includes a plurality of antenna elements that, in response to an antenna configuration signal, are configured elements into at least one antenna. The configurable antenna interface module is coupled to the at least one antenna and, based on an antenna interface control signal, provides at least one of an impedance matching circuit and a bandpass filter. The control module is coupled to generate the antenna configuration signal and the antenna interface control signal in accordance with a first frequency band and a second frequency band such that the at least one antenna facilitates at least one of transmitting and receiving a first RF signal within the first frequency band and facilitates at least one of transmitting and receiving a second RF signal within the second frequency band.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: June 12, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Maryam Rofougaran
  • Publication number: 20120142286
    Abstract: According to one embodiment, a radio device comprises a differential antenna that has a pair of differential power supply terminals, a transmitter that transmits a first signal via the differential antenna, a receiver that has a pair of differential input terminals and receives a second signal via the differential antenna, a first control unit, and a second control unit. The first control unit causes a signal conduction state between the differential antenna and the receiver when the receiver receives the second signal. The second control unit switches from a signal conduction state to a signal block state between one of the differential input terminals and one of the differential power supply terminals based on a reception state when the receiver receives the second signal.
    Type: Application
    Filed: February 13, 2012
    Publication date: June 7, 2012
    Inventors: Toshiya Mitomo, Yukako Tsutsumi, Kentaro Taniguchi
  • Patent number: 8185062
    Abstract: A configurable antenna assembly includes an antenna structure and a configurable antenna interface. The antenna structure is operable, in a first mode, to provide a first antenna structure and a second antenna structure, wherein the first antenna structure receives an inbound radio frequency (RF) signal and the second antenna structure transmits an outbound RF signal. The configurable antenna interface is operable in the first mode to provide a first antenna interface and a second antenna interface, wherein the first antenna interface is configured in accordance with a receive adjust signal to adjust at least one of phase and amplitude of the inbound RF signal, and wherein the second antenna interface is configured in accordance with a transmit adjust signal to adjust at least one of phase and amplitude of the outbound RF signal.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 22, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Maryam Rofougaran
  • Patent number: 8174339
    Abstract: A duplexer includes a transmit filter connected between a common terminal and a transmission terminal, a receive filter connected between the common terminal and a reception terminal, a capacitor connected in parallel with one of the transmit filter and the receive filter and provided between two terminals of the common terminal, the transmission terminal, and the reception terminal, and a package. The package includes an insulating layer, foot pads that include the common terminal, the transmission terminal and the reception terminal and are formed on one surface of the insulating layer, and interconnections formed on another surface opposite to the one surface of the insulating layer. The capacitor is composed of two capacitor forming units that are connected in parallel with each other and are formed with at least one foot pad of the foot pads and two of the interconnections that overlap with two opposing sides of the at least one food pad respectively.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: May 8, 2012
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Takashi Matsuda, Kazunori Inoue, Shogo Inoue
  • Patent number: 8175524
    Abstract: According to one embodiment, an information processing apparatus includes an antenna element, a first wireless communication module including a printed circuit board and a wireless communication circuit which is provided on the printed circuit board, and a second wireless communication module. A diplexer is provided on the printed circuit board of the first wireless communication module, and includes a first terminal which is connected to the antenna element via a first antenna connector provided on the printed circuit board and a first cable, a second terminal which is connected to the wireless communication circuit via a wiring pattern on the printed circuit board, and a third terminal which is connected to a second antenna connector provided on the printed circuit board. The second wireless communication module is connected to the second antenna connector via a second cable.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: May 8, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Anwar Sathath
  • Patent number: RE43830
    Abstract: The present invention provides a method and system for mitigating fading and/or poor reception at a receiver. The receiver includes configurations each of which can provide different reception characteristics. The receiver evaluates the reception quality of the radio signal with the antenna in a first configuration and with the antenna in at least a second configuration and selects the antenna configuration that has the best evaluated reception for use until a subsequent iteration, when the process is repeated. The antenna configurations can correspond to configurations wherein reception is favored in different directions or to configurations wherein different antennas are selected, each antenna being spaced from each other antenna. The method can also improve the reception of a signal transmitted by selecting an antenna configuration for transmissions which provides improved reception quality at the destination receiver.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: November 27, 2012
    Assignee: Wi-LAN, Inc.
    Inventors: Ramesh Mantha, Jeffrey P. Castura