Algae Culture Patents (Class 47/1.4)
  • Patent number: 8458952
    Abstract: In an embodiment of the invention, aqueous growth medium in a pond can be used to grow algae which can be pumped to a primary dewatering device where the algae can be separated from the harvested growth media based on the flow of the harvested growth media and gravity. The flow through the primary de-watering device can be optimized to maintain log phase growth in the pond, while minimizing the pumping cost and maximizing the concentration of total solids in the primary de-watered algae.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: June 11, 2013
    Assignee: Independence Bio-Products, Inc.
    Inventors: Christopher J. Davies, John Russell Teague, Ronald A. Erd
  • Publication number: 20130133250
    Abstract: A fluid filtration system using a rotating container, comprising a shell having an inlet pipe installation port and an outlet port, the inlet pipe installation port and the outlet port are located on the same or opposite side (end) of the shell, and having some distance from the outermost edge of the shell, such that said rotating container can retain fluid during rotation. Stirring blades are placed inside the shell of said rotating container, which rotate with the shell synchronously. The purification process includes the injection of the fluid into the rotating container, which can withhold liquid during high-speed rotation. When the fluid in the rotating container swirls at high speed, substances of higher densities will accumulate at the internal wall of the rotating container away from the rotation axis, whereas substances of lower densities will accumulate at the inner ring region closer to the rotation axis.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 30, 2013
    Applicant: DR. T LIMITED
    Inventor: Dr. T Limited
  • Publication number: 20130095544
    Abstract: Management of a pond for algae growth and harvesting is facilitated by use of a cover system. The cover system can include one or more types of cover portions for management of various interactions between a pond and an ambient environment, such as management of incident light, thermal management, facilitating product recovery, and management of gas diffusion. The cover system can be used in conjunction with both active and passive mixing devices.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 18, 2013
    Applicant: ExxonMobile Research and Engineering Company
    Inventors: Paul J. Berlowitz, P. Hugh Helferty
  • Patent number: 8415142
    Abstract: A method and apparatus for growing algae for sequestering carbon dioxide and then harvesting the algae includes a container for a suspension of algae in a liquid and a bioreactor having a translucent channel in fluid communication with the container to absorb CO2 and grow the algae. A monitor determines the growth of the algae in the channel. A separator separates the grown algae from the suspension and an extractor extracts biomaterials from the grown algae.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: April 9, 2013
    Inventor: Malcolm Glen Kertz
  • Patent number: 8409851
    Abstract: A bioactive filter is provided which comprises a transparent canister having gas permeable membranes as entry and exit ports. A source of carbon dioxide in gaseous form is allowed to enter the entry membrane and pass through a solution contained in the canister which supports a live colony of algae. The algae carries out photosynthesis thereby altering the carbon dioxide to oxygen and sugar. The oxygen is released through the exit port.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: April 2, 2013
    Inventor: Param Jaggi
  • Patent number: 8409845
    Abstract: Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO2/O2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a “dead zone”) containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: April 2, 2013
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Jonathan D Trent, Sherwin J Gormly, Tsegereda N Embaye, Lance D Delzeit, Michael T Flynn, Travis A Liggett, Patrick W Buckwalter, Robert Baertsch
  • Patent number: 8409852
    Abstract: An aquatic-based algae production apparatus employing a microalgae production support assembly (30) and a cluster of six floating, closed loop, flatbed, CO2/O2 gas-permeable, photo-bioreactors, offering an economical solution for microalgae industrial production. The apparatus's bioreactors are submerged in the proximity of the water surface mark (20) for maximum light exposure and for CO2/O2 continue diffusion. A microalgae processing and control assembly (200) is monitoring the algae growth for each photo-bioreactor in the cluster, and is cyclically harvesting the microalgae. After harvesting the microalgae are transferred into a submerged variable-volume microalgae storage tank (250). Solar photovoltaic panels (400) and (500) are supplying the energy required for the operation of the apparatus. Swivel electrical propellers (330) attached to the bottom of the apparatus protective outer barrier (300) are controlling the apparatus's water deployment.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: April 2, 2013
    Inventor: Daniel S. Redford
  • Publication number: 20130061518
    Abstract: A method and device for aggregating algae in an aqueous solution is disclosed. The method can include providing an algae feed comprising a liquid and algae dispersed therein. The algae feed can be aggregated by applying a nanosecond pulsed electric field to the algae feed. The nanosecond pulsed electric field can include a plurality of electric pulses having a pulse duration ranging from 1 to 1,000 nanoseconds. The method can also include separating an aggregated algae stream from the algae feed and feeding the aggregated algae stream to a lipid extraction operation.
    Type: Application
    Filed: November 7, 2012
    Publication date: March 14, 2013
    Inventor: OLD DOMINION UNIVERSITY RESEARCH FOUN
  • Patent number: 8382986
    Abstract: A method of dewatering algae and recycling water therefrom is presented. A method of dewatering a wet algal cell culture includes removing liquid from an algal cell culture to obtain a wet algal biomass having a lower liquid content than the algal cell culture. At least a portion of the liquid removed from the algal cell culture is recycled for use in a different algal cell culture. The method includes adding a water miscible solvent set to the wet algal biomass and waiting an amount of time to permit algal cells of the algal biomass to gather and isolating at least a portion of the gathered algal cells from at least a portion of the solvent set and liquid of the wet algal biomass so that a dewatered algal biomass is generated. The dewatered algal biomass can be used to generated algal products such as biofuels and nutraceuticals.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: February 26, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Publication number: 20130042522
    Abstract: The present invention relates to a method for the construction of land-based covered ponds for the aquaculture of photosynthetic organisms and the associated device constituted by a very long gutter which serves both as a wall shared by two juxtaposed ponds, support for the covering of the ponds, passageway for the operating staff and rainwater receptacle. The invention is particularly suitable for equipping large farms dedicated to the production of algae or other photosynthetic organisms.
    Type: Application
    Filed: April 28, 2011
    Publication date: February 21, 2013
    Applicant: ALGAESTREAM
    Inventor: Dominique Delobel
  • Patent number: 8375627
    Abstract: A modular all-terrain algal production system that includes a plurality of segments. Each segment is made from one or more trays that are adapted to grow algae on their surface. The trays each have a flange end configured to be coupled to non-flanged end of an adjacent tray to form floways. Each floway has a rotatable surge bucket at one end that is able to hold water and spill the water in a wave down the floway into a catchment. The system is supported on uneven terrain by an adjustable structure arranged to provide each floway with a horizontal inclination.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: February 19, 2013
    Assignee: Hydromentia, Inc.
    Inventors: Erik T. Adey, Walter H. Adey
  • Patent number: 8372632
    Abstract: A method and apparatus for sequestering CO2 using algae comprises a plurality of vertically suspended bioreactors, each bioreactor being translucent and including a flow channel formed by a plurality of baffles. A culture tank contains a suspension of water and at least one algae and includes a plurality of gas jets for introducing a CO2-containing gas into the suspension. The culture tank is in fluid communication with an inlet in each channel for flowing the suspension through the channel in the presence of light. A pump pumps the suspension into the channel inlet.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: February 12, 2013
    Inventor: Malcolm Glen Kertz
  • Patent number: 8365463
    Abstract: A water-desalination and carbon dioxide extraction method employs a greenhouse having a transparent, double-pane roof structure and containing an open-top receptacle for a receiving quantity of saline water or an aqueous mixture, derived from flue gas, of dissolved and suspended alkaline metal salts, which roof structure and receptacle are substantially coextensive and rectangular. A series of remotely controllable nozzles, capable of producing sheet-like discharges, withdraw the saline water or the aqueous mixture from the receptacle and discharges it into the overlying space for exposure to solar radiation passing through the roof structure, for controlled absorption of solar energy by the saline water or for effecting release carbon dioxide at elevated temperatures. Ambient air, heated during passage through channels in the transparent roof structure, may be used in a second greenhouse for promoting evaporation of free water or in other method steps.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: February 5, 2013
    Inventor: William Arthur Walsh, Jr.
  • Patent number: 8365462
    Abstract: Disclosed herein are photobioreactor systems for high productivity aquaculture or aquafarming for growing of algae or other organisms in an aquatic environment featuring aspects that favor improved growth rates by achieving control over the contents of the growth medium, including carbon source, nitrogen source, and essential trace elements necessary for growth.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: February 5, 2013
    Assignee: Heliae Development, LLC
    Inventors: Jason D. Licamele, Carl L. White
  • Patent number: 8361786
    Abstract: The present invention provides novel photobioreactors, modules thereof, and methods for use in culturing and harvesting algae and cyanobacteria.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 29, 2013
    Assignee: The Arizona Board of Regents, A Body Corporate Acting on Behalf of Arizona State University
    Inventors: Qiang Hu, Milton Sommerfeld
  • Publication number: 20130015143
    Abstract: A method of treating an algal containing aqueous medium comprises adding an effective amount of the treatment composition to the aqueous medium wherein the treatment composition comprises 1) a) a water soluble cationic quaternary ammonium starch or b) a water soluble quaternary ammonium starch/gum blend or c) a water soluble modified tannin and 2) a metal containing inorganic coagulant. In certain aspects of the invention, the so-treated algal containing aqueous medium is filtered such as by microfiltration and/or ultrafiltration to result in potable water. In another aspect of the invention, the algal containing aqueous medium is an agglomerated mass of algae with water dispersed throughout the mass. The method comprises a step of separating the algae from the water, thereby harvesting the algae for further processing such as may ultimately lead to the production of biodiesel fuel.
    Type: Application
    Filed: April 5, 2010
    Publication date: January 17, 2013
    Inventors: Sijing Wang, Qing Zhao, Guixi Zhang
  • Publication number: 20130006445
    Abstract: This invention provides a vessel system and methodology that can be used to promote growth of phytoplankton in the oceans. Unmanned self-controlled wave-powered vessels are equipped with storage units for dispensing a fertilizer, and with sensors to monitor ocean conditions and effects. Fleets of vessels move autonomously by on-board processing of GPS and directional information, piloting a path that is coordinated by a central processing unit. The vessels travel through a defined target area, creating a detailed survey of chemical and biological characteristics that affect grown. The data are processed in a computer model to identify precise locations and precise amounts of fertilizer that will produce the best results. Projected benefits of fertilizing plankton include sequestering CO2 from the atmosphere, and enhancing the marine food chain to improve the fish stock in and around the treated area.
    Type: Application
    Filed: March 19, 2012
    Publication date: January 3, 2013
    Applicant: Liquid Robotics, Inc.
    Inventor: Roger G. Hine
  • Patent number: 8341877
    Abstract: Disclosed herein are photobioreactor systems for high productivity aquaculture or aquafarming for growing of algae or other organisms in an aquatic environment featuring aspects that favor improved growth rates by achieving control over the contents of the growth medium, including carbon source, nitrogen source, and essential trace elements necessary for growth.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: January 1, 2013
    Assignee: Heliae Development, LLC
    Inventors: Jason D. Licamele, Carl L. White
  • Publication number: 20120309081
    Abstract: Provided are a cultivating system for cultivating aquatic organisms including a load-bearing structure having a top portion with at least two top rims transverse to each other and defining a top portion, a bottom portion, and flexible tank adapted for receiving therein a growing medium and for cultivating therein aquatic organisms. Further, the tank can include at least two sidewalls extending such that at least in one cross-section taken along a plane perpendicular to said top portion, at least two of the sidewalls form a general V-shape converging towards the bottom portion. The system can also include a gas emitting arrangement linkable to a source of pressurized gas and comprising gas emitting nozzles disposed within the flexible tank at the bottom portion.
    Type: Application
    Filed: February 15, 2011
    Publication date: December 6, 2012
    Applicant: UNIVERVE LTD.
    Inventor: Ra'anan Herzog
  • Patent number: 8323958
    Abstract: The invention provides a device for growing genetically enhanced aquatic photoautotrophic organisms in a stable culture, causing said organisms to produce ethanol, and then separating, collecting, and removing the ethanol in situ.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: December 4, 2012
    Assignee: Algenol Biofuels Switzerland GmbH
    Inventors: R. Paul Woods, Edward Legere, Benjamin Moll, Edwin Malkiel
  • Patent number: 8318478
    Abstract: A photobioreactor comprising a receptacle with a first and a second outer side surface, wherein the receptacle is formed from a flexible, fluid-tight and transparent material, and wherein the receptacle is disposed in a rack provided with elongated, substantially vertical, support elements arranged in at least one horizontal row, whereby the support elements abut, in an alternating and supporting manner, against the first and the second outer side surfaces of the receptacle.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: November 27, 2012
    Assignee: MicroA AS
    Inventor: Lars Andreas Dahle
  • Patent number: 8313648
    Abstract: A method for producing biofuels is provided that includes dewatering intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrodeoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock. The method further includes supplying the hydrogenation and deoxygenation processes with hydrogen produced from reformed light hydrocarbons or an algae culture.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: November 20, 2012
    Assignee: Heliae Development, LLC
    Inventors: Aniket Kale, Luca Costantino Zullo, Sandip Shinde
  • Patent number: 8308949
    Abstract: Methods for selective extraction and fractionation of algal lipids and algal products are disclosed. A method of selective removal of products from an algal biomass provides for single and multistep extraction processes which enable efficient separation of algal components. Among these components are neutral lipids synthesized by algae, which are extracted by the methods disclosed herein for the production of renewable fuels.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 13, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Publication number: 20120279119
    Abstract: Methods and apparatus involve locating an algae production facility in close proximity to a livestock production facility whereby the outputs of one or both facilities promotes productivity levels in the facility. In an illustrative example, the algae production facility includes a bioreactor in fluid communication with the atmosphere inside, for example, a poultry facility. In some examples, the atmosphere inside the poultry facility may be around a substantially controlled temperature suitable for poultry. The atmosphere may further contain substantial Nitrogen-content suitable to promote algae growth. Various embodiments may symbiotically consume waste products from each facility to promote production of, for example, protein for food and algae, which may be used for animal feed, for example, and/or processed into fuel. In some examples, the algae production facility may be conveniently packaged into a module. In some examples, the module may be stored and shipped in a conventional shipping container.
    Type: Application
    Filed: July 25, 2011
    Publication date: November 8, 2012
    Applicant: Once Technologies, Inc.
    Inventor: Zdenko Grajcar
  • Patent number: 8304232
    Abstract: The present invention provides photobioreactors, solar energy gathering systems, and methods for thermal control of a culture medium containing a prototrophic organism in a photobioreactor, that allow temperature control in a cost effective manner, reducing the energy required for temperature control of a culture medium containing phototrophic microorganisms in a photobioreactor.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: November 6, 2012
    Assignee: Joule Unlimited Technologies, Inc.
    Inventors: Frederick M. Morgan, Stuart A. Jacobson, Johan van Walsem
  • Publication number: 20120272574
    Abstract: Provided herein are exemplary algae cultivation ponds having the circulation of fluid optimized for such factors as decreased energy consumption, decreased predators/competitors, decreased or eliminated flow deadzones (i.e. stagnant regions), and increased algae biomass production, such as for the production of biofuels and other algae-based products.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Inventors: Mehran Parsheh, Guido Radaelli
  • Publication number: 20120276633
    Abstract: There is provided a process for growing a phototrophic biomass in a reaction zone. The process includes treating an operative carbon dioxide supply-comprising gaseous material feed so as to effect production of a carbon dioxide-rich product material. The carbon dioxide concentration of the carbon dioxide-rich product material is greater than the carbon dioxide concentration of the operative carbon dioxide supply-comprising gaseous material feed. Production of at least a fraction of the operative carbon dioxide supply-comprising gaseous material feed is effected by a gaseous exhaust material producing process. At least a fraction of the carbon dioxide-rich product material is supplied to the reaction zone so as to effect growth of the phototrophic biomass by photosynthesis in the reaction zone.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Applicant: POND BIOFUELS INC.
    Inventors: Jaime A. Gonzalez, Max Kolesnik, Steven C. Martin
  • Patent number: 8293108
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: October 23, 2012
    Assignee: Heliae Developmet, LLC
    Inventor: Aniket Kale
  • Patent number: 8287740
    Abstract: Apparatus for extracting a material from a body of liquid and methods therefore are disclosed. A transport member comprises at least one continuous loop configured to pass through a continuous orbit. The material sufficiently adheres to at least a portion of the at least one continuous loop. A scraping member urges against at least a portion of the continuous loop for removing at least some of any of the material adhered to the continuous loop. Such an apparatus can be a harvester that includes a frame having a first end and a second end. A first conveyor drum can be supported by the frame adjacent the first end and can have an outer surface for engaging the transport member. A second conveyor drum can be supported adjacent the second end and can have an outer surface for engaging the transport member.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: October 16, 2012
    Assignee: Desert Lake Technologies, LLC
    Inventors: Howard W. Newman, John Lowell Bowers, Jordan D. Jones
  • Patent number: 8281515
    Abstract: Methods for increasing the growth and biomass of algae and algae lipids by growing the algae in the presence of a polycationic substance such as soluble or insoluble chitosan and/or chitin are disclosed. Also disclosed are methods of harvesting algae from an aqueous environment by growing the algae in aggregated clumps and/or mats (formed by the inclusion of soluble or insoluble chitosan and/or chitin or other polycationic or cationic substances) that can be easily removed from the aqueous environment either by filtration, surface skimming, and/or growing in a porous containment device, such as a natural or synthetic fabric, and removing the fabric from the aqueous environment containing the aggregated algae. The methods disclosed have direct applications in biofuel and energy production, agricultural feedstock production, nutrient production, greenhouse gas reduction, removal of microconstituents from water, and water reclamation.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: October 9, 2012
    Assignee: HaloSource, Inc.
    Inventors: Everett J. Nichols, James R. Scott
  • Publication number: 20120247008
    Abstract: Methods and systems for growing algae are disclosed. For example, disclosed is an exemplary bioreactor for growing algae that includes a chamber, a liquid-permeable membrane that includes a plurality of hollow fiber membranes disposed within the chamber. Each hollow fiber membrane can include a hollow interior and may be made of a liquid-permeable, algae-impermeable membrane, and each hollow fiber membrane may be disposed within the chamber. The respective interiors of the hollow fiber membranes may at least partially define an inner-capillary space (ICS). The interior of the chamber and respective exteriors of the hollow fiber membranes may at least partially define an extra-capillary space (ECS). When algae is grown in the ECS, lipids produced by the algae may be extracted from the ECS to the ICS via the hollow fiber membranes without killing the majority of algae and while containing the algae to the ECS.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 4, 2012
    Inventors: Marcos Gonzalez, Sami Benhamou
  • Patent number: 8273248
    Abstract: A method for separating neutral lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting neutral lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal neutral lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. The neutral lipids are removed after first removing a polar lipid fraction and a protein fraction. These neutral lipids can be used to generate renewable fuels as well as food products and supplements.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 25, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8268601
    Abstract: A process for cultivating photosynthetic microbes comprising Closed Systems for continuous cultivation and Open Systems for batch cultivation, in which (a) the Closed System Area occupies no more than 20% of the Total Land Area of the cultivation facility; (b) batch cultures in the Open Systems are initiated with an inoculum from the Closed Systems containing a cell biomass of no less than 5% of the carrying capacity of said Open System; (c) the doubling rate of said photosynthetic microbe is no less than once every 16 hours; and (d) the residence time of the batch culture in said Open System is no more than a period of 5 days.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: September 18, 2012
    Assignee: HR Biopetroleum, Inc.
    Inventors: Mark Edward Huntley, Donald G Redalje
  • Publication number: 20120231513
    Abstract: Provided herein are systems and methods for extracting lipids and/or producing biofuel from algae in marine and freshwater environments, wherein algae and bivalves are co-cultured in a system of enclosures comprising water that comprises recycled nutrients that are essential for algal growth. The system also include enclosures for culturing fishes which are used to harvest the algae.
    Type: Application
    Filed: April 16, 2010
    Publication date: September 13, 2012
    Inventors: David Stephen, Gaye Elizabeth Morgenthaler, Benjamin Chiau-pin Wu, David Vancott Jones
  • Patent number: 8262776
    Abstract: A system and method for producing biofuel from pollutant-fed algae are disclosed. Specifically, the system includes a scrubber with a chamber for receiving a pollutant-contaminated fluid stream. Further, a scrubber solution is received in the chamber for scrubbing the pollutant-contaminated fluid stream. Also, the system includes a bioreactor that is provided with an input port to receive the scrubber solution with pollutants for use as nutrients to support algae cell growth. Further, the system includes an algae separator that removes the algae from the bioreactor and a device for processing the algae into biofuel. In order to recycle the scrubber solution, the algae separator is in fluid communication with the scrubber. With this arrangement, the effluence from the bioreactor may be recycled for use as the scrubber solution.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: September 11, 2012
    Assignee: General Atomics
    Inventors: David A. Hazlebeck, Eric H. Dunlop
  • Publication number: 20120210636
    Abstract: A method and system for converting low BTU synthesis gas (Syngas), and synthesis gas that has been generated in situ, into a higher BTU product while minimizing the process carbon footprint. Preferably, a plasma gassifier is used to generate the syngas. Sensible heat is recovered and applied to produce electricity. The syngas is water gas shifted to enhance hydrogen production. Gasification is performed in a pyrolysis mode of operation, a nitrogen reduced mode of operation, an oxygen enriched mode of operation, or a coke supplemented mode of operation. The syngas is delivered to a reactor to produce product. The reactor is any of a pellet style reactor, a monolith style reactor, a foam reactor, a ceramic foam reactor, an alumina oxide reactor, and an alpha alumina oxide reactor.
    Type: Application
    Filed: July 13, 2010
    Publication date: August 23, 2012
    Inventor: James Charles Juranitch
  • Patent number: 8245440
    Abstract: Disclosed herein are systems and methods for aquaculture. In one embodiment, the system includes a plurality of cultivation areas, a collection area, a pump for returning the culture from the collection areas to at least one of the cultivation areas and a delivery system for providing gases and/or nutrients to the culture. Also disclosed is a method for regulating water temperature of an aquaculture including circulating a culture through a system described herein, and storing the culture in the collection area or at least one of the cultivation areas for at least a portion of a 24 hour period.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: August 21, 2012
    Assignee: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Randy D. Ryan, Peter M. Waller, Murat Kacira, Peiwen Li
  • Patent number: 8247212
    Abstract: The present invention provides a method of circulating algae in growing containers using thermally-induced convection techniques. In particular, a method of growing algae by providing a thermal gradient in algae containing medium is disclosed.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: August 21, 2012
    Assignee: Greenfire Partners LLC
    Inventors: Mark P. Muir, Alan D. Eastman, Randy Balik
  • Publication number: 20120198761
    Abstract: An apparatus and method are described for producing and harvesting algae. The orientation of the production substrates is critical for maximizing production as a function of water area utilized. By employing an array of algae production substrates in a vertical configuration relative to the water surface, the yield of algae production per area of open water is increased substantially relative to prior art algae production systems.
    Type: Application
    Filed: February 6, 2012
    Publication date: August 9, 2012
    Applicant: College of William and Mary
    Inventors: William E. Cooke, Eugene R. Tracy, Karl W. Kuschner, J. Emmett Duffy, Dennis M. Manos
  • Patent number: 8234813
    Abstract: Systems and methods for hydroponically growing microorganisms within a self-contained air-supported structure, in which microorganisms are grown in an organic slurry, harvested, and processed to obtain and process and distribute molecules useful for biofuel or other purposes.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: August 7, 2012
    Assignee: Algepower LLC
    Inventors: Gail Busch, Jacques M. Dupont
  • Publication number: 20120184440
    Abstract: In one embodiment, a remediation agent and method of remediation of an algae bloom are disclosed. The remediation agent contains light absorbing compounds in a buoyant water semi-insoluble and biodegradable casein product. The remediation agent may be distributed by boat or seeded by airplane to remediate or prevent algae blooms.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 19, 2012
    Inventor: John Peter Fuhrer
  • Patent number: 8198076
    Abstract: The present invention provides novel photobioreactors, modules thereof, and methods for use in culturing and harvesting algae and cyanobacteria.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: June 12, 2012
    Assignee: The Arizona Board of Regents, A Body Corporate Acting on Behalf of Arizona State University
    Inventors: Qiang Hu, Milton Summerfeld
  • Patent number: 8196750
    Abstract: A method of concentrating particles in a liquid-particle dispersion feed by adsorptive bubble separation by intimately contacting a gas with a pressurized stream of liquid in a chamber to form an aerated dispersion that retains at least some of the kinetic energy from the pressurized stream, and removing at least some of the kinetic energy from the aerated dispersion to form a dense foam. A liquid-particle dispersion feed is then injected into the dense foam to form a gas-liquid-particle dispersion. The gas-liquid-particle dispersion is injected into a flotation chamber at a point below a surface of a liquid contained therein, where the gas-liquid-particle dispersion forms bubbles of a gas-particle agglomerate, and the bubbles are released from the feed liquid depleted in hydrophobic particles and rise to the surface to form a floating froth enriched in particles.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 12, 2012
    Assignees: Renewable Algal Energy, LLC, Eastman Chemical Company
    Inventors: Jeffrey S. Kanel, Robert L. Clayton
  • Patent number: 8187463
    Abstract: A method of dewatering algae and recycling water therefrom is presented. A method of dewatering a wet algal cell culture includes removing liquid from an algal cell culture to obtain a wet algal biomass having a lower liquid content than the algal cell culture. At least a portion of the liquid removed from the algal cell culture is recycled for use in a different algal cell culture. The method includes adding a water miscible solvent set to the wet algal biomass and waiting an amount of time to permit algal cells of the algal biomass to gather and isolating at least a portion of the gathered algal cells from at least a portion of the solvent set and liquid of the wet algal biomass so that a dewatered algal biomass is generated. The dewatered algal biomass can be used to generated algal products such as biofuels and nutraceuticals.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: May 29, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8182689
    Abstract: A method of dewatering algae and recycling water therefrom is presented. A method of dewatering a wet algal cell culture includes removing liquid from an algal cell culture to obtain a wet algal biomass having a lower liquid content than the algal cell culture. At least a portion of the liquid removed from the algal cell culture is recycled for use in a different algal cell culture. The method includes adding a water miscible solvent set to the wet algal biomass and waiting an amount of time to permit algal cells of the algal biomass to gather and isolating at least a portion of the gathered algal cells from at least a portion of the solvent set and liquid of the wet algal biomass so that a dewatered algal biomass is generated. The dewatered algal biomass can be used to generated algal products such as biofuels and nutraceuticals.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: May 22, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8176676
    Abstract: A micro-algae growing method employs a greenhouse having a transparent, double-pane roof structure and containing an open-top receptacle for a bed of aqueous micro-algae medium, which roof structure and receptacle are substantially coextensive and rectangular. A series of remotely controllable nozzles, capable of producing thin, sheet-like discharges, withdraw the aqueous liquid medium from subsurface regions along the length of the bed and discharge it into the overlying space, thus optimally exposing the medium to solar radiation passing through the roof structure and thereby promoting micro-algae growth. Ambient air, heated during passage through channels in the transparent roof structure, is used in a second greenhouse for lofting small droplets that comprise sprays of the concentrated micro-algae medium received from the first greenhouse, thus promoting evaporation of free water and cooperating in harvesting of micro-algae product.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: May 15, 2012
    Inventor: William Arthur Walsh, Jr.
  • Patent number: 8173391
    Abstract: The present invention relates to a method for cultivating carotenoid rich golden yellow algae by varying the ratio of carbon to nitrogen content in the culture medium during cultivation and supplementing the media periodically with citrate and acetate compounds to enhance the carotenoid production and produce change in the colour of blue-green algae to golden yellow.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: May 8, 2012
    Assignee: Choudhary Vidhi
    Inventor: Baburao Kumble Nagnath
  • Publication number: 20120107921
    Abstract: Embodiments of the present invention include model-based controls to control photobioreactor operation and the growth of algae for use as a biofuels feedstock. In some embodiments, the model-based control can accounts for future conditions such as weather, product pricing, customer demands and/or other variables to operate the reactors in a manner that optimizes product revenues, minimizes costs or energy, maximizes photosynthetic or energy balance efficiency, and/or any combination of the aforementioned factors.
    Type: Application
    Filed: June 26, 2009
    Publication date: May 3, 2012
    Applicants: COLORADO STATE UNIVERSITY RESEARCH FOUNDATION, SOLIX BIOFUELS, INC.
    Inventors: Bryan Dennis Willson, Michael R. Buehner, Peter Michael Young, David Jacob Rausen, Guy Robert Babbitt, Rich Schoonover, Kristina Weyer-Geigel, David Eli Sherman
  • Patent number: 8161679
    Abstract: An open ocean floating algae farm built around a ship. The ship provides propulsion power for navigation, storage capacity for materials and algae products, machinery for harvesting and processing the algae, housing for crew, and facilities for maintenance of the floating farm. The invention is also comprised of transparent tubes that circulate a broth of seawater saturated with CO2, nutrients, and algae. The circulation path flows from the ship through the tubes and back to the ship where the algae is filtered out to be processed. The fields of transparent tubes circulating the algae broth are supported by a square matrix of pressurized tubes filled with seawater. This matrix is neutrally buoyant and submerged just below the ocean surface. The internal pressure in the tubes causes the matrix to be stiff in the horizontal plane, but flexible in the vertical dimension so as to conform to long ocean waves.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 24, 2012
    Inventors: James Sacra Albus, Alverto Daniel Lacaze, Karl Nicholas Murphy
  • Patent number: H2271
    Abstract: Systems and methods are described for the production and application of a cyanobacteria based biological soil crust inoculant for soil fertilization, soil stabilization and the drawing down and sequestering of atmospheric carbon. Inoculant is generated as a dry granulate that can be stockpiled and spread onto soils using standard agricultural spreading practices employing aircraft, ground equipment and irrigation systems. This inoculant will have particular application in stabilizing agricultural and arid land soils to limit their erosion, increasing soil fertility by fixing atmospheric nitrogen and providing nutrients, and drawing down atmospheric carbon dioxide by stimulating the growth and propagation of these biological soil crusts and their associated microorganisms and vascular plants.
    Type: Grant
    Filed: November 12, 2011
    Date of Patent: July 3, 2012
    Inventor: James Thomas Sears