Continuously Variable Friction Transmission Patents (Class 477/37)
  • Patent number: 8585544
    Abstract: A drive force control system includes a shifting demand judging means that judges whether or not a torque capacity of the clutch is relatively high, and a condition for changing the speed change ratio of the continuously variable transmission stepwise is satisfied; and a first shifting means that reduces the torque capacity of the clutch before changing the speed change ratio of the continuously variable transmission, to synchronize a rotational speed of the internal combustion engine with an input speed of the continuously variable transmission to be attained after changing the speed change ratio thereof while changing the speed change ratio of the continuously variable transmission, and to increase the torque capacity of the clutch after changing the speed change ratio of the continuously variable transmission, when changing the speed change ratio of the continuously variable transmission stepwise.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: November 19, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tomoyuki Honda
  • Patent number: 8585156
    Abstract: A travel control device for a work vehicle includes: a hydraulic pump; a plurality of hydraulic motors connected to the hydraulic pump in parallel through a closed-circuit connection, that drive different wheels with pressure oil delivered from the hydraulic pump; a slip detection device that detects a slip occurring at each of the wheels; and a flow control device that reduces, upon detection of a slip occurring at any of the wheels by the slip detection device, a quantity of pressure oil supplied to a hydraulic motor for driving the wheel at which the slip has been detected, among the plurality of hydraulic motors.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: November 19, 2013
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Tsutomu Udagawa, Eiji Egawa, Tsukasa Toyooka, Makoto Sugaya, Hideo Sorata, Tsuyoshi Nakamura, Akira Nakayama, Kazuo Takiguchi, Kensuke Satou
  • Patent number: 8571774
    Abstract: One disclosed embodiment relates to a propulsion system for a machine. The propulsion system may include a prime mover operatively connected through a continuously variable transmission to a propulsion device. The propulsion system may also include propulsion-system controls that control an operating parameter of the continuously variable transmission, which may include adjusting the operating parameter based on operator input. Controlling the operating parameter may also include determining an adjustment limit for the operating parameter based on one or more operating conditions and applying the adjustment limit to the operating parameter to modify at least one of acceleration and jerk of the machine based on the one or more operating conditions.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 29, 2013
    Assignee: Caterpillar Inc.
    Inventors: Kristofor Lee Dahl, Brian Douglas Hoff, Richard George Ingram, Michael Anthony Spielman, Jr., Benjamin B. Schmuck, Alberto Martinez, Jr., Yaang Zhao
  • Patent number: 8534413
    Abstract: A continuously variable transmission (CVT) is provided for use on a recreational or utility vehicle. The CVT is electronically controlled by a control unit of the vehicle. The CVT includes a primary clutch having a first sheave and a second sheave moveable relative to the first sheave. An actuator may be positioned between the primary and secondary clutches.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: September 17, 2013
    Assignee: Polaris Industries Inc.
    Inventors: Stephen L. Nelson, Brian R. Gillingham, Urs Wenger, Brian D. Krosschell, Beat Kohler, Ronald Zurbruegg, Donald E. Frost
  • Patent number: 8515635
    Abstract: A method and system provides a Brake Transmission Shift Interlock Override mode in a vehicle including a shift-by-wire transmission. With power applied and ignition on, a driver will press and hold an override switch for a calibrated time. While the override switch is pressed, the driver presses a non-Park button for another calibrated time. The result will be that the vehicle is placed in the selected range wherein the transmission will not automatically shift to Park upon detecting a triggering event. The driver is able to shift the vehicle from Park, even if an electrical failure prevents the transmission from shifting out of Park. As such the vehicle can be driven until the failure is serviced.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: August 20, 2013
    Assignee: Ford Global Technology, LLC
    Inventors: Todd Curtis Spaulding, Brian J Deurloo, Mark Edward Zyskowski, Richard Reynolds Hathaway, Jeffrey James Turnavitch, Christopher Lee Danks, David Spuller, Charles C Poon, Matthew Luke Fyie
  • Patent number: 8506452
    Abstract: Inventions are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one aspect, a control system is adapted to facilitate a change in the ratio of a CVT. A control system includes a control reference nut coupled to a feedback cam and operably coupled to a skew cam. In some cases, the skew cam is configured to interact with carrier plates of a CVT. Various inventive feedback cams and skew cams can be used to facilitate shifting the ratio of a CVT. In some transmissions described, the planet subassemblies include legs configured to cooperate with the carrier plates. In some cases, a neutralizer assembly is operably coupled to the carrier plates. A shift cam and a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are described.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: August 13, 2013
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Brad P Pohl, Fernand A Thomassy, Charles Lohr
  • Patent number: 8504264
    Abstract: A target gear ratio calculation unit calculates a target gear ratio TGR of a transmission. A setting unit sets a target gear TG according to target gear ratio TGR. A multi-speed transmission control unit controls the transmission according to target gear TG. A target driving force calculation unit calculates target driving force TF of a vehicle. A correction unit corrects target driving force TF according to a gear ratio of the transmission. A conversion unit converts target driving force TF into target engine torque TTE. An engine control unit controls an engine according to target engine torque TTE. Modules used for the engine control unit, the target driving force calculation unit, the conversion unit, and the target gear ratio calculation unit are used in common in a case where the transmission is a multi-speed transmission and in a case where the transmission is a continuously variable transmission.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: August 6, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Seiji Kuwahara, Toshiya Oishi
  • Patent number: 8480529
    Abstract: Embodiments are directed to a front end accessory drive (FEAD), subassemblies, and components therefor. Embodiments disclosed cover power modulating devices (PMD) which can be used in a FEAD. In one embodiment, a continuously variable transmission (CVT) is coupled directly to a crankshaft of a prime mover, and the CVT is used to regulate the speed and/or torque delivered to an accessory. A compound drive device includes a motor/generator subassembly cooperating with a CVT subassembly to provide a motor functionality with torque multiplication or division, or alternatively, a generator functionality with torque multiplication or division. In some embodiments, a FEAD includes a PMD having a sun shaft configured to couple to a sun of the PMD and to an electric motor component, such as an electrical armature or an electrical field. In one embodiment, the electrical armature the electrical field are placed concentrically and coaxially and configured to rotate relative to one another in opposite directions.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: July 9, 2013
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Brad P. Pohl, Donald C. Miller, Robert A. Smithson, Jeremy Carter, Charles B. Lohr
  • Publication number: 20130165296
    Abstract: A shift control apparatus for continuously variable transmission includes: a pseudo accelerator opening degree generating section configured to generate a pseudo accelerator opening degree larger than the actual accelerator opening degree when the actual accelerator opening degree is decreased when the judging section judges that the vehicle runs the uphill; the target transmission gear ratio setting section being configured to set the target transmission gear ratio by the pseudo accelerator opening degree when the pseudo accelerator opening degree is inputted, and the shift control section being configured to control the shift toward the target transmission gear ratio set based on the pseudo accelerator opening degree and the vehicle speed when the pseudo accelerator opening degree is generated, and to control the shift toward the target transmission gear ratio set based on the actual accelerator opening degree and the vehicle speed when the pseudo accelerator opening degree is not generated.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 27, 2013
    Applicant: JATCO LTD
    Inventor: JATCO LTD
  • Publication number: 20130165295
    Abstract: A shift control apparatus for a continuously variable transmission includes: a target transmission gear ratio setting section configured to set a target transmission gear ratio with reference to a map based on an accelerator opening degree and a vehicle speed; a shift control section configured to control a shift of the continuously variable transmission based on the target transmission gear ratio; and a downshift restricting section configured to judge whether or not a restriction of the downshift is needed based on at least one of a variation amount of the accelerator opening degree and an accelerator depression speed, and to perform the restriction of the downshift when the downshift restricting section judges that the restriction of the downshift is needed, irrespective of a variation of the accelerator opening degree inputted to the target transmission gear ratio setting section.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 27, 2013
    Applicant: JATCO LTD
    Inventor: JATCO LTD
  • Patent number: 8467945
    Abstract: A constant speed control method for a vehicle and a device thereof are disclosed. The constant speed control method includes steps of: firstly examining if a constant speed switch of the vehicle is pressed by an electronic control unit; allowing the electronic control unit to enter a constant speed mode when the constant speed switch is pressed; and sending a signal by the electronic control unit, so as to lock a throttle locking device for maintaining an opening degree of a throttle valve, and to adjust an transmission ratio of an electric continuously variable transmission (ECVT) for maintaining the constant speed driving of the vehicle. The present invention is further related to a constant speed control device for implementing the above method.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: June 18, 2013
    Assignee: Kwang Yang Motor Co., Ltd.
    Inventor: Yu-jen Huang
  • Patent number: 8457825
    Abstract: A powertrain system includes an electric machine mechanically coupled to an internal combustion engine mechanically coupled to a transmission. A method for operating the powertrain system includes determining an engine stall threshold rate during engine operation in a low load condition. A time-rate change in an accessory load is controlled by the electric machine operating in an electric power generating mode in response to the engine stall threshold rate during the engine operation in the low load condition.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: June 4, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael D Haggerty, Sean W McGrogan, Adam J Heisel
  • Patent number: 8447480
    Abstract: A transmission control method for a continuously variable transmission for enhancing the response of a change in engine speed to a driver's accelerating/decelerating operation. In a hydraulic type continuously variable transmission, when a sport operating mode is being selected (step S1: SPORT OPERATING MODE), a target engine speed T_NE (rpm) is calculated from the vehicle velocity V (km/hr) and the position ? (degrees) of a throttle valve 60 (step S4). Further, a target angle T_A (degrees) for a motor swash plate is calculated from the vehicle velocity and the target engine speed T_NE (step S5). The motor swash plate is moved according to the difference between the actual angle A of the motor swash plate 46 and the target angle T_A.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: May 21, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yasutaka Usukura
  • Patent number: 8412636
    Abstract: A belt type continuously variable transmission includes a continuously variable shift mechanism having a primary pulley, a secondary pulley and a belt wound around the respective pulleys, a pulley thrust calculation unit that calculates a pulley thrust, which is used to bias the respective pulleys in a direction for reducing the pulley width, so as to include a predetermined margin, a hydraulic control unit that controls an oil pressure supplied to each of the pulleys on the basis of the calculated pulley thrust, and an upshift determination unit that determines whether or not an upshift, during which the speed ratio is reduced, is underway. The pulley thrust calculation unit sets the predetermined margin to be smaller when an upshift is determined to be underway than when an upshift is determined not to be underway.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 2, 2013
    Assignee: JATCO Ltd
    Inventor: Yoshiaki Katou
  • Publication number: 20130053215
    Abstract: A method and associated system for compensation of vehicle speed lag resulting from changing load conditions in a continuously variable transmission (CVT) vehicle includes detecting and measuring true engine torque resulting from load changes placed on the vehicle engine. A true engine speed droop is calculated from the true engine torque. A compensated engine speed signal is generated based on the calculated true engine speed droop and is applied to the engine to produce a true engine speed that corresponds to a target engine speed at the load condition corrected for true engine speed droop.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: CNH AMERICA LLC
    Inventor: Yanming Hou
  • Patent number: 8380405
    Abstract: At vehicle stop judgment time t1, a first engine automatic-stop control permission judgment, based on idle stop permission conditions by which an instant permission judgment can be possible, is carried out. If a result of the first engine automatic-stop control permission judgment at time t1 is “permitted”, the second engine automatic-stop control permission judgment, based on an idle stop permission condition which requires a certain time for the judgment, is initiated, and an electric oil pump ON (drive) command (the test drive command) is issued. At time t2 at which an actual drive of the electric oil pump in response to the test drive command is detected, it is judged that a failure of an electric system of the electric oil pump and a foreign matter-biting failure of the electric oil pump do not occur, then a failure judgment of the electric oil pump becomes “normal”.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: February 19, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takashi Matsuda, Masato Koga, Hironori Nihei
  • Patent number: 8346448
    Abstract: Detection-time torque of a drive source is determined when a value that varies in accordance with depression of an accelerator pedal has exceeded a predetermined value, first torque is determined on the vehicle speed and the transmission gear ratio, second torque is determined on the detection-time torque and the first torque, third torque is determined on the amount of depression of the accelerator pedal and the second torque, and fourth torque is determined on the depression of the accelerator pedal, and the output torque is limited to the third torque as long as the third torque is less than the fourth torque. The third torque is determined such that in the case where the detection-time torque is greater than the first torque, an increase of the third torque is suppressed further than where the detection-time torque is not greater than the first torque.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: January 1, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Satoshi Kanazawa, Takeshi Kurata
  • Patent number: 8317653
    Abstract: A continuously variable transmission of an engine unit. A driving side pulley is mounted on a crankshaft. A driven side pulley is mounted on a driven shaft. A belt is looped around the driving and driven side pulleys. The continuously variable transmission is housed in a transmission case. The transmission case includes a drive shaft supporting portion supporting an end portion of the crankshaft, a driven shaft supporting portion supporting an end portion of the driven shaft 27, and a support column portion bridged between the drive shaft supporting portion and the driven shaft supporting portion. The engine unit thereby has a simple structure and increaes the strength of supporting a crankshaft and a driven shaft.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: November 27, 2012
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Sadao Nogi
  • Patent number: 8306711
    Abstract: A vehicle is provided with a shift control device including a rolling angular velocity sensor for detecting a rolling angular velocity of a component of the vehicle, and a steering-angle angular velocity sensor for detecting a steering-angle angular velocity of a handlebar of the vehicle. The shift control device is operable to inhibit shifting of a gear ratio of a continuously variable transmission during rolling operation of the vehicle when detection signals from the rolling angular velocity sensor and the steering-angle angular velocity sensor respectively are equal to or greater than predetermined reference values.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: November 6, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Osamu Suzuki, Kaoru Hatanaka, Syunichi Miyagishi
  • Patent number: 8292781
    Abstract: The invention concerns a method of operating a motor vehicle powertrain comprising an infinitely variable transmission and an engine. The transmission comprises a rotary transmission input coupled to the engine, a rotary transmission output coupled to the vehicle wheels, a variator which provides a continuously variable ratio (the “variator ratio”), and gearing for coupling the variator between the engine and the transmission output in such a manner that the ratio of transmission output speed to transmission input speed (the “reciprocal transmission ratio”) is a function of the variator ratio. The available range of variator ratios maps onto both forward and reverse reciprocal transmission ratios, and at a particular variator ratio (the “geared neutral ratio”) the transmission output is stationary despite its being coupled through the transmission to the rotating transmission input.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: October 23, 2012
    Assignee: Torotrak (Development) Limited
    Inventors: Matthew Gibson Field, Matthew Piers Burke
  • Publication number: 20120258839
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for auxiliary power units (APU). In one embodiment, the APU includes a source of rotational power such as a combustion engine operably coupled to a continuously variable transmission (CVT). The CVT can be coupled to a load. In some embodiments, the load is provided by a generator. In one embodiment, the APU has a control system configured to control the operation of the engine and the operation of the CVT. The control system can facilitate substantially constant speed operation of the generator in the presence of variable operation of the engine. In another embodiment, the APU includes a continuously variable accessory drive (CVAD) operably coupled to an engine. The CVAD can include a continuously variable transmission operably coupled to a generator. In one embodiment, a skew-based control system is adapted to facilitate a change in the ratio of a CVAD.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 11, 2012
    Applicant: Fallbrook Technologies Inc.
    Inventors: Robert Smithson, Brad P. Pohl, Charles B. Lohr, Javier Solis, Terry Nielsen, Scott T. McBroom, Nicole Munguia
  • Patent number: 8271178
    Abstract: A control apparatus for a vehicular power transmitting system including (a) an electrically controlled differential portion which has a differential mechanism and a first electric motor connected to a rotary element of the differential mechanism and which is operable to control a differential state between a rotating speed of its input shaft connected to a drive power source and a rotating speed of its output shaft by controlling an operating state of the first electric motor, and (b) a switching portion operable to switch a power transmitting path for transmitting power from the drive power source, between a power transmitting state and a power cut-off state, the control apparatus including a control range setting portion configured to set one of two different control ranges of a rotating speed of the output shaft, depending upon whether the power transmitting path is placed in the power transmitting state or said power cut-off state, by the switching portion.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: September 18, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tooru Matsubara, Atsushi Tabata, Masakazu Kaifuku, Hidenori Kato
  • Patent number: 8241179
    Abstract: A hydraulic control apparatus of a continuously variable transmission of a hybrid vehicle may include a D-N control valve that converts a state, in which a hydraulic pressure is supplied from a line regulator valve to a solenoid feed valve through a second regulator valve according to changes of a driving pulley control pressure and a clutch lubrication control pressure with respect to driven pulley control pressure, and a state, in which the hydraulic pressure from the line regulator valve is directly supplied to the solenoid feed valve, into each other.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: August 14, 2012
    Assignee: Hyundai Motor Company
    Inventor: Yonguk Shin
  • Patent number: 8216109
    Abstract: A continuously variable transmission is provided having a driven element. The continuously variable transmission also has at least one operator input device configured to transmit a transmission operating mode request and at least one other operator input device configured to transmit a driven element output request. In addition, the continuously variable transmission has at least one sensor configured to sense at least one parameter indicative of an operating condition of the transmission. The continuously variable transmission further has a controller configured to regulate an output of the driven element in response to the operating mode request, the driven element output request, and the at least one sensed parameter indicative of an operating condition of the transmission.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: July 10, 2012
    Assignee: Caterpillar Inc.
    Inventors: Kristofor Lee Dahl, Brian Douglas Hoff, Richard George Ingram, Michael Anthony Spielman, Jr., Benjamin B. Schmuck, Alberto Martinez, Jr., Yaang Zhao
  • Patent number: 8206262
    Abstract: A differential gear for a wind power plant includes a gearbox with three inputs and outputs. One input is connected to the rotor of the wind power plant, the first output is connected to a generator and the second output is connected to the input shaft of a continuously variable gearbox, the output shaft of which is connected to the generator side output of the gearbox. The input shaft of the continuously variable gearbox is connected to the output shaft of the gearbox via a variable gearbox.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: June 26, 2012
    Assignee: AMSC Austria GmbH
    Inventor: Gerald Hehenberger
  • Patent number: 8192326
    Abstract: Rotation-stop determining portion queries as to whether the first rotary element is lowered in a rotation speed to be stopped during an engine drive mode. If the answer is YES and differential-portion rotation speed determining portion makes a positive determination, then engaging-element control-executing portion executes engaging element control. This allows a third rotary element of the differential portion, connected to drive wheels via an engaging element of an automatic shifting portion, to approach a state available to freewheel. This prevents a second rotary element and a first electric motor from reaching high-speed rotations caused by a decrease in rotation speed of the first rotary element in a stop direction and a differential action of the differential portion. This enables the prevention of a durability decrease of a power distributing mechanism and the first electric motor.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: June 5, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenta Kumazaki, Tooru Matsubara, Atsushi Tabata, Masakazu Kaifuku
  • Patent number: 8175777
    Abstract: A control apparatus for a continuously variable transmission includes a clamping force increase portion. The continuously variable transmission includes a pair of a primary pulley and a secondary pulley on which a transmission belt is wound. A shift of the continuously variable transmission is performed by changing effective diameters of the primary pulley and the secondary pulley. The clamping force increase portion increases a belt clamping force when it is determined that a torque capacity is decreased by determining that drive power input to the primary pulley is decreased by an amount equal to or larger than a predetermined amount while the secondary pulley is in a stopped state or a substantially stopped state, as compared to when it is determined that the torque capacity is not decreased.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: May 8, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masanori Shimizu, Ryuji Chida, Takashi Yumoto, Kenichi Yamaguchi
  • Patent number: 8159169
    Abstract: In a parking brake control device, the minimum value of a motor current is set as an idle current after a motor begins to be driven, specifically, in a period during which the idle current is being sampled. As a result, the idle current is set to a value which reflects the temperature of an electric parking brake and the dispersion of individual units of the motor. Accordingly, it is possible to provide a parking brake control device, which can set a target current value capable of coping with the dispersion of the individual units of the motor by calculating the target current value by adding a target effective current necessary to generate an actuation force to the idle current set as described above.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: April 17, 2012
    Assignee: Advics Co., Ltd.
    Inventors: Takashi Watanabe, Kazuma Kondo, Masaki Ninoyu
  • Patent number: 8112203
    Abstract: A system for assisting fuel-efficient driving includes a storage unit for storing a shift pattern map, a collection unit for collecting the driving state information of a vehicle, a driving state calculation unit for calculating a current driving state and a target driving region on the basis of the information from the collection unit and the shift pattern map, and a display control unit for displaying the current driving state and the target driving region on a display to make it possible to compare the current driving state and the target driving region on the basis of at least acceleration or speed.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: February 7, 2012
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Dong Jin Shin, Sung Suk Ko, Kyo Ho Kim, Myung Sup Shim
  • Patent number: 8092341
    Abstract: A method of controlling a transmission (e.g., CVT) comprises dividing the entire range of an input torque to a transmission from an engine into a plurality of partial torque ranges; setting the maximum torque of the respective partial torque ranges as a representative torque of the respective partial torque ranges; and setting a target hydraulic pressure, which is to be provided to the transmission, according to the representative torque and a predetermined target speed ratio. The method allows a target hydraulic pressure for controlling a transmission to be maintained constant even though an input torque from an engine is changed, and allows the transmission to maintain a speed ratio constant, thereby ensure a stable and smooth ride.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: January 10, 2012
    Assignees: Kia Motors Corporation, Hyundai Motor Company
    Inventor: Howook Lee
  • Patent number: 8088036
    Abstract: A vehicle drive control device includes a continuously variable transmission mechanism (hereinafter referred to as CVT (6) of a torque control type capable of continuously varying a transmission gear ratio, and a controller (34) which controls operations of the CVT (6) and an engine (2). The controller (34) includes a first control section (43; 43A) which controls a torque of the CVT (6) based on a target transmission input torque (TTRN,T), and a second control section (44) which controls a torque of the engine (2) based on a target engine rotation speed (?e,T).
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 3, 2012
    Assignee: JTEKT Corporation
    Inventors: Robert Fuchs, Yasuhiko Hasuda
  • Patent number: 8065064
    Abstract: An automatic transmission calculates a current thermal load state of the frictional element, predicts (S24, 531), prior to the start of the shift, a heat generation amount of the frictional element during the shift, predicts (S25, S32) a thermal load state of the frictional element upon shift completion on the basis of the current thermal load state and the predicted heat generation amount, and when the predicted thermal load state upon shift completion is inside a predetermined region, either performs (S28, S38) the shift after modifying a shift mode such that the heat generation amount of the frictional element is smaller than that of a case in which the predicted thermal load state upon shift completion is outside the predetermined region, or prohibits (S39) the shift, wherein the predetermined region is set at a different region depending on whether the shift is an upshift or a downshift.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: November 22, 2011
    Assignee: Jatco Ltd
    Inventors: Tomomasa Ikeda, Hiroki Kawakami
  • Patent number: 7998006
    Abstract: In a speed ratio control device for a belt continuously variable transmission according to this invention, when a speed ratio is subjected to feedback control on the basis of a difference between an actual speed ratio and a target speed ratio, pressure supplied to a primary pulley is corrected through feedforward (S17, S18) in order to suppress variation in the groove width of the primary pulley caused by a rapid variation in an input torque into the primary pulley (S17) while traveling in a fixed speed ratio mode (S14) in which the target speed ratio is held at a fixed value.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: August 16, 2011
    Assignee: Jatco Ltd
    Inventors: Hironori Nihei, Tetsuya Izumi, Seonjae Kim, Fumito Shinohara, Kiyotaka Sawano, Takuya Numata
  • Patent number: 7920949
    Abstract: A variator torque control system and method utilize a hydraulic actuator to control the variator output via a torque control map, wherein the values of the torque control map are evaluated and modified during use of the map to improve map accuracy. In an example, errors in the map are evaluated to determine whether a system fault has occurred.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: April 5, 2011
    Assignee: Caterpillar Inc.
    Inventors: Brian D Kuras, Frank A DeMarco, Adam J Vaccari, Tyler Bowan
  • Publication number: 20110015033
    Abstract: The transmission controller performs a non-coordinated shift, in which the gear position of the subtransmission mechanism is modified from the second gear position to the first gear position at a higher speed than when the gear position of the subtransmission mechanism is modified by a coordinated shift while permitting a deviation between the through speed ratio and the target through speed ratio, instead of the coordinated shift when it is determined that the second speed kick down shift is to be performed.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 20, 2011
    Inventors: Ryousuke NONOMURA, Hiroyasu Tanaka, Takuichiro Inoue, Jouji Seki, Mamiko Inoue, Seiichiro Takahashi
  • Patent number: 7818134
    Abstract: A method and apparatus for detecting forward/reverse speeds of a continuously variable transmission for vehicles determines whether a vehicle is in a forward speed state or in a reverse speed state by using one speed detector having two sensors. The method for detecting forward/reverse speeds of the continuously variable transmission for vehicles includes detecting first and second rotational speeds of an output shaft modulating the first and second rotational speeds of the output shaft into a pulse width modulation signal, comparing the pulse width of the pulse width modulation signal with predetermined values, and determining whether a vehicle is in a forward speed state or in a reverse speed state.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: October 19, 2010
    Assignee: Hyundai Motor Company
    Inventor: Bonwoo Koo
  • Patent number: 7809485
    Abstract: A shift control apparatus of a CVT installed in a non-ABS equipped vehicle is arranged to estimate a condition of a transmission ratio of the CVT, to prohibit a shift operation of varying the transmission ratio to a high-speed-side transmission ratio relative to a first predetermined transmission ratio when the driving-wheel acceleration is greater than or equal to a predetermined acceleration, and to cancel the prohibition of the shift operation when the transmission ratio is in a high speed side relative to a second transmission ratio under a condition that the driving-wheel acceleration becomes greater than or equal to the predetermined acceleration.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: October 5, 2010
    Assignee: JATCO Ltd
    Inventors: Atsufumi Kobayashi, Tatsuo Ochiai, Takuro Kawasumi
  • Publication number: 20100241322
    Abstract: A vehicle includes an engine-driven oil pump, which is driven by the rotation of an output shaft of an internal combustion engine, a variable valve timing apparatus, which operates based on hydraulic pressure supply provided by the oil pump, and a continuously variable transmission capable of continuously varying the transmission gear ratio. An electronic control unit sets the transmission gear ratio of the continuously variable transmission based on the operating state of the vehicle. The electronic control unit changes the transmission gear ratio, which is set based on the operating state of the vehicle, in such a manner that the engine speed is increased when the hydraulic pressure supply via the hydraulic oil provided from the oil pump to the variable valve timing apparatus is low.
    Type: Application
    Filed: July 31, 2007
    Publication date: September 23, 2010
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuji Miyanoo
  • Patent number: 7788010
    Abstract: A controlling system of a vehicle with a continuously variable transmission, which can render a sufficient accelerating feeling in responsive to a driver's requirement. A controller, upon judgment of an acceleration requirement, sets a target drive force higher than the target drive force upon normal calculation upon normal operation of an accelerator pedal, and sets a target rotation speed upon acceleration higher than the target rotation speed upon the normal operation and increasing with an increase of the vehicle speed by a predetermined gradient. The speed change ratio of the continuously variable transmission and the output torque of the engine are controlled such that the set target drive force is achieved, and an input shaft rotation speed of the continuously variable transmission coincides with the target rotation speed upon the set acceleration. Thus upon acceleration, the target drive force and the output rotation speed of the drive source increase.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: August 31, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroki Kondo, Tadashi Tamura, Akira Hino, Makoto Sawada, Hiroji Taniguchi
  • Patent number: 7769514
    Abstract: A method for damping control of oscillating modes of a continuously variable transmission which is provided with an electric variator by using a heat engine and at least two electric machines. In the method a torque controller of the electric machines is embodied in a form of a sum of a main instruction enabling to attain set torque on a wheel, heat engine torque, and an additional instruction for damping oscillating modes generated by stiffness of a kinematic chain between the heat engine and the wheels.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: August 3, 2010
    Assignee: Renault S.A.S.
    Inventors: Philippe Pognant-Gros, Laurent Royer
  • Patent number: 7739019
    Abstract: A rough road detection system for a vehicle comprises a first acceleration sensor that measures vertical acceleration of a component of the vehicle. An adaptive acceleration limits module determines a first acceleration limit based upon a speed of the vehicle. A limit comparison module generates a rough road signal based on a comparison of the first acceleration limit from the adaptive acceleration limits module and the measured acceleration from the first acceleration sensor.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: June 15, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Dominique Robert, Herve Scelers, Pascal Tissot
  • Patent number: 7729837
    Abstract: When the vehicle is traveling on an uphill road (step 100: YES), the ECU executes a program in which, if the speed of the vehicle is equal to or higher than Vblt (step 102: NO) and a speed ratio ?(1) required to secure a sufficient climbing capacity of the vehicle is equal to or lower than a speed ratio ?(2) required to secure a sufficient returnability of the belt of the continuously variable transmission (step 106: NO), a belt returnability securing control is executed (step 110), and otherwise (step 102: YES or step 106: YES), a climbing control is executed (step 104 or step 108).
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: June 1, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroya Fujiwara, Akira Hino, Shinya Toyoda, Tadashi Tamura
  • Patent number: 7727110
    Abstract: A continuously variable planetary gear set is described having a generally tubular idler, a plurality of balls distributed radially about the idler, each ball having a tiltable axis about which it rotates, a rotatable input disc positioned adjacent to the balls and in contact with each of the balls, a rotatable output disc positioned adjacent to the balls opposite the input disc and in contact with each of the balls such that each of the balls makes three-point contact with the input disc, the output disc and the idler, and a rotatable cage adapted to maintain the axial and radial position of each of the balls, wherein the axes of the balls are oriented by the axial position of the idler.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: June 1, 2010
    Assignee: Fallbrook Technologies Inc.
    Inventors: Donald C Miller, David J Allen, Robert A Smithson
  • Patent number: 7706949
    Abstract: A method and system for executing a shift from a first fixed gear to a second fixed gear in a powertrain system comprising a two-mode, compound-split, electro-mechanical transmission operative to receive a speed input from an engine is described. It includes deactivating an off-going clutch, and generating a time-based profile for rotational speed of an oncoming clutch. The input speed is controlled based upon the rotational speed of the oncoming clutch and an output of the transmission. The oncoming clutch is actuated, preferably when the input speed is synchronized with a rotational speed of an output shaft of the transmission multiplied by a gear ratio of the second fixed gear, preferably after a predetermined elapsed period of time in the range of 500 milliseconds.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: April 27, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Jy-Jen F. Sah, Anthony H. Heap
  • Patent number: 7686123
    Abstract: A noise suppressor for a straddle-type vehicle provided with a belt type continuously variable transmission having a resin-block-type belt. A portion of an air passage for guiding air to a belt chamber is formed in a closed casing. The closed casing includes a dish-shaped first casing member and a dish-shaped second casing member. An inlet port and an exhaust port are formed in the second casing member. Partition walls in the form of curved plate pieces are formed in the first casing and second casing members. Air flow paths formed by the partition walls are U-shaped, thereby forming a serpentine flow.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: March 30, 2010
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Yousuke Ishida
  • Patent number: 7641586
    Abstract: A motor vehicle automatic gearbox, with infinitely-variable ratio, may be operated in a constant speed mode, or in an acceleration mode in which the motor revolution speed is increased or reduced in steps.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: January 5, 2010
    Assignee: Conti Temic microelectronic GmbH
    Inventors: Horst Wild, Klaus Wohlrab
  • Publication number: 20090312145
    Abstract: Embodiments are directed to a front end accessory drive (FEAD), subassemblies, and components therefor. Embodiments disclosed cover power modulating devices (PMD) which can be used in a FEAD. In one embodiment, a continuously variable transmission (CVT) is coupled directly to a crankshaft of a prime mover, and the CVT is used to regulate the speed and/or torque delivered to an accessory. A compound drive device includes a motor/generator subassembly cooperating with a CVT subassembly to provide a motor functionality with torque multiplication or division, or alternatively, a generator functionality with torque multiplication or division. In some embodiments, a FEAD includes a PMD having a sun shaft configured to couple to a sun of the PMD and to an electric motor component, such as an electrical armature or an electrical field. In one embodiment, the electrical armature the electrical field are placed concentrically and coaxially and configured to rotate relative to one another in opposite directions.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 17, 2009
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Brad P. Pohl, Donald C. Miller, Robert A. Smithson, Jeremy Carter, Charles B. lohr
  • Publication number: 20090305843
    Abstract: A control switch includes a rotary shaft rotatably mounted therein. A switching knob is mounted to the rotary shaft and a surface of the control switch. Also, a stationary shaft is arranged beside the rotary shaft. A driving control disk and a locking control disk are sequentially and rotatably fit onto the stationary shaft so that when the switching knob on the surface is actuated, the rotary shaft is rotated to selectively drive cables through the driving control disk or the locking control disk to thereby effect switching of transmission modes and the function of locking. Thus, the amount of space required for installation is reduced and the chance of malfunctioning is also reduced and further, the costs are reduced.
    Type: Application
    Filed: June 9, 2008
    Publication date: December 10, 2009
    Inventor: MU-CHEN HUNG
  • Publication number: 20090233759
    Abstract: A work machine includes a primary power unit having a rated primary output. The primary power unit is couplable with at least one primary load, including a propulsion load. An auxiliary power unit is mechanically independent from the primary power unit, and has a rated auxiliary output which is smaller than the primary output. The auxiliary power unit is couplable with at least one external load, including an operator initiated load. At least one electrical processing circuit is configured for selectively coupling the primary power unit with one or more primary loads, and for selectively coupling the auxiliary power unit with one or more external loads.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 17, 2009
    Inventors: Alan Sheidler, Benjamin E. Ramp
  • Patent number: 7584040
    Abstract: The following steps are performed in the control method: determining a mode of operation from amongst a permanent mode and a transient mode, as a function of a set of variables comprising said estimated values; correcting the value of the speed of rotation of the outlet shaft in such a manner that: if the mode has been determined as being the permanent mode, then the moving average (L?) of the gear ratio (L) over a period (T) of a plurality of unit time intervals lies between a first threshold value (S1) that is negative and a second threshold value (S2) that is positive; and if the mode has been determined as being the transient mode, then said moving average (L?) of the gear ratio (L) lies outside the range of values defined by the first and second threshold value (S1, S2).
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: September 1, 2009
    Assignee: Peugeot Citroen Automobiles SA
    Inventor: Stéphane Rimaux