With Specified Treatment Of Converted Product, E.g., Purification, Particular Cooling, Testing, Etc. Patents (Class 48/198.3)
  • Patent number: 6964696
    Abstract: An apparatus and method for recovering a clean liquid condensate from a synthesis gas at elevated temperatures and pressures. The apparatus includes at least one heat exchanger for reducing the temperature of the synthesis gas down to below 200° F. (93° C.) so as to form a syngas condensate at elevated pressure. The syngas condensate is flashed so that it separates into a liquid phase condensate and a gas phase. The liquid phase condensate comprises water, dissolved ammonia and particulates. The gas phase contains carbon monoxide, carbon dioxide, various sulfur containing compounds and trace amounts of other compounds that may have been dissolved in the syngas condensate. The gas phase is removed from the flash tank and sent to a sour gas treatment unit and/or flare. The liquid phase condensate is then filtered so as to remove larger sized particulates. Clean liquid condensate is reused in the gasification process.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: November 15, 2005
    Assignee: Texaco, Inc.
    Inventors: William A. Malatak, Brad X. Pan
  • Patent number: 6932958
    Abstract: A fuel processor for producing a hydrogen-rich product gas suitable for direct use in fuel cell applications includes a housing, an annular shift/methanator reactor vessel at least one reactor vessel wall disposed within the housing and forming an outer annular space between the at least one reactor vessel wall and the housing. A combustion chamber having at least one combustion chamber wall and forming a first inner annular space between the at least one combustion chamber wall and the at least one reactor vessel wall is disposed in the interior space formed by the annular shift/methanator reactor vessel, and a reformer reactor vessel having at least one reformer vessel wall and forming a second inner annular space between the at least one reformer vessel wall and the at least one combustion chamber wall is disposed within the combustion chamber.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: August 23, 2005
    Assignee: Gas Technology Institute
    Inventors: James R. Wangerow, Alvie R. Meadows, Andy H. Hill, Michael Onischak
  • Patent number: 6858049
    Abstract: The invention is directed to a method of fueling gas turbines from natural gas reserves with relatively low methane concentrations. The invention permits the use of such reserves to be used to fuel gas turbines to generate electric power. The method of the invention includes providing a natural gas comprising not more than about 40 percent methane on a volume basis and mixing the methane of the natural gas with hydrogen gas to provide a hydrogen enhanced methane/hydrogen gas blend which has sufficient hydrogen to provide flame stability during burning. Thereafter, if required, the hydrogen enhanced methane/hydrogen gas blend is dehydrated to remove a sufficient amount of water to provide a flame stable hydrogen enhanced dehydrated methane/hydrogen gas blend. The hydrogen enhanced natural gas blend is used to fuel gas turbine generators.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: February 22, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Frank F. Mittricker
  • Patent number: 6835219
    Abstract: An apparatus and method is disclosed for rapidly heating fuel processor components during startup of a fuel cell powered vehicle. Rapid heating is achieved by placing a water adsorbent downstream of the fuel processor's primary reactor, which converts a hydrocarbon-based fuel to a hydrogen-rich fuel. In addition to hydrogen, the reformed fuel (reformate) includes carbon dioxide, carbon monoxide and water. The water adsorbent, which has a high heat of adsorption, produces heat as it adsorbs water in the reformate. Heat generated by water adsorption enhances the rate at which fuel processor components, such as a water-gas-shift reactor, reach their operating temperatures. In addition, water adsorption reduces water condensation on the water-gas-shift reactor catalyst. Once the fuel processor components attain their operating temperatures, water desorbs from the adsorbent and is available for converting carbon monoxide to carbon dioxide and hydrogen in the water-gas-shift reactor.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: December 28, 2004
    Assignee: General Motors Corporation
    Inventor: Craig S Gittleman
  • Publication number: 20040221507
    Abstract: Experiments were conducted to investigate the reforming of organic compounds (primarily methanol) in supercritical water at 550° C.-700° C. and 27.6 MPa in a tubular Inconel® 625 reactor. The results show that methanol can be completely converted to a product stream that is low in methane and near the equilibrium composition of hydrogen, carbon monoxide, and carbon dioxide. The effect of reactor temperature, feed concentration of methanol, and residence time on both conversion and product gas composition are presented.
    Type: Application
    Filed: May 7, 2003
    Publication date: November 11, 2004
    Inventors: Benjamin C. Wu, Karl Wally, Steven F. Rice, Robert W. Crocker
  • Patent number: 6806397
    Abstract: The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: October 19, 2004
    Assignee: UT-Battelle, LLC
    Inventor: Peter T. A. Reilly
  • Patent number: 6805721
    Abstract: An improved fuel processor thermal management system for use with a fuel cell is disclosed. The process includes supplying an air stream and a fuel stream into a auto thermal reactor (ATR) and forming reformate gas therein. Then, preferentially oxidizing the reformate gas and the air stream in the preferential oxidizer reactor (PrOx). The temperature of the preferential oxidizer reaction is controlled with a water stream by vaporizing the water stream to form a first portion of vaporized water. Then, reacting the air stream with the reformate gas exiting the PrOx is reached in a fuel cell to form an anode exhaust stream which is subsequently combined with the air stream to heat the water stream to form a second portion of vaporized water. The first portion of vaporized water and the second portion of vaporized water form a steam fluid.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: October 19, 2004
    Inventors: Steven D. Burch, Steven G. Goebel, William H. Pettit
  • Publication number: 20040187386
    Abstract: A fuel processor for producing a hydrogen-rich product gas suitable for direct use in fuel cell applications includes a housing, an annular shift/methanator reactor vessel -at least one reactor vessel wall disposed within the housing and forming an outer annular space between the at least one reactor vessel wall and the housing. A combustion chamber having at least one combustion chamber wall and forming a first inner annular space between the at least one combustion chamber wall and the at least one reactor vessel wall is disposed in the interior space formed by the annular shift/methanator reactor vessel, and a reformer reactor vessel having at least one reformer vessel wall and forming a second inner annular space between the at least one reformer vessel wall and the at least one combustion chamber wall is disposed within the combustion chamber.
    Type: Application
    Filed: March 26, 2003
    Publication date: September 30, 2004
    Inventors: James R. Wangerow, Alvie R. Meadows, Andy H. Hill, Michael Onischak
  • Patent number: 6793698
    Abstract: This invention relates to a compact apparatus for generating hydrogen. More particularly, this invention relates to a compact hydrogen generating apparatus suitable for use in conjunction with a fuel cell. The compact hydrogen generating apparatus comprises a fuel processor reactor having an integrated pre-reforming zone embedded within a secondary reforming zone.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: September 21, 2004
    Assignee: UOP LLC
    Inventors: Robert J. Sanger, Kurt M. Vanden Bussche, Daniel R. Sioui
  • Publication number: 20040177555
    Abstract: Low-energy hydrogen production is disclosed. A reforming exchanger is placed in parallel with a partial oxidation reactor in a new hydrogen plant with improved efficiency and reduced steam export, or in an existing hydrogen plant where the hydrogen capacity can be increased by as much as 20-30 percent with reduced export of steam from the hydrogen plant.
    Type: Application
    Filed: March 15, 2004
    Publication date: September 16, 2004
    Applicant: KELLOGG BROWN AND ROOT, INC.
    Inventors: Stanislaus A. Knez, Avinash Malhotra, David P. Mann, Martin J. Van Sickels
  • Patent number: 6790247
    Abstract: An apparatus for carrying out a multi-step process of converting hydrocarbon fuel to a substantially pure hydrogen gas feed includes a plurality of reaction zones arranged in an insulated, box-shaped, compact fuel processor. The multi-step process includes preheating the hydrocarbon fuel utilizing integration with the inherent exothermic processes utilized with the fuel processor, reacting the preheated hydrocarbon fuel to form the hydrogen rich gas, and purifying the hydrogen rich gas to produce a gas that is suitable for consumption in a fuel cell.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: September 14, 2004
    Assignee: Texaco Inc.
    Inventors: Robert Childress, John R. Farrell, Wendell B. Leimbach, James W. Marshall
  • Publication number: 20040163312
    Abstract: Method and apparatus for steam reforming a sulfur-containing hydrocarbon fuel, such as a diesel hydrocarbon fuel. The apparatus includes a desulphurization unit, a pre-reformer, and a steam reforming unit. A carbon dioxide fixing material is present in the steam reforming catalyst bed to fix carbon dioxide that is produced by the reforming reaction. The carbon dioxide fixing material is an alkaline earth oxide, a doped alkaline earth oxide or a mixture thereof. The fixing of carbon dioxide within the steam reforming catalyst bed creates an equilibrium shift in the steam reforming reaction to produce more hydrogen and less carbon monoxide. Carbon dioxide fixed in the catalyst bed can be released by heating the carbon dioxide fixing material or catalyst bed to a temperature in excess of the steam reforming temperature. Fuel processors having multiple catalyst beds and methods and apparatus for generating electricity utilizing such fuel processors in conjunction with a fuel cell are also disclosed.
    Type: Application
    Filed: February 20, 2004
    Publication date: August 26, 2004
    Applicants: Texaco Inc., TEXACO DEVELOPMENT CORPORATION
    Inventors: David P. Bloomfield, James F. Stevens
  • Publication number: 20040163313
    Abstract: A hydrogen generation apparatus includes controls for delivering a feedstock to a reactor and a water gas step membrane reactor operating at a lower temperature than the reactor so as to efficiently produce purified hydrogen and manage heat within the apparatus. Catalytic combustion of feedstock in the presence of a combustible gas based on a computer controller facilitates operation. Flat plate heat exchangers in various configurations are contemplated as a reactor, water gas step membrane reactor, and purifier. Catalytic burning of feedstock in the presence of a combustible gas enhances apparatus efficiency.
    Type: Application
    Filed: February 20, 2004
    Publication date: August 26, 2004
    Inventor: Robert E. Buxbaum
  • Publication number: 20040148861
    Abstract: A preferential oxidation reactor (PrOx) is provided including a plurality of substrates defining a plurality of channels, through which a reformate stream flows. A CO-sorption layer and a CO-catalyst layer coat a surface of each substrate support member. The PrOx operates in a first mode, generally at a temperature below 100° C., whereby the CO-sorption material adsorbs CO from the reformate stream. After operation in the first mode, the PrOx operates in a second mode, generally at a temperature above 100° C., whereby the CO-catalyst material enables a preferential oxidation reaction of CO in the reformate stream with a supply of oxygen and desorption of the CO previously absorbed by the CO-sorption layer for an overall reduction in the CO content of the reformate stream.
    Type: Application
    Filed: January 30, 2003
    Publication date: August 5, 2004
    Inventors: Mark A. Brundage, Taichiang P. Yu
  • Publication number: 20040123523
    Abstract: A fuel conversion reactor includes a shell-and-tube heat exchanger for controlling the temperature of a hot gaseous mixture produced by catalytic or non-catalytic reaction of a fuel with a gaseous fluid, and for controlling the temperature of the gaseous fluid and/or the fuel prior to the reaction. The reactor is either a catalytic or non-catalytic burner, or a fuel reformer for converting a fuel to hydrogen. A preferred reactor includes an outer shell having first and second ends and an inner surface, a primary inner shell extending into the outer shell, the primary inner shell defining a heat exchanging chamber and having primary and secondary ends, and a secondary inner shell having a first end located adjacent the secondary end of the primary inner shell. One or more outlet apertures are formed between the two inner shells for passage of the gaseous fluid out of the heat exchanging chamber.
    Type: Application
    Filed: May 22, 2003
    Publication date: July 1, 2004
    Inventors: Xiaoyang Rong, Brian E. Cheadle
  • Publication number: 20040098914
    Abstract: A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing protons or hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at dissociation temperatures the hydrogen from the dissociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the dissociation of steam producing hydrogen and oxygen. The oxygen is thereafter reacted with methane to produce syngas which optimally may be reacted in a water gas shift reaction to produce CO2 and H2.
    Type: Application
    Filed: September 24, 2003
    Publication date: May 27, 2004
    Applicant: The University of Chicago
    Inventors: Uthamalingam Balachandran, Shuangyan Wang, Stephen E. Dorris, Tae H. Lee
  • Publication number: 20040093796
    Abstract: A synthetic gas manufacturing plant includes a reformer having a reaction tube, a combustion radiation unit arranged around the reaction tube to heat the reaction tube, and a convection unit communicating with the combustion radiation unit, a source gas supply passageway to supply a natural gas to the reformer, a steam supply passageway to supply steam to the source gas supply passageway, a carbon dioxide recovery apparatus to which a total amount of combustion exhaust gas flowing through the convection unit of the reformer is supplied, and which recovers carbon dioxide from the combustion exhaust gas, a compressor to compress the recovered carbon dioxide, and a return passageway to supply part or the whole of the compressed carbon dioxide from the compressor to the source gas supply passageway.
    Type: Application
    Filed: October 29, 2003
    Publication date: May 20, 2004
    Inventors: Masaki Iijima, Kazuto Kobayashi, Hiroyuki Osora, Yoshio Seiki
  • Patent number: 6733552
    Abstract: A hydrogen generating apparatus having a fuel feeding part, a water feeding part for fuel reforming, an oxidant gas feeding part, a reforming catalyst body, a heating part for the reforming catalyst, a CO shifting catalyst body and a CO purification catalyst body is provided wherein the reforming catalyst body, the CO shifting catalyst body and the CO purification catalyst body are sequentially ordered from the fuel feeding part toward the downstream side, and wherein a shifting catalyst of the shifting catalyst body contains as one component at least a platinum group-type catalyst.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: May 11, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kiyoshi Taguchi, Takeshi Tomizawa, Kunihiro Ukai, Toshiyuki Shono, Kouichiro Kitagawa
  • Publication number: 20040068933
    Abstract: There is provided a reforming apparatus which shows high efficiency and excellent operation-starting performance, in spite of its compact body and simple structure.
    Type: Application
    Filed: March 14, 2003
    Publication date: April 15, 2004
    Applicant: MATSUSHITA ELECTRIC WORKS, LTD.
    Inventors: Toru Nakamura, Susumu Kobayashi, Hitoshi Kudo, Mikio Sei, Yuichiro Yasuda, Zhongmin Fei
  • Publication number: 20040068932
    Abstract: An apparatus and method to create a substantially pure hydrogen product stream before any subsequent purification steps. The apparatus provides a generally enclosed reaction vessel so as to reduce any extraneous exhaust materials from escaping. In addition, the apparatus includes a primary and a secondary reaction chamber which are generally held at equivalent or equal pressures while at substantially different temperatures. In addition, a reaction aid or cooperator is used to increase the production of the hydrogen product stream and to also increase the purity of the hydrogen product stream. The method includes using a two chamber apparatus along with the reaction cooperator to increase the hydrogen production and purity and recycling the reaction cooperator.
    Type: Application
    Filed: October 15, 2002
    Publication date: April 15, 2004
    Inventor: Albert E. Stewart
  • Publication number: 20040065013
    Abstract: A reforming and hydrogen purification system operating with minimal pressure drop for producing free hydrogen from different hydrogen rich fuels includes a hydrogen reforming catalyst bed in a vessel in communication with a core unit containing a hydrogen permeable selective membrane. The vessel is located within an insulated enclosure which forms an air inlet passageway and an exhaust passageway on opposite sides of the vessel. Air and raffinate pass through a burner within the air inlet passageway, providing a heated flue gas to heat the catalyst to the reaction temperature needed to generate free hydrogen from the feedstock. The burner flue gas flows laterally over and along the length of the bed between the input and output ends of the bed. Hydrogen is recovered from the core for use by a hydrogen-consuming device such as a fuel cell. The remaining unrecovered hydrogen in the reformed gases is contained in raffinate and is used to supply process heat via the burner.
    Type: Application
    Filed: October 3, 2002
    Publication date: April 8, 2004
    Inventor: Peter David DeVries
  • Publication number: 20040060238
    Abstract: A compact steam reformer produces hydrogen to power a fuel cell, such as can be used in a vehicle. The steam reformer includes a first channel, at least partly coated with a steam reforming catalyst, and a second channel, at least partly coated with a combustion catalyst, the channels being in thermal contact with each other. Heat from the combustion is used in the steam reforming reaction. The steam reformer may be provided as a stack of strips defining steam reforming channels which alternate with combustion channels. The reformer may also include a set of modules, connected in series, each module including a stack of strips as described above. The steam reformer preferably also includes a channel wherein a water-gas shift reaction occurs, to convert carbon monoxide, produced by the reformer, into carbon dioxide.
    Type: Application
    Filed: August 2, 2002
    Publication date: April 1, 2004
    Inventors: William B. Retallick, William A. Whittenberger
  • Publication number: 20040055217
    Abstract: In an integrated process for the production of synthesis gas, a partial oxidation unit (1) and a steam methane reformer (2) are used to convert natural gas or another fuel to first and second mixtures (11, 12) of at least carbon monoxide and hydrogen, only the first process consuming oxygen. Carbon dioxide (15, 25) derived from the second mixture is sent to the inlet of the first process to reduce the oxygen consumption.
    Type: Application
    Filed: June 27, 2003
    Publication date: March 25, 2004
    Inventors: Pierre-Robert Gauthier, Christian Lacoste
  • Publication number: 20040035055
    Abstract: A fuel cell power plant (110) has a fuel cell stack assembly (CSA) (16) including an anode (18), and a fuel processing system (FPS) (120) providing a hydrogen-rich reformate/fuel stream (34, 134, 62) for the anode (18) of the CSA (16). A relatively active metal catalyst is associated with one or both of the anode (18) and the FPS (120), and is subject to degradation by the presence of even low levels, e.g. 100 ppb to 5 ppb-wt. reformate, of sulfur in the fuel stream. A guard bed (70) containing a guard material (72) is provided in the FPS (120) for protecting the relatively active metal catalysts by adsorbing, and further reducing the level of, sulfur in the fuel stream. The guard material (72) is a metal or metal oxide capable of forming a stable sulfide in the presence of low levels of H2S in the fuel stream (34), and is preferably selected from the group consisting of: ZnO, CuO on CeO2-based support, NiO on CeO2-based support, and Cu/ZnO.
    Type: Application
    Filed: August 21, 2002
    Publication date: February 26, 2004
    Inventors: Tianli Zhu, Ronald G. Silver, Brian A. Cocolicchio
  • Patent number: 6692545
    Abstract: An apparatus removes CO from a hydrogen-rich gas stream in a hydrogen fuel cell system. CO fouls costly catalytic particles in the membrane electrode assemblies. Both a catalyst adapted to perform a water gas shift reaction, and a carbon dioxide adsorbent are disposed in a rotating pressure swing adsorber housing. The adsorption of carbon dioxide shifts equilibrium toward carbon monoxide consumption. A second adsorbent may be disposed in the housing for adsorbing carbon monoxide at low temperatures, and is adapted to desorb carbon monoxide at high temperatures. The present invention advantageously eliminates a unit operation from a space-constrained fuel cell vehicle by combining the WGS catalyst and a CO2 adsorbent in a single reactor/housing. The apparatus further eliminates the use of a PROX reactor, by providing an apparatus which incorporates CO2 adsorption and consequent carbon monoxide consumption in the place of the PROX reactor.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: February 17, 2004
    Assignee: General Motors Corporation
    Inventors: Craig S. Gittleman, Ramesh Gupta
  • Publication number: 20040020124
    Abstract: A method is provided for maintaining low concentration of carbon monoxide in a fuel processor product hydrogen stream during transient operation with a residential fuel cell, particularly during increases in load demand (turn-up). Algorithms have been developed for controlling the air flow to a preferential oxidation reactor and for controlling the rate of direct water injection for rapid steam generation in a water gas shift reactor.
    Type: Application
    Filed: July 30, 2002
    Publication date: February 5, 2004
    Inventors: Bradley P. Russell, John R. Harness, Paul G. Blommel, Daniel R. Sioui, Suheil F. Abdo, Kurt M. Vanden Bussche, Robert J. Sanger
  • Publication number: 20040020125
    Abstract: A compact steam reformer produces hydrogen to power a fuel cell, such as can be used in a vehicle. The steam reformer includes a first channel, at least partly coated with a steam reforming catalyst, and a second channel, at least partly coated with a combustion catalyst, the channels being in thermal contact with each other. Heat from the combustion is used in the steam reforming reaction. In another embodiment, the gas streams feeding the reforming and combustion channels pass through a valve which reverses the gas streams periodically. The combustion channel becomes the reforming channel, and vice versa, so that carbon deposits in the former reforming channel are burned off. This arrangement enables the reforming reaction to continue indefinitely at peak efficiency.
    Type: Application
    Filed: January 17, 2003
    Publication date: February 5, 2004
    Applicant: Catacel Corp.
    Inventors: William B. Retallick, William A. Whittenberger
  • Publication number: 20040006914
    Abstract: A distillate fuel steam reformer system in which a fuel feed stream is first separated into two process streams: an aliphatics-rich, sulfur-depleted gas stream, and an aromatics- and sulfur-rich liquid residue stream. The aliphatics-rich gas stream is desulfurized, mixed with steam, and converted in a reforming reactor to a hydrogen-rich product stream. The aromatics-rich residue stream is mixed with air and combusted to provide heat necessary for endothermic process operations. Reducing the amounts of sulfur and aromatic hydrocarbons directed to desulfurzation and reforming operations minimizes the size and weight of the overall apparatus. The process of the invention is well suited to the use of microchannel apparatuses for heat exchangers, reactors, and other system components, which may be assembled in slab configuration, further reducing system size and weight.
    Type: Application
    Filed: June 23, 2003
    Publication date: January 15, 2004
    Inventors: Aly H. Shaaban, Timothy J. Campbell
  • Patent number: 6676907
    Abstract: An arrangement for generating a hydrogen-containing gas from a hydrocarbon-containing medium includes a multi-stage reforming unit that is connected to a multi-stage carbon monoxide removal unit by a heat-conducting separating medium. The stages of the reforming unit, in an ascending order relative to the gas flow direction in the reforming unit, are in a thermal contact with stages of the carbon monoxide removal unit, in a descending order relative to the gas flow direction in the carbon monoxide removal unit.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: January 13, 2004
    Assignee: Ballard Power Systems AG
    Inventors: Uwe Benz, Stefan Boneberg, Stefan Brauchle, Dirk Georg, Martin Schäfer, Martin Schüssler, Matthias Wolfsteiner
  • Publication number: 20040005268
    Abstract: A multi-stage shift reactor reduces a carbon monoxide content in a hydrogen-rich gas mixture stream flowing through the shift reactor in a flow direction. At least two catalyst carrier bodies have a honeycomb structure with passages through which the gas mixture stream can flow and are disposed in succession along the gas mixture stream flow direction. At least one heat exchanger is disposed between the at least two catalyst carrier bodies. Such a shift reactor is particularly suitable for the highly dynamic carbon monoxide conversion in a mobile fuel cell system. A method for reducing a carbon monoxide content in a hydrogen-rich gas mixture stream is also provided.
    Type: Application
    Filed: May 20, 2003
    Publication date: January 8, 2004
    Inventors: Rolf Bruck, Jorg Zimmermann
  • Publication number: 20030223925
    Abstract: Process and reaction unit for isothermal shift conversion of a carbon monoxide containing feed gas, the process comprising the steps of
    Type: Application
    Filed: May 12, 2003
    Publication date: December 4, 2003
    Inventors: Thomas Rostrup-Nielsen, Erik Logsted-Nielsen
  • Publication number: 20030208960
    Abstract: Improved method for recovering hydrogen and carbon monoxide from hydrocarbon conversion processes are disclosed. A monolith catalyst reactor means is utilized in treating the waste gas stream from the hydrocarbon conversion process to assist in recovering hydrogen and carbon monoxide from the waste gas stream. The present invention also provides a method for improving the yield of hydrogen and carbon monoxide from a hydrocarbon conversion process utilizing a monolith catalyst reactor means.
    Type: Application
    Filed: May 13, 2002
    Publication date: November 13, 2003
    Inventors: Natarajan Narasimhan, Ramakrishnan Ramachandran, Satish S. Tamhankar, Weibin Jiang
  • Publication number: 20030204993
    Abstract: A method and apparatus for processing a hydrocarbon fuel comprises: a primary fuel processing reactor for converting a feed stream to a first reformate stream comprising hydrogen; a first hydrogen separator located downstream of the primary fuel processing reactor and fluidly connected thereto for receiving the first reformate stream, the first separator comprising a first membrane for separating the first reformate stream into a first hydrogen-rich stream and a first retentate stream; and a secondary fuel processing reactor fluidly connected to the first separator for receiving and converting the first retentate stream to a second reformate stream comprising hydrogen. A fuel cell power generation system includes the present apparatus and a fuel cell stack fluidly connected thereto for receiving hydrogen-rich streams therefrom.
    Type: Application
    Filed: April 23, 2003
    Publication date: November 6, 2003
    Inventors: Robert Holland, Gary Schubak, Mark Bradley, Kevin O' Connor, Brant Peppley
  • Publication number: 20030200699
    Abstract: An autothermal reformer according to the principles of the present invention comprises a first stage that selectively receives a fuel flow, a first oxidant flow, and a steam flow. The first stage has a first portion of a catalyst bed. The fluids within the first stage are routed through the first portion of the catalyst bed and react. There is a second stage downstream from and communicating with the first stage. The second stage receives the fluids from the first stage and also selectively receives a second oxidant flow. The second oxidant flow and the fluids received from the first stage flow through a second portion of a catalyst bed and further react.
    Type: Application
    Filed: April 29, 2002
    Publication date: October 30, 2003
    Inventor: Gary M. Robb
  • Patent number: 6635094
    Abstract: The present invention provides a method for the recovery of elemental carbon or soot produced during the partial oxidation reaction of a hydrocarbonaceous fuel and oxygen. An effluent stream of raw synthesis gas or syngas with entrained carbon soot is produced during the partial oxidation reaction. A filter cake (2) is fed to a receiving bin (10) and then to a lockhopper (14) where the wet filter cake is pressurized. Wet filter cake/oil feed mixture from lockhopper (14) is fed through line (38) to knockout vessel (44) wherein oil and water vapor exit (50) to a gasifier. An oil feed/particulate carbon mixture exits lockhopper (14) through lines (66) and (70) to oil feed storage drum (26), fed by oil feed (24), and exits water-free mixture of oil and solids (76) to a gasifier reaction zone.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: October 21, 2003
    Assignee: Texaco Inc.
    Inventor: Frederick C. Jahnke
  • Publication number: 20030192251
    Abstract: A steam reformer that produces hydrogen gas from water and a carbon-containing feedstock, such as an alcohol or a hydrocarbon. The steam reformer includes a hydrogen-producing region, in which a mixed gas stream containing hydrogen gas and other gases is produced from water and a carbon-containing feedstock. The steam reformer includes a separation region, in which the mixed gas stream is separated into a hydrogen-rich stream containing at least substantially pure hydrogen gas, and a byproduct stream containing at least a substantial portion of the other gases. In some embodiments, the steam reformer is a vertically oriented fuel processor. In some embodiments, the separation region includes at least one hydrogen-selective membrane. In some embodiments, the steam reformer further includes a polishing region, in which the hydrogen-rich stream produced in the separation region is further purified. In some embodiments, the reformer includes an external metal or sealed ceramic shell.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 16, 2003
    Inventors: David J. Edlund, Arne LaVen, Timothy G. Mace, William A. Pledger, R. Todd Studebaker, Douglas J. Wambaugh
  • Publication number: 20030182862
    Abstract: A method for generating a hydrogen-containing product gas from liquid or gaseous hydrocarbons includes providing a reformer installation having a combustion space, a mixing chamber and a reformer unit. Partial oxidation of a first hydrocarbon stream with a first oxygen-containing gas stream is performed and a first product-gas stream containing hydrogen is formed, in the combustion space. A second hydrocarbon stream is reformed with water and a second product gas stream containing hydrogen is formed, in the reformer unit. The first product-gas stream and the second product-gas stream are mixed in the mixing chamber to form a third product-gas stream. The reformer unit is heated with the third product-gas stream.
    Type: Application
    Filed: April 17, 2003
    Publication date: October 2, 2003
    Inventor: Walter Jager
  • Publication number: 20030182861
    Abstract: The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.
    Type: Application
    Filed: March 7, 2003
    Publication date: October 2, 2003
    Inventors: Alan W. Weimer, Jaimee K. Dahl, Allan A. Lewandowski, Carl Bingham, Karen J. Raska Buechler, Willy Grothe
  • Publication number: 20030182859
    Abstract: A fuel cell system is proposed which is provided with a CO oxidizer having a compact agitator executing uniform mixing. The fuel cell system is provided with a reformer (2) performing reformate reactions to produce a hydrogen-rich reformate gas containing CO, a CO oxidizer (1) reducing the CO concentration in the reformate gas produced in the reformer (2), and a fuel cell performing power generation using reformate gas with a reduced CO concentration from the CO oxidizer. The CO oxidizer is provided with a CO removal catalyst (6) promoting oxidizing of CO. An oxidizing agent inlet (5) and an agitator (4) are provided upstream of the CO removal catalyst (6). The oxidizing agent inlet (5) supplies oxidizing agent to the reformate gas and the agitator (4) has a plurality of curved passages (8) having at least two curves.
    Type: Application
    Filed: March 6, 2003
    Publication date: October 2, 2003
    Applicant: NISSAN MOTOR CO., LTD.
    Inventor: Yasushi Ichikawa
  • Publication number: 20030172589
    Abstract: A reactor/purifier for generating pure hydrogen in a stack or array of pairs of alternatingly connected high and low pressure reactor chambers wherein a gas-porous turbulence-promoting screen structure washcoated with a steam-reforming catalyst is sandwiched between a planar hydrogen-selective palladium alloy membrane and a planar gas-impermeable heat-conducting metal plate within the high pressure reactor chamber of each high pressure reactor chamber; and wherein the catalyst-coated structure in each high pressure chamber is reacted with steam and hydrocarbon fuel, such as methane or syn/gas, and/or carbon monoxide at an appropriately controlled temperature of between about 200° C. to 650° C.
    Type: Application
    Filed: March 12, 2003
    Publication date: September 18, 2003
    Inventor: Charles W. Krueger
  • Publication number: 20030172590
    Abstract: There is provided is a process for preparation of synthesis gas, i.e. mixtures containing dihydrogen and oxides of carbon, from feedstocks containing methane and/or higher hydrocarbons having from about 2 to about 12 carbon atoms by an initial catalytic treatment of feedstock to provide a methane-containing gaseous mixture substantially free of compounds having 2 or more carbon atoms, and reforming the gaseous mixture at elevated temperatures using nickel-containing catalytic materials that are unusually active under mild conditions of conversion and resistant to deactivation. The process consists fundamentally in converting the higher hydrocarbon compounds to form a methane-containing gaseous mixture substantially free of compounds having 2 or more carbon atoms in an initial conversion zone containing a catalyst while controlling temperatures within the initial conversion zone to temperatures in a range of temperature downward from about 500° C. to about 300° C.
    Type: Application
    Filed: March 13, 2003
    Publication date: September 18, 2003
    Inventors: Alakananda Bhattacharyya, Wen-Dong Chang
  • Publication number: 20030154654
    Abstract: A fuel cell system including a fuel reforming processor having a catalyst therein constructed and arranged to produce a reformate stream including hydrogen and carbon monoxide, a water gas shift reactor downstream of the fuel reforming processor and wherein the water gas shift reactor includes a catalyst therein constructed and arranged to reduce the amount of carbon monoxide in the reformate stream, a preferential oxidation reactor downstream of the water gas shift reactor and wherein the preferential oxidation reactor includes a catalyst therein constructed and arranged to preferentially oxidize carbon monoxide into carbon dioxide and to produce a hydrogen-rich stream, and a fuel cell stack downstream of the preferential oxidation reactor constructed and arranged to produce electricity from the hydrogen-rich stream, a first direct water vaporizing combustor constructed and arranged to combust fuel producing a high-temperature fuel combustion byproducts exhaust and to produce steam from water sprayed into th
    Type: Application
    Filed: February 15, 2002
    Publication date: August 21, 2003
    Inventor: Steven G. Goebel
  • Publication number: 20030154655
    Abstract: A process for converting carbon monoxide and water in a reformate stream into carbon dioxide and hydrogen comprising: generating a reformate by reacting a hydrocarbon via partial oxidation, steam reforming, or both, including autothermal reforming; and promoting a water gas shift in the reformate in the presence of a platinum group metal selected from the group consisting of platinum, palladium, iridium, osmium, rhodium and mixtures thereof, supported on zirconium oxide. The platinum group metal advantageously may be supported directly on a monolithic substrate composed of zirconium oxide.
    Type: Application
    Filed: February 24, 2003
    Publication date: August 21, 2003
    Inventors: Prashant S. Chintawar, Craig Thompson, Mark R. Hagan
  • Publication number: 20030150163
    Abstract: A fuel reforming method includes the step of supplying carbon-containing fuel and steam to a reactor filled with a fuel reforming catalyst and a CO2 absorbent and discharging CO2, and setting the absorbent at an absorption temperature, thereby converting the carbon-containing fuel into reformed fuel, and separating CO2 from the reformed fuel, the step of obtaining a product gas by oxidizing a portion of the reformed fuel and/or the carbon-containing fuel with an oxidizer, and heating the absorbent with this product gas to a regeneration temperature, thereby regenerating the absorbent and storing heat in this absorbent, and the step of supplying the carbon-containing fuel and steam to the reactor, thereby cooling, to the absorption temperature, the absorbent heated to the regeneration temperature, and converting the carbon-containing fuel into reformed fuel by heat energy stored in the CO2 absorbent. An apparatus for the method is also disclosed.
    Type: Application
    Filed: January 24, 2003
    Publication date: August 14, 2003
    Inventors: Keiji Murata, Kazuaki Nakagawa, Yoshikazu Hagiwara, Kazuya Yamada, Mitsutoshi Hamamura, Yasuhito Sakakibara, Hidetsugu Fujii
  • Publication number: 20030136051
    Abstract: A compact fuel processor for converting a hydro-carbonaceous fuel into hydrogen and carbon dioxide comprising in series a hydrocarbon converstion zone (5) for converting the hydro-carbonaceous fuel into a product gas comprising carbon monoxide and hydrogen, a water-gas shift reaction zone (6) containing a catalyst suitable for the water-gas shift conversion reaction, an auxiliary water-gas shift reaction zone (7) containing a catalyst suitable for the water-gas shift conversion reaction, and a carbon monoxide removal zone (8). The invention further relates to a fuel cell system comprising such a fuel processor and a fuel cell and to the use of such a fuel processor or such a fuel cell system.
    Type: Application
    Filed: October 15, 2002
    Publication date: July 24, 2003
    Inventors: Eric Sevenhuijsen, Hendrik Martinus Wentinck
  • Patent number: 6589303
    Abstract: An improved process and process train for hydrogen separation and production from gas streams containing hydrogen and light hydrocarbons. The process includes both recovery of hydrogen already in the stream by membrane separation and PSA, and production of additional hydrogen by steam reforming of the hydrocarbons.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: July 8, 2003
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Kaaeid A. Lokhandwala, Richard W. Baker
  • Patent number: 6585784
    Abstract: The invention is directed to a method of fueling gas turbines from natural gas reserves with relatively low methane concentrations. The invention permits the use of such reserves to be used to fuel gas turbines to generate electric power. The method of the invention includes providing a natural gas comprising not more than about 40 percent methane on a volume basis and mixing the methane of the natural gas with hydrogen gas to provide a hydrogen enhanced methane/hydrogen gas blend which has sufficient hydrogen to provide flame stability during burning. Thereafter, if required, the hydrogen enhanced methane/hydrogen gas blend is dehydrated to remove a sufficient amount of water to provide a flame stable hydrogen enhanced dehydrated methane/hydrogen gas blend. The hydrogen enhanced natural gas blend is used to fuel gas turbine generators.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: July 1, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Frank F. Mittricker
  • Patent number: 6579331
    Abstract: The present invention provides a CO2-selective membrane process that is useful for the purification and/or water gas shift reaction of a reformed gas, generated from on-board reforming of a fuel, e.g., hydrocarbon, gasoline, diesel, methanol or natural gas, to hydrogen for fuel cell vehicles. Another embodiment of the present invention is directed toward a composition comprising a hydrophylic polymer and at least one ammonium halide salt, the ammonium halide salt being present in an amount ranging from about 10 to 80 wt % based on the total weight of the composition. The composition is suitable in formation of a membrane useful for separating CO2 from a CO2-containing gas, particularly from an on-board reformed gas for the CO2-selective membrane process.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: June 17, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Win-Sow Winston Ho
  • Patent number: 6562088
    Abstract: A hydrogen generating apparatus comprising a reformer, a heating section, a fuel supply section, a water supply section, a shift reactor with a shift catalyst layer, a first heat exchanger on the downstream side of the shift catalyst layer, and a temperature detector for the shift catalyst layer. The temperature of the downstream portion of the shift catalyst layer is raised by the action of the heat exchanger compared with the temperature of the same before the amount of the reformed gas is increased. And, the temperature of the downstream portion is lowered compared with the temperature of the same before the amount of the reformed gas is reduced when reducing the amount of the reformed gas. Accordingly, regardless whether the generation amount of hydrogen is large or small, the hydrogen generating apparatus can supply a constant concentration hydrogen gas while keeping the concentration of byproduct carbon monoxide low.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: May 13, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kunihiro Ukai, Kimiyasu Honda, Kiyoshi Taguchi, Takeshi Tomizawa, Kouichiro Kitagawa, Toshiyuki Shono
  • Publication number: 20030051405
    Abstract: An apparatus for carrying out a multi-step process of converting hydrocarbon fuel to a substantially pure hydrogen gas feed includes a plurality of modules stacked end-to-end along a common axis. Each module includes a shell having an interior space defining a passageway for the flow of gas from a first end of the shell to a second end of the shell opposite the first end, and a processing core being contained within the interior space for effecting a chemical, thermal, or physical change to a gas stream passing axially through the module. The multi-step process includes: providing a fuel processor having a plurality of modules stacked end-to-end along a common axis; and feeding the hydrocarbon fuel successively through each of the modules in an axial direction through the tubular reactor to produce the hydrogen rich gas.
    Type: Application
    Filed: April 26, 2002
    Publication date: March 20, 2003
    Inventors: Robert Childress, John R. Farrell, Wendell B. Leimbach, James W. Marshall