Abstract: Production of fuel gas which generates little nitrogen oxides on combustion, has a prolonged combustion period for unit volume, and presents a high combustion temperature.Alcohol or other liquid fuel is burnt in a fuel layer 20 in a combustion chamber 18 to generate a primary fuel gas, which is mixed in a gas pipe 14 with pressurized air ejected by an air nozzle 16, where spiral flow of air is formed around the ejected air. The ratio of the cross section of the primary fuel gas flow to that of air ejected from the air nozzle 16 is first decreased and then increased, so that vortices are formed in the area where the cross section changes to react the primary fuel gas with air and decompose hydrocarbons in the primary fuel gas into carbon and hydrogen with high reactivity, thus producing a fuel gas capable of high temperature combustion with low amount of nitrogen oxides generated.
Abstract: A process and apparatus for contacting a fluid with the walls of a vessel are characterized by flow of the fluid alternatingly (a) through a structure within the vessel and having passages angled to the general direction of flow in the vessel and (b) through a space between the structure and the vessel walls. The structure can be for example a cross flow ceramic or metal honeycomb or a stack of profiled plates or of apertured plates such as expanded metal. The structure can carry a catalytic coating and then affords high activity and low pressure drop. The process and apparatus are especially suitable for endothermic tubular steam hydrocarbon reforming.
Abstract: Methods of preparing fluid mixtures in a chamber under close temperature and pressure controls in which liquid water is introduced into the chamber along with gases selected from the group consisting of oxidizing and reducing gases for providing in the liquid water a mixture of carbon dioxide, hydrogen and carbon monoxide, and of oxidizing and carburizing gases for providing in the liquid water a mixture of carbon dioxide, methane, hydrogen and carbon monoxide under reaction conditions. The liquid water in the chamber is maintained under close temperature control of from about 32.degree. F. to about 160.degree. F. and gases in the chamber are maintained under control pressures from ambient atmospheric up to 218.5 atmospheres so that a saturated fluid mixture is generated having predetermined properties as determined by the controlled temperatures and pressures.