Water-seal Pit Patents (Class 48/69)
-
Patent number: 10457879Abstract: A quenching chamber of an entrained-flow gasifier that gasifies fuels at temperatures of up to 1,800° C. and pressures of up to 10 MPa, wherein an annular chamber through which cooling water flows is formed between the pressure-bearing tank and the inner jacket. The overflow water is discharged from the annular chamber (skirt water) into the quenching chamber via the sleeve of a quenching lance, wherein blocking by the spray cone of the spray nozzle is prevented. The cooling water from the annular chamber is used in addition to the quenching water from the spray nozzle to cool and clean the raw gas in the quenching chamber.Type: GrantFiled: July 5, 2016Date of Patent: October 29, 2019Assignee: Siemens AktiengesellschaftInventors: Frank Hannemann, Tino Just, Friedemann Mehlhose, Jörg Werner
-
Patent number: 9528056Abstract: A system includes an integrated vessel that extends along a longitudinal axis. The integrated vessel includes a gasifier portion and a syngas cooler portion. The syngas cooler portion is disposed axially adjacent to the gasifier portion along the longitudinal axis. The integrated vessel also includes platen tubes that extend from the syngas cooler portion into the gasifier portion. The platen tubes are configured to route coolant through the integrated vessel.Type: GrantFiled: April 1, 2014Date of Patent: December 27, 2016Assignee: General Electric CompanyInventor: Pallab Karmakar
-
Patent number: 9028568Abstract: A system includes a carbon dioxide treatment system that includes a catalyst configured to treat carbon dioxide to produce a treated carbon dioxide. The system also includes a gasifier injector configured to inject the treated carbon dioxide, a fuel, and oxygen into a gasifier. The gasifier injector may be coupled to or located inside the gasifier.Type: GrantFiled: September 2, 2010Date of Patent: May 12, 2015Assignee: General Electric CompanyInventors: Raymond Douglas Steele, Pradeep Stanley Thacker
-
Patent number: 8992640Abstract: The disclosed embodiments include systems for using an expander. In a first embodiment, a system includes a flow path and a gasification section disposed along the flow path. The gasification section is configured to convert a feedstock into a syngas. The system also includes a scrubber disposed directly downstream of the gasification section and configured to filter the syngas. The system also includes a first expander disposed along the flow path directly downstream from the scrubber and configured to expand the syngas. The syngas comprises an untreated syngas.Type: GrantFiled: February 7, 2011Date of Patent: March 31, 2015Assignee: General Electric CompanyInventors: Khodaram Rustom Khosravian, Ronald Frederick Tyree, Patrick Joseph McKenna
-
Patent number: 8974557Abstract: The present disclosure provides tunable catalytic gasifier systems suitable for gasifying coal, biomass, and other fuel sources. The gasifier reactors of the disclosed systems may be heated by, e.g., a catalytic tube or other jacket that generates heat by catalytically combusting syngas, which syngas may be syngas produced by the gasifier system.Type: GrantFiled: June 9, 2011Date of Patent: March 10, 2015Assignee: Good Earth Power CorporationInventor: John Dooher
-
Patent number: 8915980Abstract: A process for the discharge of slag and ash from a gasification reactor is disclosed. These solids are directed from the gasification reactor into a water bath housed with the gasification reactor in a pressure vessel. There are at least two lock hoppers underneath the water bath which are fed with a stream of water/solids via a pipe and a flow divider element, it being possible to supply the lock hoppers individually and in a controlled manner with a stream of water/solids via shut-off devices. The filling is performed in a manner that encourages the sett-ling process by withdrawing a stream of liquid from the lock hopper being filled, the filling time being controlled so as to prevent the solids settling above the valves and lock hoppers. Also disclosed is an apparatus with at least two lock hoppers underneath the water bath of a gasification reactor, there being, in an advantageous embodiment, a flow divider element and shut-off devices between the water bath and the lock hoppers.Type: GrantFiled: July 11, 2009Date of Patent: December 23, 2014Assignee: UHDE GmbHInventor: Christoph Hanrott
-
Patent number: 8900334Abstract: The goal of the invention consists in making available a method for supplying fuel to a pressurized gasification system, which ensures, in economically efficient manner, that the emission of pollutants from the coal transfer and the transport is minimized or completely avoided. This is achieved in that a gas that contains at least 10 ppm vol. CO is used for transfer and/or conveying, whereby a gas that contains oxygen is mixed into this gas, and that this gas mixture is heated to a temperature that oxidizes at least 10% of the pollutants contained in the gas.Type: GrantFiled: December 23, 2009Date of Patent: December 2, 2014Assignee: ThyssenKrupp UHDE GmbHInventors: Johannes Kowoll, Stefan Hamel, Michael Rieger
-
Patent number: 8894728Abstract: In the case of a device for gasification of carbonaceous fuels, having a discharge for slags into a slag bath, a solution is supposed to be created with which the gasifier discharge opening is reliably kept at a temperature that guarantees that the slag will flow out. This is achieved in that the gasifier discharge opening (6) is equipped with a ceramic drip edge (7) that can be electrically heated.Type: GrantFiled: August 13, 2009Date of Patent: November 25, 2014Assignee: ThyssenKrupp Uhde GmbHInventors: Domenico Pavone, Ralf Abraham, Muhammad Iqbal Mian
-
Patent number: 8894729Abstract: A gasification reactor comprising a gasifier with a tubular gastight wall arranged within a pressure vessel. The gasification reactor comprises one or more pressure responsive devices comprising a sleeve with a cooled section extending outwardly from an opening in the gastight wall. The pressure responsive devices can, e.g., include a pressure measurement device and/or a pressure equalizer. Method of using a pressure responsive device with such a gasifier, wherein a heat sluice is used formed by a sleeve with a cooled section extending outwardly from an opening in the gastight wall.Type: GrantFiled: January 12, 2012Date of Patent: November 25, 2014Assignee: shell Oil CompanyInventors: Ibrahim Kar, Manfred Heinrich Schmitz-Goeb
-
Patent number: 8845770Abstract: A gasification system including a gasifier, a feed injector, and a fuel feed system that includes a first feed line, a second feed line, and a controller that includes a processor. The processor is programmed to enable the first feed line to supply a fuel gas into the feed injector, enable the second feed line to supply oxygen into the feed injector, receive instructions to add a slurry to the gasifier, prevent the first feed line from supplying the fuel gas into the feed injector, enable the first feed line to supply the slurry into the feed injector, enable the second feed line to simultaneously supply the oxygen and the inert gas into the feed injector, and prevent the second feed line from supplying the inert gas into the feed injector.Type: GrantFiled: August 25, 2011Date of Patent: September 30, 2014Assignee: General Electric CompanyInventors: Ronald Frederick Tyree, Huan Van Ho
-
Patent number: 8840690Abstract: A gasification reactor including a gasifier with a tubular gastight wall arranged within a pressure vessel. The tubular gastight wall is provided with one or more pressure relief passages sealed by a rupture element. The pressure relief passages can be provided with a cooled section, such as a double walled section confining a coolant channel.Type: GrantFiled: January 23, 2012Date of Patent: September 23, 2014Assignee: Shell Oil CompanyInventors: Ibrahim Kar, Manfred Heinrich Schmitz-Goeb
-
Patent number: 8801813Abstract: A gasification apparatus for solid fuel, especially an apparatus for producing syngas by pressurized gasification of coal powder, including a gasification chamber (II) and a syngas cooling and purification chamber (III). The inner wall of the gasification chamber is a water-cooling wall (4). The inner side of the water-cooled wall is evenly coated with a layer of fire-resistant material (16). There is an annular cavity between the water-cooling wall of the gasification chamber and the furnace body. A syngas quencher, a vertical pipe (22), a gas distribution device (24), a defoaming device, and a dewatering and deashing device (21) are provided in the syngas cooling and purification chamber. The apparatus has a simple structure and is easy to operate. A high temperature gasification method for dry powder of carbonaceous material comprises spraying the combustible material and oxygen into the furnace and followed by ignition.Type: GrantFiled: December 25, 2009Date of Patent: August 12, 2014Assignee: Changzheng Engineering Co., Ltd.Inventors: Zhengtao Lu, Mingkun Wang, Congbin Jiang, Wei Xin, Ruiheng Gao, Honghai Li
-
Patent number: 8764860Abstract: A system includes a gasification vessel configured to receive a fuel and an oxidizer. The system also includes a gasifier disposed in the gasification vessel. The gasifier is configured to partially oxidize the fuel and the oxidizer to generate a syngas. The system further includes a convective syngas cooler configured to cool the syngas via heat exchange with a coolant. The convective syngas cooler is disposed in an interior of the gasification vessel.Type: GrantFiled: August 17, 2012Date of Patent: July 1, 2014Assignee: General Electric CompanyInventors: Aaron John Avagliano, James Michael Storey
-
Patent number: 8684070Abstract: A radiant synthesis gas (syngas) cooler used to contain and cool the synthesis gas produced by a coal gasification process used in an IGCC power plant employs a compact radial platen arrangement which is less prone to fouling and/or plugging issues.Type: GrantFiled: August 15, 2007Date of Patent: April 1, 2014Assignee: Babcock & Wilcox Power Generation Group, Inc.Inventors: Richard A. Wessel, David L. Kraft, Steven R. Fry
-
Device for production of synthesis gas with a gasification reactor with a subsequent quenching space
Patent number: 8562698Abstract: The invention relates to a device for producing a crude gas containing CO or H2 by gasification of an ash-containing fuel with oxygen-containing gas at temperatures above the fusion temperature of the ash in a gasification reactor and with a connected gas cooling chamber and a tapered connecting channel running from one chamber to the other. The aim of the invention is avoiding known problems and reducing the amount of fly ash and the amount of ungasified fuel, wherein a weak eddy is achieved in the inlet to the subsequent apparatuses in order to avoid deposits there with a very compact device, wherein the risk of solidification of the slag in the outlet is also avoided. The aim is achieved, wherein in the tapered connection channel (5) eddy reducing or eliminating wall surfaces (6) running over only a part of the cross-section of the connection channel are provided.Type: GrantFiled: February 27, 2009Date of Patent: October 22, 2013Assignee: ThyssenKrupp Uhde GmbHInventor: Johannes Kowoll -
Patent number: 8475546Abstract: A reactor vessel includes a dipleg connecting a tubular syngas collection chamber and a quench chamber. The collection chamber connects to the dipleg via a slag tap having a frusto-conical part starting from the lower end of the collection chamber and diverging to an opening connected to an interior of the dipleg. The slag tap has a first tubular part connected to the opening of the frusto-conical part and extending in the direction of the dipleg. A second tubular part connects to the frusto-conical part or to the tubular part and extends toward the dipleg. The second tubular part is spaced away from the dipleg to provide an annular space having a discharge conduit. The discharge conduit has a discharge opening located to direct water along the inner wall of the dipleg. At least half of the vertical length of the first tubular part extends below the discharge opening.Type: GrantFiled: December 2, 2009Date of Patent: July 2, 2013Assignee: Shell Oil CompanyInventors: Benedict Ignatius Maria Ten Bosch, Thomas Ebner, Wouter Koen Harteveld, Hans Joachim Heinen, Manfred Heinrich Schmitz-Goeb
-
Patent number: 8475547Abstract: In a reactor for gasification of entrained solid and liquid fuels at temperatures between 1,200 and 1,900° C. and at pressures between ambient pressure and 10 MPa using an oxidizing agent containing free oxygen, the cooling screen is connected to the pressure shell in a gastight manner via a sliding seal in order to allow length changes. Continuous gas purging of the annular gap between pressure shell and cooling screen is unnecessary and gasification gas is prevented from flowing behind.Type: GrantFiled: September 11, 2008Date of Patent: July 2, 2013Assignee: Siemens AktiengesellschaftInventors: Volker Kirchhübel, Christian Reuther, Manfred Schingnitz, Heidrun Toth
-
Patent number: 8475548Abstract: In a reactor for the gasification of solid and liquid fuels in the entrained flow at temperatures between 1200 and 1900° C. and pressures between ambient pressure and 10 MPa with an oxidizing agent containing free oxygen, the cooling screen is connected in a gas-tight manner to the pressure shell via a bellows compensator to accommodate linear deformation. Continuous sweeping by gas of the annular gap between pressure shell and cooling screen is unnecessary and backflow by producer gas is prevented.Type: GrantFiled: September 16, 2008Date of Patent: July 2, 2013Assignee: Siemens AktiengesellschaftInventors: Volker Kirchhübel, Manfred Schingnitz, Heidrun Toth
-
Patent number: 8398729Abstract: Methods and systems for a gasifier having a partial moderator bypass are provided. The gasifier includes a partial oxidation reactor including an inlet and an outlet and a primary reaction zone extending therebetween, the partial oxidation reactor configured to direct a flow of products of partial oxidation including fuel gases, gaseous byproducts of partial oxidation, and unburned carbon, and a secondary reaction chamber coupled in flow communication with the partial oxidation reactor, the secondary reaction chamber is configured to mix a flow of moderator with the flow of gaseous byproducts of partial oxidation and unburned carbon such that a concentration of fuel gases is increased.Type: GrantFiled: August 25, 2011Date of Patent: March 19, 2013Assignee: General Electric CompanyInventor: Paul Steven Wallace
-
Patent number: 8398730Abstract: A method of producing substitute natural gas (SNG) includes providing a gasification reactor having a cavity defined at least partially by a first wall. The reactor also includes a first passage defined at least partially by at least a portion of the first wall and a second wall, wherein the first passage is in heat transfer communication with the first wall. The reactor further includes a second passage defined at least partially by at least a portion of the second wall and a third wall. The method also includes coupling the cavity in flow communication with the first and second passages. The method further includes producing a first synthetic gas (syngas) stream within the cavity. The method also includes channeling at least a portion of the first syngas stream to the first and second passages.Type: GrantFiled: July 23, 2008Date of Patent: March 19, 2013Assignee: General Electric CompanyInventors: Paul Steven Wallace, Arnaldo Frydman
-
Patent number: 8317885Abstract: The invention provides an apparatus for gasifying a fuel to form synthesis gas wherein also a slag is formed. The apparatus comprises: a pressure shell; a slag bath; a gasifier wall; a free-fall trajectory for slag; and a heat shield. The gasifier wall is arranged inside the pressure shell defining a gasification chamber. It comprises a converging wall part that is provided with a slag discharge opening, located above the quench fluid in the slag bath. The heat shield is arranged above the slag bath between the free-fall trajectory and the pressure shell. The heat shield has a wall structure for allowing passage of a cooling fluid, the wall structure comprising an upper wall part and a lower wall part. The lower wall part of the heat shield is essentially refractory free.Type: GrantFiled: November 21, 2005Date of Patent: November 27, 2012Assignee: Shell Oil CompanyInventors: Robert Erwin Van Den Berg, Dirk Lauterbach
-
Patent number: 8236071Abstract: A quench ring for use with a gasifier system. The quench ring including an annular manifold having a radius, an annular channel coupled in flow communication with said manifold, and at least one inlet coupled in flow communication with said manifold, said at least one inlet having a center line aligned substantially tangentially to said annular manifold.Type: GrantFiled: August 15, 2007Date of Patent: August 7, 2012Assignee: General Electric CompanyInventors: Judeth Helen Brannon Corry, Yulianto Salahuddin Mohsin
-
Patent number: 8197564Abstract: A method of assembling a synthesis gas (syngas) cooler for a gasification system includes positioning a dip tube within a shell of the syngas cooler. The dip tube is configured to quench the syngas flowing through the shell and/or at least partially channel the syngas through the dip tube. The method also includes coupling an isolation tube to the dip tube such that the isolation tube is substantially concentrically aligned with, and radially outward of, the dip tube. The isolation tube is coupled in flow communication with a purge gas source and is configured to at least partially form a dynamic pressure seal. The method further includes coupling at least one of the isolation tube and the dip tube in fluid communication with a fluid retention chamber. The method also include at least partially filling the fluid retention chamber with fluid, thereby further forming the dynamic pressure seal.Type: GrantFiled: February 13, 2008Date of Patent: June 12, 2012Assignee: General Electric CompanyInventors: Allyson Joy Jimenez-Huyke, James Michael Storey, John Saunders Stevenson, Aaron John Avagliano, Thomas Frederick Leininger, Judeth Brannon Corry
-
Patent number: 8187349Abstract: A gasification reactor vessel comprising a combustion chamber in the upper half of the vessel, provided with a product gas outlet at the bottom end of the combustion chamber, at least two burner openings are present in the wall of the combustion chamber, which burner openings are located at the same horizontal level and are positioned diametrical relative to each other and wherein in each burner opening a burner is present, wherein between the wall of the combustion chamber and the wall of vessel an annular space is provided, wherein the wall of the combustion chamber comprises an arrangement of interconnected tubes (vertical arranged or helical coiled), wherein the product gas outlet at the bottom end of the combustion chamber is fluidly connected to a dip-tube, which partly is submerged in a water bath located at the lower end of the reactor vessel, and wherein at the upper end of the dip-tube means are present to add a quenching medium to the, in use, downwardly flowing mixture of hydrogen and carbon monoxType: GrantFiled: March 14, 2008Date of Patent: May 29, 2012Assignee: Shell Oil CompanyInventors: Steffen Jancker, Thomas Paul Von Kossak-Glowczewski, Joachim Wolff
-
Patent number: 8038747Abstract: Methods and systems for a gasifier having a partial moderator bypass are provided. The gasifier includes a partial oxidation reactor including an inlet and an outlet and a primary reaction zone extending therebetween, the partial oxidation reactor configured to direct a flow of products of partial oxidation including fuel gases, gaseous byproducts of partial oxidation, and unburned carbon, and a secondary reaction chamber coupled in flow communication with the partial oxidation reactor, the secondary reaction chamber is configured to mix a flow of moderator with the flow of gaseous byproducts of partial oxidation and unburned carbon such that a concentration of fuel gases is increased.Type: GrantFiled: October 27, 2009Date of Patent: October 18, 2011Assignee: General Electric CompanyInventor: Paul Steven Wallace
-
Patent number: 8002855Abstract: A reactor is proposed for entrained flow gasification for operation with pulverized or liquid fuels, with an externally cooled draft tube protecting the slag discharge outlet. An outlet of the draft tube remains above a water line of a sump of the reactor and is formed from Molybdenum, an alloy featuring molybdenum, Tantalum or an alloy featuring Tantalum.Type: GrantFiled: July 1, 2008Date of Patent: August 23, 2011Assignee: Siemens AktiengesellschaftInventors: Matthias Köhler, Joachim Lamp
-
Publication number: 20110016787Abstract: In certain embodiments, a system includes a first water supply pump configured to pump water from a gas scrubber sump of a gas scrubber directly to a quench chamber sump of a quench chamber via a first water supply line.Type: ApplicationFiled: July 27, 2009Publication date: January 27, 2011Applicant: GENERAL ELECTRIC COMPANYInventors: Constantin Dinu, George Gulko, Judeth Brannon Corry, Allyson Joy Jimenez-Huyke, Richard L. Zhao, Denise Marie Rico
-
Publication number: 20100325954Abstract: A gasifier includes a combustion chamber in which a combustible fuel is burned to produce a syngas and a particulated solid residue. A quench chamber having a liquid coolant is disposed downstream of the combustion chamber. A dip tube is disposed coupling the combustion chamber to the quench chamber. The syngas is directed from the combustion chamber to the quench chamber via the dip tube to contact the liquid coolant and produce a cooled syngas. A draft tube is disposed surrounding the dip tube such that an annular passage is formed between the draft tube and the dip tube. An asymmetric or symmetric baffle is disposed proximate to an exit path of the quench chamber. The cooled syngas is directed through the annular passage and impacted against the asymmetric or symmetric baffle so as to remove entrained liquid content from the cooled syngas before the cooled syngas is directed through the exit path.Type: ApplicationFiled: June 30, 2009Publication date: December 30, 2010Applicant: GENERAL ELECTRIC COMPANYInventors: Prashant Tiwari, Gregory Michael Laskowski, Judeth Brannon Corry, Helge Burghard Herwig Klockow, Allyson Joy Jimenez-Huyke, Shailesh Singh Bhaisora, Steven Craig Russell, Karl Hardcastle, Jennifer Lynn Moyer, Scott Reginald Parent, Yulianto Salahuddin Mohsin
-
Patent number: 7803216Abstract: A compact pressurized high-temperature gas cooler having superior heat exchange performance and excellent economical efficiency is provided. A return-flow structure is formed in which a flue through which high-temperature gas flows is formed in a pressure container, a heat exchanger is disposed in the flue, and a partition dividing the internal cross-sectional area of the flue is provided so that the high-temperature gas supplied from a bottom or a top portion of the pressure container flows back in a return direction. The cross-sectional-area division ratio dividing the internal cross-section of the flue is set so that the flow rate of the high-temperature gas flowing in one direction matches that flowing in the direction opposite thereto.Type: GrantFiled: December 22, 2006Date of Patent: September 28, 2010Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Yoshinori Koyama, Katsuhiko Yokohama, Osamu Shinada, Hiromi Ishii, Yuichiro Kitagawa, Kosei Manabe
-
Patent number: 7744663Abstract: Methods and systems for a gasifier solids removal system are provided. The system includes a down flow combustor including an inlet and an outlet and a combustion zone extending therebetween, the combustor configured to direct a flow of process material including syngas, flowable slag, and particulates in a first downward direction, a plurality of flow passages in serial flow communication including a first flow passage and a second flow passage, wherein the process material flow reverses direction flowing from the first passage to the second passage, and a plurality of entrainment separation stages in serial flow communication with at least one of the plurality of flow passages.Type: GrantFiled: February 16, 2006Date of Patent: June 29, 2010Assignee: General Electric CompanyInventor: Paul Steven Wallace
-
Publication number: 20090199474Abstract: A method of assembling a spray quench apparatus is provided. The method includes coupling a first end of an exit tube to a quench chamber such that the exit tube end is in flow communication with the quench chamber, coupling at least one spray nozzle to an opposite second end of the exit tube such that water emitted from the spray nozzle fills the exit tube and forms a film of water across an inner surface of the exit tube, coupling a water source to the quench chamber for providing a substantially continuous water film along an inner surface of the quench chamber, and coupling at least one discharge apparatus to the quench chamber for providing water spray into the quench chamber, wherein the water of the water film and water sprays drains into a water sump.Type: ApplicationFiled: February 13, 2008Publication date: August 13, 2009Inventors: Thomas Frederick Leininger, Allyson Joy Jimenez-Huyke, Judeth Brannon Corry, Fulton Jose Lopez, Aaron John Avagliano, John Saunders Stevenson, Lien-Yan Chen
-
Patent number: 7141085Abstract: The refractory protected, replaceable insert for a gasifier includes a replaceable floor edge insert that is formed with a predetermined mating profile that is complementary to a finished mating profile of the gasifier floor. The geometry of the mating profiles of the replaceable floor edge insert and the gasifier floor permit removable engagement between the floor edge insert and the mating profile of the gasifier floor. The replaceable floor edge insert is protected by a ring-like arrangement of hanging refractory bricks that each include an appendage. Each brick appendage covers a portion of the inner radial edge of the replaceable floor edge insert and also covers an upper surface portion of an underlying quench ring, thus prolonging the life of the floor and the quench ring. A refractory ceramic fiber paper can be provided between the hanging brick and the floor edge and quench ring.Type: GrantFiled: January 16, 2003Date of Patent: November 28, 2006Assignees: Texaco Inc., Texaco Development CorporationInventors: John Corwyn Groen, John D. Winter
-
Patent number: 6613127Abstract: Methods and apparatus for processing and cooling a hot gaseous stream exiting a gasification reactor vessel at temperatures in excess of 1300° C. where the gas will come into contact with a corrosive aqueous liquid, including methods and apparatus for cooling the gaseous stream prior to quenching the gaseous stream as well as methods and apparatus for providing vessel construction able to provide for the contact of a hot gaseous stream at temperatures in excess of 1100° C. with a corrosive aqueous liquid.Type: GrantFiled: May 5, 2000Date of Patent: September 2, 2003Assignee: Dow Global Technologies Inc.Inventors: Connie M. Galloway, Kenneth W. Mall, Dennis W. Jewell, William M. Eckert, Leopoldo L. Salinas, III, Ed E. Timm
-
Publication number: 20030140558Abstract: The refractory protected, replaceable insert for a gasifier includes a replaceable floor edge insert that is formed with a predetermined mating profile that is complementary to a finished mating profile of the gasifier floor. The geometry of the mating profiles of the replaceable floor edge insert and the gasifier floor permit removable engagement between the floor edge insert and the mating profile of the gasifier floor. The replaceable floor edge insert is protected by a ring-like arrangement of hanging refractory bricks that each include an appendage. Each brick appendage covers a portion of the inner radial edge of the replaceable floor edge insert and also covers an upper surface portion of an underlying quench ring, thus prolonging the life of the floor and the quench ring. A refractory ceramic fiber paper can be provided between the hanging brick and the floor edge and quench ring.Type: ApplicationFiled: January 16, 2003Publication date: July 31, 2003Applicant: Texaco Development Corporation and Texaco, Inc.Inventors: John Corwyn Groen, John D. Winter
-
Publication number: 20030003033Abstract: A hydrogen producing apparatus comprising: a reforming section having a reforming catalyst which causes a reaction between a carbon-containing organic compound as a feedstock and water; a feedstock supply section for supplying the feedstock to the reforming section; a water supply section for supplying water to the reforming section; a heating section for heating the reforming catalyst; a shifting section having a shift catalyst which causes a shift reaction between carbon monoxide and water contained in a reformed gas supplied from the reforming section; and a purifying section having a purifying catalyst which causes oxidation or methanation of carbon monoxide contained in a gas supplied from the shifting section, wherein the shift catalyst comprises a platinum group metal and a metal oxide.Type: ApplicationFiled: June 26, 2002Publication date: January 2, 2003Inventors: Kiyoshi Taguchi, Takeshi Tomizawa, Kunihiro Ukai, Toshiyuki Shono, Koichiro Kitagawa, Tetsuya Ueda, Seiji Fujihara, Yutaka Yoshida
-
Publication number: 20020043023Abstract: A batch slag handling system for gasifiers and the like which operate under pressure, has a lockhopper receiving the slag under pressure and dispensing it after depressurization. The slag is ground and combined with water for transport to a slag sump where it is dewatered and then removed from the site. Sluice water is provided by a closed loop system.Type: ApplicationFiled: June 27, 1994Publication date: April 18, 2002Inventor: WILLIAM M. DAVIS, JR.
-
Patent number: 5755838Abstract: A coal gasifier has an inner wall surface made by metal of an inlet part of a heat recovery vessel, the inlet part having a inner cooling mechanism, and gas for peeling deposits on the inner wall surface is injected from plural gas injection holes, the injected gas forming a slewing flow and further being intermittently increased. And at least one cooling medium injection nozzle is provided at a side wall in the upper part of a gasification chamber.Type: GrantFiled: December 26, 1996Date of Patent: May 26, 1998Assignees: Hitachi, Ltd., Babcock-Hitachi Kabushiki KaishaInventors: Sinji Tanaka, Shuntaro Koyama, Masato Takagi, Eiji Kida, Fumiki Ueda, Tadayoshi Muramatsu
-
Patent number: 5728183Abstract: A shift reactor is disclosed that is mounted on the exhaust end of an underoxidized burner so that the exhaust product is introduced to a cooler water bath in a compartment of the reactor. The exhaust product is passed through the water bath via submerged gas diffusers. The reactor compartment includes a collection chamber for receiving the bathed exhaust product containing hydrogen gas which is then exited to a shift catalyst chamber. The latter includes eductor for recirculation. A conduit may be coupled to the water bath for distributing heated water from the bath for exterior heating purposes or for purification means. A drain is operably connected to the conduit for permitting removal of excess water and a fill inlet is provided for adding water.Type: GrantFiled: June 6, 1995Date of Patent: March 17, 1998Assignee: Hydrogen Burner Tech., Inc.Inventors: Leonard Greiner, David M. Moard, Bharat Bhatt
-
Patent number: 5622534Abstract: A high performance, multi-stage, pressurized, airblown, entrained flow coal gasifier system and a method of operating such a gasifier system for generating therewithin fuel gas from coal. The subject gasifier system includes an outer, pressure containing vessel surrounding an inner, water-cooled vessel wherein the gasification reaction, through which the fuel gas is generated from coal, takes place. The inner, water-cooled vessel embodies a first stage within which the high temperatures required for the gasification reactions to take place as well as for slagging are generated from the combustion of char, a second stage within which the char is gasified to generate the subject fuel gas, and a third stage within which coal is devolatilized to produce the char for the first stage and the second stage and with a concomitant quenching being effected of the fuel gas as the latter flows through the third stage of the inner water-cooled vessel.Type: GrantFiled: November 9, 1994Date of Patent: April 22, 1997Assignee: Combustion Engineering, Inc.Inventor: Herbert E. Andrus, Jr.
-
Patent number: 5620487Abstract: A high performance, multi-stage, pressurized, airblown, entrained flow coal gasifier system and a method of operating such a gasifier system for generating therewithin fuel gas from coal. The subject gasifier system includes an outer, pressure containing vessel surrounding an inner, water-cooled vessel wherein the gasification reaction, through which the fuel gas is generated from coal, takes place. The inner, water-cooled vessel embodies a first stage within which the high temperatures required for the gasification reactions to take place as well as for slagging are generated from the combustion of char, a second stage within which the char is gasified to generate the subject fuel gas, and a third stage within which coal is devolatilized to produce the char for the first stage and the second stage and with a concomitant quenching being effected of the fuel gas as the latter flows through the third stage of the inner water-cooled vessel.Type: GrantFiled: November 9, 1994Date of Patent: April 15, 1997Assignee: Combustion Engineering, Inc.Inventor: Herbert E. Andrus, Jr.
-
Patent number: 5554202Abstract: Method and apparatus for deslagging a gasifier's combustion chamber which has accumulated a residual solidified slag as a result of the fuel being combusted. The gasifier is provided with means for liquefying the slag into a flowable state by heating the combustion chamber to a temperature of which the slag will flow. To epitomize the gasifiers' deslagging mode, the combustion chamber is provided with an array of strain monitoring or measuring load cells which are located to detect and collectively respond to movement at the combustion chamber floor whereby to control the slag removing procedure.Type: GrantFiled: March 21, 1995Date of Patent: September 10, 1996Assignee: Texaco Inc.Inventors: Donald D. Brooker, James S. Falsetti, James K. Wolfenbarger, Dinh-Cuong Vuong, Allen J. Pertuit
-
Patent number: 5437699Abstract: The slag tap of a gasifier is offset from the geometrical axis. Coalescent, molten, residual ash from incomplete combustion is directed to a hearth where residence time provides further combustion and a reduction in the volume and temperature of the resulting slag. The reduced volume and temperature ash is then directed to a slag tap after which disposal is accomplished by conventional means.Type: GrantFiled: October 19, 1990Date of Patent: August 1, 1995Inventor: Charles V. Sternling
-
Patent number: 5425791Abstract: A slag tap system for a pressurized gasifier system that includes a reaction vessel and a pressure vessel in surrounding relation to the reaction vessel.Type: GrantFiled: July 1, 1994Date of Patent: June 20, 1995Assignee: Combustion Engineering, Inc.Inventor: Michael C. Tanca
-
Patent number: 5310411Abstract: The process and apparatus for transforming combustible pollutants and waste materials into non-polluting, clean and useful energy, by completely removing the pollutants from raw materials while avoiding the formation of potential pollutants, involve the use of oxygen or a gas mixture containing oxygen, such as air, and steam.Type: GrantFiled: January 18, 1990Date of Patent: May 10, 1994Inventor: Valerio Tognazzo
-
Patent number: 5295449Abstract: A dry distillation gas generator generates a dry distillation gas for burning in a separate combustion gas burner unit. Air is supplied in a gentle decelerated flow to the bottom of the dry distillation generator in a quantity sufficient to support combustion of a solid fuel in the vicinity of the air supply, but at a low enough volume to prevent the combustion proceeding to other parts of the generator, thus thermally decomposing the remainder of the solid fuel to generate the dry distillate gas. An air chamber surrounds the generator to reduce the temperature to which the solid fuel is exposed. Similarly, an air chamber is disposed below the bottom of the generator to supply air to the generator, and to moderate the temperature therein. An impurity separation tank in a conduit between the generator and the gas burner unit helps prevent particulates from entering the generator. A preheat burner in the combustion gas burner unit includes a pilot to ignite and preheat the gas.Type: GrantFiled: August 17, 1992Date of Patent: March 22, 1994Assignee: Emu Dee-Aru Co., Ltd.Inventors: Naomi Maeda, Seiichirou Sasahara
-
Patent number: 5136808Abstract: A gasifier for the gasification of a fuel material includes a chamber in which the material is converted into a gas and a molten slag. A quenching apparatus is provided for cooling and solidifying the molten slag. A nozzle extends between the chamber and the quenching apparatus. The nozzle includes an orifice having an inlet end for receiving the molten slag from the chamber and an outlet end for discharging the molten slag into the quenching apparatus. A recessed zone is provided between the outlet end of the orifice and the quenching apparatus. The recessed zone may be formed within the nozzle. An electric induction heating coil provides heat in the recessed zone to prevent the solidification of the slag at the outlet end of the orifice.Type: GrantFiled: May 10, 1990Date of Patent: August 11, 1992Inventor: Albert Calderon
-
Patent number: 4992081Abstract: In a gasification reactor having a shell, a combustion chamber in the shell, and a burner positioned to direct a carbonaceous fuel mixture into the combustion chamber. A quench chamber within the shell holds a cooling bath into which the hot effluent resulting from the combustion is cooled. A throat communicating the combustion chamber with the quench chamber guides the hot effluent stream toward the bath. A quench ring including a receptacle rim, is positioned beneath the throat to support a water jacketed dip tube which guides the hot effluent into contact with the bath liquid. Liquid coolant is conducted into the water jacket by way of connectable flow passages formed into the rim and the dip tube assembly, and thereafter discharged against the dip tube.Type: GrantFiled: September 15, 1989Date of Patent: February 12, 1991Assignee: Texaco Inc.Inventor: Alfred L. Den Bleyker
-
Patent number: 4979964Abstract: The slag tap of a gasifier is offset from the geometrical axis. Coalescent, molten, residual ash from incomplete combustion is directed to a hearth where residence time provides further combustion and a reduction in the volume and temperature of the resulting slag. The reduced volume and temperature ash is then directed to a slag tap after which disposal is accomplished by conventional means.Type: GrantFiled: June 22, 1989Date of Patent: December 25, 1990Assignee: Shell Oil CompanyInventor: Charles V. Sternling
-
Patent number: 4960439Abstract: An arrangement for the gasification of fuels with oxygen or oxygen-containing gases and steam, includes a shaft-like vessel for receiving solid charging stock. A gas discharge duct is provided on the upper end of the vessel and a primary gas chamber is in connection with the shaft-like vessel on its lower end via a passage. In the primary gas chamber a burner is provided, which includes feedings for oxygen or oxygen-containing gases as well as for fuels. A trough for receiving slag is arranged below. the primary gas chamber and a supporting bottoms is provided between the trough and the shaft-like vessel, reaching into the primary gas chamber, for the formation of a dumping material bed of the solid charging stock facing the burner by one dumping surface. In order to be able to gasify low-quality fuels into a high-quality product gas, the primary gas chamber includes a charging opening for charging a charging stock to be gasified.Type: GrantFiled: August 12, 1988Date of Patent: October 2, 1990Assignee: Voest-Alpine AktiengesellschaftInventors: Paul Freimann, Gernot Staudinger
-
Patent number: 4959078Abstract: The hot-gas cooling plant has a gas outlet line releasably connected between the radiant cooler and the convection cooler. The gas outlet line is curved to extend from an upper region of the radiant cooler to the top end of the convection cooler. Flange connections are used to connect the gas outlet line to the pressure vessels of the coolers. Cooling tubes are also provided within the gas outlet line for cooling the flow of gas therethrough.Type: GrantFiled: October 3, 1989Date of Patent: September 25, 1990Assignee: Sulzer Brothers LimitedInventor: Georg Ziegler