And Alkaline Earth Metal Or Magnesium Compound Patents (Class 501/104)
  • Patent number: 8309482
    Abstract: Fused and cast refractory product including on oxides basis in percent by weight and for a total of 100%: ZrO2+HfO2 complement to 100%; 3.5% to 6.0% SiO2; 0.7% to 1.5% Al2O3; 0.10% to 0.43% Na2O+K2O; 0.05% to 0.80% B2O3; less than 0.4% CaO+SrO+MgO+ZnO; less than 0.05% P2O5; less than 0.55% Fe2O3+TiO2; less than 1.5% other species. The ratio of percentages by weight of Al2O3/(Na2O+K2O) being greater than or equal to 3.5 and the ratio of percentages by weight of B2O3/(Na2O+K2O) being between 0.3 and 2.5.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: November 13, 2012
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Michel Gaubil, Ludovic Massard
  • Publication number: 20120276325
    Abstract: Porous structure comprising an oxide ceramic material comprising, on the basis of the corresponding simple oxides: Al2O3, TiO2, at least one oxide of an element M2 chosen from the group formed by Fe2O3, Cr2O3, MnO2, La2O3, Y2O3 and Ga2O3, at least one oxide of an element M3 chosen from the group formed by ZrO2, Ce2O3 and HfO2, optionally at least one oxide of an element M1 chosen from MgO and CoO, and optionally SiO2, said material being obtained by the reactive sintering of the corresponding simple oxides or of their precursors or by heat treatment of the sintered particles satisfying said composition.
    Type: Application
    Filed: September 21, 2010
    Publication date: November 1, 2012
    Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Stephane Raffy, Nabil Nahas
  • Patent number: 8278231
    Abstract: In one aspect, the invention includes a heat stable, formed ceramic component that includes a multimodal grain distribution including (i) at least 50 wt % of coarse grains including stabilized zirconia, the coarse grains comprising a D50 grain size in the range of from 5 to 800 ?m, based upon the total weight of the component; and (ii) at least 1 wt % of fine grains comprising a D50 average grain size not greater than one-fourth the D50 grain size of the coarse grain, dispersed within the coarse grains, based upon the total weight of the component; wherein after sintering, the component has porosity at ambient temperature in the range of from 5 to 45 vol. %, based on the formed volume of the component.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: October 2, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Changmin Chun, Frank Hershkowitz
  • Patent number: 8268742
    Abstract: A highly zirconia-based refractory suitable for an electric melting furnace, which has a high electrical resistivity and does not exhibit a chipping off phenomenon and which is scarcely susceptible to extraction of components even when in contact with molten low alkali glass and, hence, is less susceptible to cracking during operation. The highly zirconia-based refractory that includes, as chemical components by mass %, from 85 to 95% of ZrO2 in terms of inner percentage, from 3.0 to 10% of SiO2 in terms of inner percentage, from 0.85 to 3.0% of Al2O3 in terms of inner percentage, substantially no Na2O, from 0.01 to 0.5% of K2O in terms of outer percentage, from 1.5 to 3.0% of SrO in terms of inner percentage, and from 0.1 to 2.0% of Nb2O5 and/or Ta2O5 as a value obtained by [(Nb2O5 content)+(Ta2O5 content/1.66)], in terms of inner percentage.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: September 18, 2012
    Assignee: Asahi Glass Company, Limited
    Inventor: Hironori Sato
  • Publication number: 20120216566
    Abstract: The present invention provides a method for identifying a glass defect source, whereby a glass defect source can directly be identified without using a mathematical simulation. The method for identifying a glass defect source, which comprises a step of constructing a glass melting furnace by using, as lining furnace material, a fusion cast refractory containing at least one tracer component selected from Cs2O, SrO, BaO and ZnO, a step of melting a glass material by the glass melting furnace and forming the molten glass material to produce glass products, and a step of extracting one having a glass defect from the glass products and analyzing its component composition to determine the position of a glass defect source in the glass melting furnace.
    Type: Application
    Filed: October 21, 2010
    Publication date: August 30, 2012
    Applicants: AGC GLASS EUROPE, AGCC
    Inventors: Toshihiro Ishino, Yukihiro Ushimaru, Shinya Hayashi, Jean-Pierre Meynckens
  • Patent number: 8242037
    Abstract: Methods of making and compositions of dense sintered ceramic nano- and micro-composite materials that are highly stable in a variety of conditions and exhibit superior toughness and strength. Liquid feed flame spray pyrolysis techniques form a plurality of nanoparticles (e.g., powder), each having a core region including a first metal oxide composition comprising Ce and/or Zr or other metals and a shell region including a second metal oxide composition comprising Al or other metals. In certain aspects, the core region comprises a partially stabilized tetragonal ZrO2 and the shell region comprises an ?-Al2O3 phase. The average actual density of the ceramic after sintering is greater than 50% and up to or exceeding 90% of a theoretical density of the ceramic.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: August 14, 2012
    Assignee: The Regents of the University of Michigan
    Inventors: Richard M. Laine, Min Kim
  • Patent number: 8227365
    Abstract: The present invention provides biocidal ceramic compositions incorporating a bioactive ionic species that is chemically bound in a substantially single-phase, crystalline, [NZP]-type structure, methods for producing the crystalline structures, and articles of manufacture incorporating the crystalline structures, and uses of the articles of manufacture. Bioactive ionic species can be, but are not limited to, Ag, Cu, Ni, Zn, Mn, Sn, Co, H, and combinations thereof.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: July 24, 2012
    Inventor: Ramachandran Nageswaran
  • Publication number: 20120183790
    Abstract: This invention relates to thermal spray composite coatings on a metal or non-metal substrate. The thermal spray composite coatings comprise a ceramic composite coating having at least two ceramic material phases randomly and uniformly dispersed and/or spatially oriented throughout the ceramic composite coating. At least a first ceramic material phase is present in an amount sufficient to provide corrosion resistance to the ceramic composite coating, and at least a second ceramic material phase is present in an amount sufficient to provide plasma erosion resistance to the ceramic composite coating. This invention also relates to methods of protecting metal and non-metal substrates by applying the thermal spray coatings. The composite coatings provide erosion and corrosion resistance at processing temperatures higher than conventional processing temperatures used in the semiconductor etch industry, e.g., greater than 100° C.
    Type: Application
    Filed: July 12, 2011
    Publication date: July 19, 2012
    Inventors: Christopher Petorak, Graeme Dickinson, Neill Jean McDill
  • Publication number: 20120122651
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Application
    Filed: April 27, 2007
    Publication date: May 17, 2012
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman, James Munroe
  • Patent number: 8173562
    Abstract: The invention relates to compositions based on Ce-stabilized ZrO2, and single- and multi-colored blanks made from oxide ceramics, and a process for their preparation, in which oxide ceramic powder is coated with a coloring substance, the coated powders are preferably graded and at least one colored powder is filled into a compression mould, the colored powder or powders are compressed to produce a shaped body, and the compressed shaped body is sintered to produce a blank, and to the use of these blanks for the preparation of dental restorations. The compositions exhibit high fracture toughness and high flexural strength.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: May 8, 2012
    Assignee: Ivoclar Vivadent AG
    Inventors: Wolfram Höland, Christian Ritzberger, Elke Apel, Frank Rothbrust, Jerome Chevalier, Dmitri Brodkin
  • Patent number: 8168554
    Abstract: The invention relates to a molten ceramic particle, characterized in that it has the following chemical composition in wt % based on oxides and for a total of 100%: 55%<ZrO2+HfO2<70%; 20%<SiO2<30%; 6.5%<MgO<9.5%; Al2O3 in an amount such that the mass ratio MgO/Al2O3 is comprised between 2.4 and 6.6; and less than 0.6% of other oxides.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: May 1, 2012
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Yves Boussant-Roux, Emmanuel Nonnet
  • Publication number: 20120096822
    Abstract: Fused particles containing, by weight percent: more than 15% but less than 55% of Al2O3; more than 20% but less than 45% of TiO2; more than 3% but less than 30% of SiO2; less than 20%, in total, of at least one oxide selected from the group consisting of ZrO2, Ce2O3, and HfO2; less than 1% of MgO; and more than 1% but less than 15%, in total, of at least one selected from the group consisting of CaO, Na2O, K2O, SrO, B2O3, and BaO. Also, a ceramic product or material obtained by sintering the fused particles.
    Type: Application
    Filed: June 25, 2010
    Publication date: April 26, 2012
    Applicant: SAINT-GOBAIN CENTRE DE RECH. ET D'ETUDES EUROPEEN
    Inventor: Stephane Raffy
  • Patent number: 8143182
    Abstract: The present invention provides a fused ceramic particle, having the following chemical composition, in percentages by weight based on the oxides and for a total of 100%: 50%<ZrO2+HfO2<70%; 10%<SiO2<30%; 6.5%<MgO<9.5%; Al2O3 in a quantity such that the MgO/Al2O3 weight ratio is in the range 2.4 to 6.6; 0.1%<Y2O3; CeO2<10%; and less than 0.6% of other oxides. Use in particular as milling agents, wet medium dispersion agents, propping agents, heat exchange agents, or for the treatment of surfaces.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: March 27, 2012
    Assignee: Saint-Gobain Centre de Recherches Et d'Etudes Europeen
    Inventors: Yves Boussant-Roux, Emmanuel Nonnet
  • Publication number: 20120046156
    Abstract: A fused and cast refractory product including, in mass percentages on the basis of the oxides and for a total of 100% of the oxides: ZrO2 + Hf2O: balance to 100%; SiO2: ?7.0% to 11.0%; Al2O3: 0.2% to 0.7%; Na2O + K2O: <0.10%; B2O3: 0.3% to 1.5%; CaO + SrO + MgO + ZnO + BaO: ?<0.4%; P2O5: <0.15%; Fe2O3 + TiO2: <0.55%; Other oxide species: ?<1.5%; the mass content of a dopant selected from Nb2O5, Ta2O5 and mixtures thereof being of less or equal to 1.0%, and the A/B ratio of the Al2O3/B2O3 mass contents being less than or equal to 2.0.
    Type: Application
    Filed: February 24, 2010
    Publication date: February 23, 2012
    Applicant: Saint-Gobain Centre de Recherches et D'etudes Europeen
    Inventors: Michel Gaubil, Isabelle Cabodi, Sophie Papin
  • Publication number: 20120036895
    Abstract: A highly zirconia-based refractory suitable for an electric melting furnace, which has a high electrical resistivity and does not exhibit a chipping off phenomenon and which is scarcely susceptible to extraction of components even when in contact with molten low alkali glass and, hence, is less susceptible to cracking during operation. The highly zirconia-based refractory that includes, as chemical components by mass %, from 85 to 95% of ZrO2 in terms of inner percentage, from 3.0 to 10% of SiO2 in terms of inner percentage, from 0.85 to 3.0% of Al2O3 in terms of inner percentage, substantially no Na2O, from 0.01 to 0.5% of K2O in terms of outer percentage, from 1.5 to 3.0% of SrO in terms of inner percentage, and from 0.1 to 2.0% of Nb2O5 and/or Ta2O5 as a value obtained by [(Nb2O5 content)+(Ta2O5 content/1.66)], in terms of inner percentage.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 16, 2012
    Applicant: ASAHI GLASS COMPANY LIMITED
    Inventor: Hironori SATO
  • Publication number: 20120018007
    Abstract: A powder including: (a) more than 92% of zircon particles, (b) 1% to 2% of silica particles having a size less than 50 microns; (c) 0.3% to 5% of particles comprising one, two, or three oxides selected from CaO, MgO, and Y2O3; (d) less than 1% of particles comprising other oxides; the powder also being such that it includes: more than 5% of zircon aggregate particles having a size greater than 1 mm; and 8% to 20% of zircon matrix particles having a size less than 15 ?m and including, for more than 95% of the weight thereof, a monoclinic phase.
    Type: Application
    Filed: March 10, 2010
    Publication date: January 26, 2012
    Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET' D'ETUDES EUROPEEN
    Inventors: Franceline Villermaux, Thibault Champion, Christian His
  • Publication number: 20110283742
    Abstract: The present invention provides a fused refractory product having the following average chemical composition, as a % by weight based on the oxides and for a total of 100%; ZrO2: 30%-46%; SiO2: 10%-16%; Al2O3: complement to 100%; Y2O3?50/ZrO2 and Y2O3?5%; Na2O+K2O: 0.5%-4%; CaO: ?0.5%; and other species: ?1.5%. Application to a glass-melting furnace.
    Type: Application
    Filed: December 17, 2009
    Publication date: November 24, 2011
    Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventor: Micaela Alasia
  • Publication number: 20110277951
    Abstract: [OBJECT] In an operation of continuous casting of steel grade such as aluminum-killed steel where a nozzle clogging phenomenon is particularly likely to occur, it is intended to prevent adhesion of inclusions (typically, Al2O3) on a nozzle used in the casting operation, and clogging of the nozzle due to the inclusions [SOLUTION] A refractory material 10 is arranged to define a part or an entirety of a molten steel-contacting surface of a continuous casting nozzle, wherein the refractory material 10 contains: a CaO component in an amount of 0.5 mass % or more; one or both of B2O3 and R2O (R is one selected from the group consisting of Na, K and Li) in an amount of 0.5 mass % or more; Al2O3 in an amount of 50 mass % or more; and free carbon in an amount of 8.0 to 34.5 mass %, and wherein a total amount of CaO, B2O3 and R2O is in the range of 1.0 to 15.0 mass %, and a mass ratio of CaO/(B2O3+R2O) is in the range of 0.1 to 3.0.
    Type: Application
    Filed: May 13, 2010
    Publication date: November 17, 2011
    Applicant: KROSAKIHARIMA CORPORATION
    Inventors: Katsumi MORIKAWA, Akinari SASAKI, Hiroshi OTSUKA, Yuichi Tsukaguchi
  • Publication number: 20110237420
    Abstract: A material mixture for producing a fireproof material, including spinel and zirconium oxide and a coarse-grained fraction with a weight fraction of greater than 50% and a fine-grained fraction, wherein the coarse-grained fraction includes coarse grains with dimensions larger than 20 ?m and the fine-grained fraction includes fine grains with dimensions smaller than 20 ?m.
    Type: Application
    Filed: September 21, 2009
    Publication date: September 29, 2011
    Inventors: Holger Grote, Wolfgang Kollenberg, Christian Nikasch, Dieter Nikolay
  • Publication number: 20110212826
    Abstract: The invention provides a fused cast refractory product with a high zirconia content comprising, as. a percentage by weight based on the oxides: ZrO2+Hf2O: >85%; SiO2: 6% to 12%; Al2O3: 0.4% to 1%; Y2O3: 0.2%; a dopant selected from the group formed by Nb2O5, Ta2O5, and mixtures thereof, in a quantity such that the molar ratio ZrO2/(Nb2O5+Ta2O3) is in the range 200 to 350.
    Type: Application
    Filed: August 21, 2008
    Publication date: September 1, 2011
    Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Isabelle Cabodi, Michel Gaubil
  • Patent number: 8002885
    Abstract: Dental articles are produced using relatively low sintering temperatures to achieve high density dental articles exhibiting strengths equal to and greater than about 700 MPa. Ceramic powders comprised of nanoparticulate crystallites are used to manufacture dental articles. The ceramic powders may include sintering agents, binders and other similar additives to aid in the processing of the ceramic powder into a dental article. The ceramic powders may be processed into dental articles using various methods including, but not limited to, injection molding, gel-casting, slip casting, or electroforming, hand, cad/camming and other various rapid prototyping methods. The ceramic powder may be formed into a suspension, pellet, feedstock material or a pre-sintered blank prior to forming into the dental article.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: August 23, 2011
    Assignee: Pentron Ceramics, Inc.
    Inventors: Dmitri Brodkin, Moisey Y. Gamarnik
  • Patent number: 7989381
    Abstract: A fusion-cast refractory product based on zirconium dioxide is provided. The zirconium dioxide crystals are stabilized by magnesium oxide and surrounded by at least one magnesium oxide-containing crystalline phase. The content of magnesium oxide-containing crystalline phases, relative to the total mass of the product, amounts to 1 to 8 wt. %. In an example, the stabilized zirconium dioxide crystals are surrounded by at least one of the following magnesium oxide-containing crystalline phases: forsterite, enstatite, cordierite or spinel.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: August 2, 2011
    Assignee: Refractory Intellectual Property GmbH & Co. KG
    Inventors: Roland Nilica, Klaus Santowski
  • Publication number: 20110166008
    Abstract: Fused and cast refractory product including on oxides basis in percent by weight and for a total of 100%: ZrO2+HfO2 complement to 100%; 3.5% to 6.0% SiO2; 0.7% to 1.5% Al2O3; 0.10% to 0.43% Na2O+K2O; 0.05% to 0.80% B2O3; less than 0.4% CaO+SrO+MgO+ZnO; less than 0.05% P2O5; less than 0.55% Fe2O3+TiO2; less than 1.5% other species. The ratio of percentages by weight of Al2O3/(Na2O+K2O) being greater than or equal to 3.5 and the ratio of percentages by weight of B2O3/(Na2O+K2O) being between 0.3 and 2.5.
    Type: Application
    Filed: June 16, 2009
    Publication date: July 7, 2011
    Applicant: Saint-Gobain Centre De Recherches Et D'Etudes Europeen
    Inventors: Michel Gaubil, Ludovic Massard
  • Publication number: 20110162374
    Abstract: An article, such as a bucket, a blade, a nozzle, a vane, a strut, a fuel nozzle, a combustion casing, and a transition piece, the article having a damping coating comprising approximately 8 wt % to approximately 15 wt % Y2O3 and approximately 19 wt % to approximately 28 wt % Ta2O5 with the balanced weight of ZrO2 is presented.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 7, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John McConnell Delvaux, Yuk-Chiu Lau
  • Publication number: 20110129784
    Abstract: The present disclosure relates to a silica-based crucible material that includes, before sintering or firing, selected amounts of a thermal expansion stabilizer component (B2O3 and Ca2SiO4) which impart improved thermal shock resistance and enhanced ability to withstand repeated thermal cycling, to a sintered or fired crucible made of the material. An illustrative embodiment of the invention provides a crucible material whose chemical composition comprises, in weight %, about 91% to about 98% SiO2, about 1% to about 8% thermal stabilizer component, and up to about 1.0% of additional oxides including MgO, Al2O3 Fe2O3, CaO and ZrO2.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 2, 2011
    Inventors: James Crawford Bange, Michael E. Collier, David I. Seymour, Ronald Leroy Stewart, Christopher L. Thomas
  • Publication number: 20110107796
    Abstract: The present invention relates to a sintered product elaborated from a starting charge containing 75-99% of zircon, in mass percentage based on the oxides and having the following average weight chemical composition, in mass percentages based on the oxides 60%?ZrO2?72.8%, 27%?SiO2?36%, 0.1%?B2O3+GeO2+P2O5+Sb2O3+Nb2O5+Ta2O5+V2O5, 0.1%?ZnO+PbO+CdO, B2O3+GeO2+P2O5+Sb2O3+Nb2O5+Ta2O5+V2O5+ZnO+PbO+CdO?5% 0% ?Al2O3+TiO2+MgO+Fe2O3+NiO+MnO2+CoO+CuO?5%, other oxides: ?1.5%, for a total of 100%. Notably used in a glass furnace.
    Type: Application
    Filed: April 14, 2009
    Publication date: May 12, 2011
    Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Olivier Citti, Julien Fourcade
  • Publication number: 20110077141
    Abstract: A spark plug includes an insulator formed of a ceramic material. The ceramic material comprises Al2O3 in an amount of 98.00 wt % to 99.50 wt %; Group 2 oxides in an amount of 0.16 wt % to 0.70 wt %; SiO2 in an amount of 0.25 wt % to 0.75 wt %, Group 4 oxides in an amount of 0.01 wt % to 0.16 wt %, Group 1 oxides in an amount less than 0.0060 wt %, and P2O5 in an amount of less than 0.0040 wt %. The Al2O3 is formed of particles having a D50 median particle size by volume of 1.2 ?m to 1.8 ?m. The ceramic material is pressed, sintered, and formed to a predetermined shape. The sintered ceramic material includes a glass phase comprising the Al2O3, Group 2 oxides, and SiO2. The sintered ceramic material also includes secondary crystals of calcium hexa-aluminate (CaAl12O19) spinel (MgAl2O4), anorthite (CaAl2Si2O8), and mullite (Al6Si2O13).
    Type: Application
    Filed: August 26, 2010
    Publication date: March 31, 2011
    Inventors: William J. Walker, Michael E. Saccoccia
  • Publication number: 20100329882
    Abstract: Ceramic coatings for a component that is subjected to high temperatures, especially for a turbine blade are provided. The ceramic coatings contain one or more compounds that are selected from alkaline earth silicates, ZrV2O7 and Mg3(VO4)2. A layer system including at least one coating of the ceramic coating is also provided.
    Type: Application
    Filed: December 4, 2008
    Publication date: December 30, 2010
    Inventors: Jens Birkner, Knut Halberstadt, Eckart Schumann, Werner Stamm
  • Publication number: 20100292522
    Abstract: In one aspect, the invention includes a refractory material, said material comprising: (i) at least 20 wt. % of a first grain mode stabilized zirconia based upon the total weight of said material, said first grain mode having a D50 grain size in the range of from 5 to 2000 ?m, said stabilized zirconia including a matrix oxide stabilizer; (ii) at least 1 wt. % of a second grain mode having a D50 grain size in the range of from 0.01 ?m up to not greater than one-fourth the D50 grain size of said first grain mode zirconia, based upon the total weight of said material; and (iii) at least 1 wt. % of a preservative component within at least one of said first grain mode stabilized zirconia, said second grain mode stabilized zirconia, and an optional another grain mode; wherein after sintering, said material has porosity at 20° C. in the range of from 5 to 45 vol %.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 18, 2010
    Inventors: ChangMin Chun, Frank Hershkowitz
  • Publication number: 20100290978
    Abstract: In one aspect, the invention includes a refractory material for a pyrolysis reactor for pyrolyzing a hydrocarbon feedstock, the refractory material comprising an yttria stabilized zirconia, the refractory material comprising at least 21 wt. % yttria based upon the total weight of the refractory material. In another aspect, this invention includes a method for mitigating carbide corrosion while pyrolyzing a hydrocarbon feedstock at high temperature using a pyrolysis reactor system comprising the steps of: (a) providing a pyrolysis reactor system comprising stabilized zirconia in a heated region of the reactor, the stabilized zirconia including at least 21 wt. % yttria and having porosity of from 5 vol. % to 28 vol. %; (b) heating the heated region to a temperature of at least 1500° C.; and (c) pyrolyzing a hydrocarbon feedstock within the heated region.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 18, 2010
    Inventors: ChangMin Chun, Frank Hershkowitz
  • Patent number: 7806694
    Abstract: Dental articles are produced using relatively low sintering temperatures to achieve high density dental articles exhibiting strengths equal to and greater than about 700 MPa. Ceramic powders comprised of nanoparticulate crystallites are used to manufacture dental articles. The ceramic powders may include sintering agents, binders and other similar additives to aid in the processing of the ceramic powder into a dental article. The ceramic powders may be processed into dental articles using various methods including, but not limited to, injection molding, gel-casting, slip casting, or electroforming, hand, cad/camming and other various rapid prototyping methods. The ceramic powder may be formed into a suspension, pellet, feedstock material or a pre-sintered blank prior to forming into the dental article.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: October 5, 2010
    Assignee: Pentron Ceramics, Inc.
    Inventors: Dmitri Brodkin, Moisey Y. Gamarnik
  • Publication number: 20100248933
    Abstract: The invention concerns a fireproof (refractory) ceramic mix (batch), a fireproof (refractory) ceramic molded body (workpiece) formed of that mix and the use of the molded body.
    Type: Application
    Filed: November 7, 2008
    Publication date: September 30, 2010
    Applicant: REFRACTORY INTELLECTUAL PROPERTY GMBH & CO. KG
    Inventors: Johann Eder, Gerald Gelbmann
  • Patent number: 7799716
    Abstract: The present invention provides a low density and porous zirconia (ZrO2) powder partially alloyed with one or more of yttria, scandia, dysprosia, ytterbia, or any of the oxides of lanthanide or actinide. The total amount of alloying oxides should be less than about 30 weight percent. The powder is manufactured by controlled sintering or light plasma densification of physically agglomerated, or chemically derived zirconia composite powder that contains proper amounts of yttria, scandia, dysprosia, ytterbia, or any of the oxides of lanthanide or actinide, or any combination of the aforementioned oxides. The resulting coating from use of the inventive powder has a monoclinic phase content of less than 5 percent.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: September 21, 2010
    Assignee: Sulzer Metco (US), Inc.
    Inventors: Michael Mueller, Mitchell R. Dorfman, Liangde Xie
  • Publication number: 20100233497
    Abstract: A non-conductive ceramic material contains a base ceramic material and at least one other ceramic material having a lower coefficient of thermal expansion than that of the base material so that the coefficient of thermal expansion of the non-conductive ceramic material is identical to that of a metallic material to which it will be matched. Methods of making and using same are disclosed.
    Type: Application
    Filed: April 8, 2008
    Publication date: September 16, 2010
    Inventors: Alfred Thimm, Jürgen Ruska, Johannes Ernst, Stefan Stolz
  • Publication number: 20100179050
    Abstract: The present invention discloses a method that can improve the sintering ability of calcium sulfate. The material can be used as a bio-material. This method is prepared by pre-mixing +1 and/or +2 and/or +3 and/or +4 and/or +5 valence element and/or its chemical compounds which serves as a sintering additive to calcium sulfate. During sintering, the sintering additive may form a compound and/or a glass and/or a glass-ceramic to assist the densification of the calcium sulfate. The strength and biocompatibility of the specimen after sintering are satisfactory.
    Type: Application
    Filed: November 23, 2009
    Publication date: July 15, 2010
    Inventors: Wei-Hsing TUAN, Shu-ting KUO
  • Publication number: 20100152018
    Abstract: Hardness, ageing resistance, wetting behavior in relating to water and high thermal conductivity are known characteristics of sintered molded bodies consisting of aluminum oxide; high strength and a high resistance to cracking, i.e., damage tolerance are known characteristics of sintered molded bodies consisting of zirconium oxide. These properties are combined in a material having a large fraction of aluminum oxide, zirconium oxide and optionally strontium aluminate.
    Type: Application
    Filed: April 25, 2008
    Publication date: June 17, 2010
    Inventors: Meinhard Kuntz, Ana Herrán Fuertes, Kilian Friederich, Norbert Schneider
  • Publication number: 20100137972
    Abstract: A sintered molded body consisting of a material that contains aluminum oxide with chromium doping, zirconium oxide with Y-stabilization and strontium aluminates with variable Cr-doping, which is particularly suitable for medical applications.
    Type: Application
    Filed: April 25, 2008
    Publication date: June 3, 2010
    Inventors: Meinhard Kuntz, Ana Herrán Fuertes, Kilian Friederich, Norbert Schneider
  • Patent number: 7713465
    Abstract: Provided is a process for producing a MnZn-base ferrite comprising: firing a compacted raw material to produce the MnZn-base ferrite, wherein the firing comprises, in the following order: a heating phase comprising gradually bringing a firing temperature from room temperature up to a maximum temperature; a maximum temperature holding phase comprising maintaining the maximum temperature for a period of time, wherein a partial pressure of oxygen (p2) at the maximum temperature holding phase is greater than an equilibrium partial pressure of oxygen (p1) as follows: p2>p1, wherein the equilibrium partial pressure of oxygen (p1) is represented by the following equation: log(p1)=log(PO2)=a?b/T, wherein PO2 is measured in a unit of %, and T is measured in a unit of absolute temperature K; and a cooling phase comprising gradually bringing the maximum temperature down to near room temperature, wherein a partial pressure of oxygen (p3) at the cooling phase is operated at an equilibrium partial pressure of oxygen bas
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: May 11, 2010
    Assignee: TDK Corporation
    Inventors: Shenglei Che, Kentaro Mori, Masahiko Watanabe, Takuya Aoki, Tomofumi Kuroda
  • Patent number: 7700034
    Abstract: Slip containing at least one aluminium oxide powder and at least one unstabilized zirconium dioxide powder, wherein a) the zirconium dioxide powder i) has a mean particle diameter of less than 300 nm, ii) shows only the monoclinic phase and the tetragonal phase in the X-ray diffraction pattern, with the proportion of tetragonal phase at room temperature being from 20 to 70%, and iii) is present in a proportion of from 2 to 20% by weight, based on the total amount of the slip, b) the aluminium oxide powder i) has a mean particle diameter of more than 300 nm and ii) is present in a proportion of from 80 to 98% by weight, based on the total amount of the slip, and c) the solids content, as the sum of aluminium oxide and zirconium dioxide, is from 50 to 85% by weight, based on the total amount of the slip.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: April 20, 2010
    Assignee: Evonik Degussa GmbH
    Inventors: Monika Oswald, Klaus Deller, Wolfgang Kollenberg, Dieter Nikolay
  • Publication number: 20100093516
    Abstract: A pyrochlore ceramic material and a thermal barrier coating containing pyrochlore ceramic materials are provided. Using the thermal barrier coating in a single or double layer which includes magnesium and/or titanium can improve the spallation behaviour and the thermal expansion coefficient of the component onto which the thermal barrier coating is applied.
    Type: Application
    Filed: June 21, 2007
    Publication date: April 15, 2010
    Inventors: Thomas Malow, Matthias Oechsner
  • Publication number: 20100089098
    Abstract: Sintered product produced from a starting charge containing 75 to 99% zircon, and having the following average chemical composition by weight, the percentages by weight being based on the oxides: 60%<ZrO2+HfO2<75%; 27%<SiO2<34%; O<TiO2; O<Y2O3<3.5%; 0.1%<Nb2O5+Ta2O5<=5%; and other oxides: <1.5%; for a total of 100%, The sintered product may be used in a glass furnace.
    Type: Application
    Filed: October 15, 2007
    Publication date: April 15, 2010
    Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Olivier Citti, Julien Fourcade
  • Publication number: 20100062386
    Abstract: The present invention relates to a basic-refractory composition containing magnesium orthotitanate (Mg2TiO4) and calcium titanate (CaTiO3) suitable for use in rotating kilns for the production of Portland cement or lime.
    Type: Application
    Filed: October 31, 2007
    Publication date: March 11, 2010
    Inventor: Luís Leonardo Horne Curimbaba Ferreira
  • Publication number: 20100048376
    Abstract: Process for preparing granules of oxidic or nonoxidic metal compounds, characterized in that a dispersion which comprises water, oxidic or nonoxidic metal compounds and at least one dispersant is spray-dried,—where the proportion of oxidic or nonoxidic metal compounds is 40 to 70% by weight and the sum of the proportions of water and the particles is at least 70% by weight and—the particles have a BET surface area of 20 to 150 m2/g and a median of the particle size of less than 100 nm,—where the dispersant is present in the dispersion with a proportion of 0.25 to 10% by weight based on the oxidic or nonoxidic metal compounds and—where the spray-drying is performed by atomization with air in the cocurrent principle or fountain principle, and an air inlet temperature of 170 to 300° C. and an air outlet temperature of 90 to 130° C. are selected.
    Type: Application
    Filed: November 8, 2007
    Publication date: February 25, 2010
    Applicants: EVONIK DEGUSSA GmbH, FRAUNHOFER-GESELL. ZUR FOERD. DER ANG. FORS. E.V.
    Inventors: Monika Oswald, Klaus Deller, Tassilo Moritz, Manfred Nebelung
  • Publication number: 20100048377
    Abstract: The invention relates to a fusion-cast refractory product based on zirconium dioxide.
    Type: Application
    Filed: February 26, 2008
    Publication date: February 25, 2010
    Applicant: REFRACTORY INTELLECTUAL PROPERTY GMBH & CO. KG
    Inventors: Roland Nilica, Klaus Santowski
  • Publication number: 20100041542
    Abstract: A translucent zirconia sintered body, a dental article comprising a shaped, translucent zirconia body, a zirconia green body, and methods of making a translucent zirconia sintered body, methods of making a dental article comprising a shaped, translucent zirconia body, and methods of making a zirconia green body are described.
    Type: Application
    Filed: December 28, 2007
    Publication date: February 18, 2010
    Inventors: Jacqueline C. Rolf, Martin Goetzinger, Holger Hauptmann, Peter Bissinger, Ruediger Franke
  • Publication number: 20100016145
    Abstract: The invention relates to a molten ceramic particle, characterized in that it has the following chemical composition in wt % based on oxides and for a total of 100%: 55%<ZrO2+HfO2<70%; 20%<SiO2<30%; 6.5%<MgO<9.5%; Al2O3 in an amount such that the mass ratio MgO/Al2O3 is comprised between 2.4 and 6.6; and less than 0.6% of other oxides.
    Type: Application
    Filed: October 11, 2007
    Publication date: January 21, 2010
    Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Yves Boussant-Roux, Emmanuel Nonnet
  • Patent number: 7642210
    Abstract: A zirconia porous body with excellent stability of heat resistance is manufactured. This relates to a zirconia porous body having peaks at pore diameters of 8 to 20 nm and 30 to 100 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more, and to a zirconia porous body having a peak at a pore diameters of 20 to 110 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: January 5, 2010
    Assignee: Daiichi Kigenso Kagaku Kogyo Co., Ltd.
    Inventor: Hiroshi Okamoto
  • Patent number: 7632769
    Abstract: A zirconia porous body with excellent stability of heat resistance is manufactured. This relates to a zirconia porous body having peaks at pore diameters of 8 to 20 nm and 30 to 100 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more, and to a zirconia porous body having a peak at a pore diameters of 20 to 110 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: December 15, 2009
    Inventor: Hiroshi Okamoto
  • Patent number: 7629389
    Abstract: A production method of an alkaline zirconia sol including: a process (I) in which an alkaline zirconia sol (A) is mixed with a basic zirconium carbonate salt (B1), the alkaline zirconia sol (A) being obtained by: a sub-process (i) in which a zirconium salt (B2) is heated at 60 to 110° C. in an aqueous medium containing a carbonate salt of quaternary ammonium; and a sub-process (ii) in which a hydrothermal treatment is performed at 110 to 250° C. following the sub-process (i).
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: December 8, 2009
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yutaka Ohmori, Hirokazu Kato, Kenji Yamaguchi
  • Patent number: 7625653
    Abstract: A material which conducts protons or oxide ions with high ionic conductivity and is excellent in moisture resistance and reduction resistance is provided. A perovskite oxide represented by the formula (1): BaZraCebM1cL1dO3-???(1) (wherein M1 is at least one member selected from the group consisting of rare earth elements, In, Mn, Fe, Co, Ni, Al and Ga, L1 is at least one member selected from the group consisting of P, B and N and a, b, c, d and a satisfy 0?a<1.2, 0<b<1.2, 0<c<1.2, 0.9<a+b+c<1.2, 0<d<0.1 and 0<?<3) is used as an ionic conductor.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: December 1, 2009
    Assignee: Panasonic Corporation
    Inventors: Tomohiro Kuroha, Noboru Taniguchi