Zirconium Oxide Patents (Class 501/103)
  • Patent number: 10676399
    Abstract: Provided in one implementation is a method of manufacturing a three-dimensional object. The method can include depositing a substantially uniform layer of raw material onto a substrate. The raw material can include ceramic particles. The method can include selectively fusing particles of the raw material to form a first layer of the object. The method can include clearing non-fused particles of the raw material from the first layer of the object. The method can include repeating the steps of depositing a raw material, selectively fusing particles of the raw material, and clearing non-fused particles of the raw material to form additional layers of the object above the first layer.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: June 9, 2020
    Assignee: Applied Cavitation, Inc.
    Inventors: Joseph Albert Capobianco, Dana Lynn Hankey, Marshall Campion Tibbetts, Timothy Fahey
  • Patent number: 10626055
    Abstract: Metal oxide particles, such as molded particles, as well as methods of making and articles containing the same. The particles can contain at least 70 mol percent ZrO2, and can be made by a molding process.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: April 21, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Kathleen M. Humpal, Brant U. Kolb, Margaret M. Vogel-Martin, Mark J. Hendrickson
  • Patent number: 10617495
    Abstract: The invention relates to a dental milling block (1) comprising a dental article (2) having an outer surface, the dental article having been produced based on personalized data, wherein the outer surface of the dental article is at least partially covered with a surrounding material. The invention further relates to a process of producing a dental milling block, the process comprising the steps of: ?a) providing a personalized Data Set C containing geometry data of the dental article and colour data related to said geometry data, ?b) generating a layer of hardenable material on a surface, ?c) applying a colour agent to the layer of hardenable material of step b), wherein the colour agent is applied to at least some regions of those areas of the layer of hardenable material which are related to the geometry data of the dental article, ?d) consolidating the result obtained in step c) thereby obtaining an at least partially hardened layer of material.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: April 14, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Malte Korten, Helmar Mayr, Gallus Schechner, Christoph Thalacker, Karsten Dede, Michael Jahns
  • Patent number: 10612121
    Abstract: An article comprises a body and at least one final plasma resistant coating layer on at least one surface of the body. The at least one final plasma resistant coating layer is a mixture of a ScF3 and an initial plasma resistant coating material selected from the group consisting of YF3, Y2O3, a compound of Y4Al2O9, a solid-solution of Y2O3—ZrO2, CaF2, MgF2, SrF2, AlF3, ErF3, LaF3, NdF3, ScF3, CeF4, ZrF4, and combinations thereof. The at least one final plasma resistant coating layer has a thermal expansion coefficient that is within about 20% of the thermal expansion coefficient of the body.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Chengtsin Lee, Jennifer Y. Sun
  • Patent number: 10610460
    Abstract: Zirconia dental ceramics exhibiting opalescence and having a grain size in the range of 10 nm to 300 nm, a density of at least 99.5% of theoretical density, a visible light transmittance at or higher than 45% at 560 nm, and a strength of at least 800 MPa.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: April 7, 2020
    Assignee: Ivoclar Vivadent, Inc.
    Inventors: Dmitri Brodkin, Yijun Wang, Ling Tang, Ajmal Khan, Anna B. Verano
  • Patent number: 10532951
    Abstract: A sintered material includes a first material and a second material, the first material being partially stabilized ZrO2 having a crystal grain boundary or crystal grain in which 5 to 90 volume % of Al2O3 is dispersed with respect to a whole of the first material, the second material including at least one of SiAlON, silicon nitride and titanium nitride, the sintered material including 1 to 50 volume % of the first material.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: January 14, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kentaro Chihara, Satoru Kukino, Akito Ishii
  • Patent number: 10463457
    Abstract: A dental block for producing a dental prosthesis comprises a green body including zirconia and having a chemical composition comprising between 6.0 wt % to 20 wt % of yttria (Y2O3). The green body is subsequently sinterable, with regular sintering in air and with no post HIP processing, to product a translucent sintered body with a total light transmittance of at least 36% to light with a wavelength of 400 nm at a thickness of 0.6 mm.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: November 5, 2019
    Inventors: Yunoh Jung, Daniel Yonil Jung
  • Patent number: 10336653
    Abstract: A refractory object may include a Cr2O3 content of at least about 80 wt. % of a total weight of the refractory object, an Al2O3 content of at least about 0.7 wt. % and not greater than about 10.0 wt. % of the total weight of the refractory object, a SiO2 content of at least about 0.3 wt. % and not greater than about 5.0 wt. % of the total weight of the refractory object and a TiO2 content of at least about 1.0 wt. % and not greater than about 5.6 wt. % TiO2 of the total weight of the refractory object. The refractory object may further include an MOR of at least about 37 MPa as measured at 1200° C.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: July 2, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kristen E. Pappacena, Julien P. Fourcade
  • Patent number: 10315958
    Abstract: The present invention is directed to a porous pre-densified CeO2 stabilized ZrO2 ceramic having a density of 50.0 to 95.0%, relative to the theoretical density of zirconia, and an open porosity of 5 to 50% as well as to ceramic having a density of 97.0 to 100.0%, relative to the theoretical density of zirconia, and wherein the grains of the ceramic have an average grain size of 50 to 1000 nm, methods for the preparation of the pre-densified and densified ceramics and their use for the manufacture of dental restorations.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: June 11, 2019
    Assignee: Ivoclar Vivadent AG
    Inventors: Christian Ritzberger, Frank Rothbrust, Marcel Schweiger, Nicolas Courtois, Jérôme Chevalier, Helen Reveron, Wolfram Höland, Volker Rheinberger
  • Patent number: 10273191
    Abstract: Provided is a zirconia sintered body having both high translucency and high strength. The zirconia sintered body includes crystal grains that include a cubic domain and a tetragonal domain, wherein a stabilizer and lanthanum is dissolved as a solid solution therein. The sintered body can be obtained by a manufacturing method including: a mixing step of obtaining a mixed powder by mixing a zirconia source, a stabilizer source, and a lanthanum source; a molding step of obtaining a green body by molding the obtained mixed powder; a sintering step of obtaining a sintered body by sintering the obtained green body at a sintering temperature of 1650° C. or higher; and a temperature lowering step of lowering the temperature from the sintering temperature to 1000° C. at a temperature lowering rate exceeding 1° C./min.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: April 30, 2019
    Assignee: TOSOH CORPORATION
    Inventors: Isao Yamashita, Yuya Machida
  • Patent number: 10150707
    Abstract: A method for producing a thermal spray powder includes: a preparing step of preparing a powder mixture containing a first particle made from zirconia-based ceramic containing a first additive agent and a second particle made from zirconia-based ceramic containing a second additive agent, the powder mixture having a 10% cumulative particle diameter of more than 0 ?m and not more than 10 ?m; and a secondary-particle producing step of producing a plurality of secondary particles each of which includes the first particle and the second particle sintered with each other.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: December 11, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Taiji Torigoe, Ichiro Nagano, Yoshifumi Okajima, Ikuo Okada, Masahiko Mega, Yoshitaka Uemura, Naotoshi Okaya, Shusuke Sakuma
  • Patent number: 10125051
    Abstract: A cordierite-based sintered body comprises cordierite as a primary crystal phase and LaMgAl11O19 as a secondary crystal phase, wherein a ratio ILMA (114)/IMAS (004) is in the range of 0.01 to 0.8, where the ILMA (114) denotes a peak intensity of a (114) plane of LaMgAl11O19 as measured by powder X-ray diffractometry, and the IMAS (004) denotes a peak intensity of a (004) plane of cordierite as measured by powder X-ray diffractometry. The disclosure is intended to enhance mechanical property and improve complex and fine processability for a cordierite-based sintered body without compromising low thermal expansibility, high dimensional long-term stability, high stiffness (high elastic modulus) and precision polishing characteristic.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: November 13, 2018
    Assignee: KROSAKIHARIMA CORPORATION
    Inventor: Jun Sugawara
  • Patent number: 10093583
    Abstract: A process is described, for producing zirconia-based multi-phasic ceramic composite materials, comprising the steps of: providing at least one ceramic suspension by dispersing at least one ceramic zirconia powder in at least one aqueous medium to obtain at least one matrix for such composite material; providing at least one aqueous solution containing one or more inorganic precursors and adding such aqueous solution to such ceramic suspension to surface modify such ceramic zirconia powder and obtain at least one additived suspension; quickly drying such additived suspension to obtain at least one additived powder; heat treating such additived powder to obtain at least one zirconia powder coated on its surface by second phases; and forming such zirconia powder coated on its surface by second phases.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: October 9, 2018
    Assignees: Politecnico Di Torino, Centre National De La Recherche Scientifique, Decoram Medical Ceramica CMBH, Universite Claude Bernard Lyon, Institut National Des Sciences Appliquees De Lyon
    Inventors: Laura Montanaro, Paola Palmero, Jerome Chevalier, Helen Reveron, Tobias Fuerderer
  • Patent number: 10059629
    Abstract: A process for the production of a grey zirconia-based article wherein a first mixture includes a zirconia powder forming the base constituent, 4% to 15% by weight of at least one stabilizer selected from among the group of oxides including yttrium oxide, magnesium oxide and calcium oxide alone or in combination, 0.1% to 1% by weight of a vanadium oxide powder (V2O5), 0.1% to 1% by weight of a chromium oxide powder (Cr2O3) and 0.1% to 1% by weight of a silicon oxide powder (SiO2); making a second mixture including the first mixture and a binder; making a granulated mixture by conducting a granulation of the second mixture; forming a blank by giving this second granulated mixture the shape of the desired article; sintering the blank in air for at least thirty minutes at a temperature in the range of between 1250° and 1550° C.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: August 28, 2018
    Assignee: Comadur S.A.
    Inventors: Arnaud Actis-Datta, Damien Cartier
  • Patent number: 10047013
    Abstract: Zirconium oxide material and a sintered molded body produced from the material. The zirconium oxide is present in the tetragonal phase in an amount of 70 to 99.9 vol.-%. The tetragonal phase is chemically stabilized with rare-earth oxides. The sintered moldings can be used, e.g., in the medical field as implants or as dental prostheses.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: August 14, 2018
    Assignee: CeramTec GmbH
    Inventors: Meinhard Kuntz, Kilian Friederich, Lukas Gottwik, Andreas Morhardt, Juliane Ehrlich
  • Patent number: 10023796
    Abstract: An illumination system comprising a radiation source and a monolithic ceramic luminescence converter comprising a composite material of at least one luminescent compound, and at least one non-luminescent compound, wherein the material of the non-luminescent compound comprises silicon and nitrogen, is advantageously used, when the luminescent compound comprises an rare-earth metal-activated host compound also comprising silicon and nitrogen. Shared chemical characteristics of the luminescent compound and the non-luminescent material improve phase assemblage, thermal and optical behavior. The invention relates also to a composite monolithic ceramic luminescence converter.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: July 17, 2018
    Assignee: Lumileds LLC
    Inventors: Peter J. Schmidt, Lucas Johannes Anna Maria Beckers, Joerg Meyer, Baby-Seriyati Schreinemacher, Herbert Schreinemacher
  • Patent number: 10012030
    Abstract: An abrasive article includes a polycrystalline material comprising abrasive grains and a filler material selected from the group of materials consisting of tungstate, molybdate, vanadate, and a combination thereof. Earth-boring tools comprise a bit body and a cutting element carried by the bit body. The cutting element comprises a polycrystalline material comprising abrasive grains, a catalyst material, and a filler material selected from the group of materials consisting of tungstate, molybdate, vanadate, and a combination thereof.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: July 3, 2018
    Assignee: Baker Hughes, a GE company, LLC
    Inventor: Anthony A. DiGiovanni
  • Patent number: 9950932
    Abstract: Zirconia-based particles, sols containing the zirconia-based particles, methods of making the sols and the zirconia-based particles, composites containing the zirconia-based particles in an organic matrix, and sintered bodies prepared from the zirconia-based particles are described. The zirconia-based particles are crystalline, have a primary particles size no greater than 100 nanometers, and are doped with a lanthanide element or with both a lanthanide element and yttrium.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: April 24, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Brant U. Kolb, Mark J. Hendrickson, James P. Mathers, Kathleen M. Humpal, Neeraj Sharma, Myles L. Brostrom
  • Patent number: 9902654
    Abstract: A ZrO2—Al2O3-based ceramic sintered compact containing tetragonal ZrO2 particles having a crystallite size of from 5 to 20 nm as a main component and having an ?-Al2O3 crystallite size of not greater than 75 nm and a relative density of not less than 99% can be produced by preparing a Y2O3 partially stabilized ZrO2—Al2O3-based powder having a molar ratio (mol %) of zirconia (ZrO2) and yttria (Y2O3) of from 96.5:3.5 to 97.5:2.5 and a mass ratio (mass %) of ZrO2 containing Y2O3 and alumina (Al2O3) of from 85:15 to 75:25, molding this powder by cold isostatic pressing, and then performing sintering to a high density by microwave sintering for 45 to 90 min in an inert gas atmosphere at 1200 to 1400° C. When performing microwave sintering, a heating rate is preferably from 5 to 20° C./min up to 600° C. and from 50 to 150° C./min at 600° C. or higher.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: February 27, 2018
    Assignees: THE DOSHISHA, DAIICHI KIGENSO KAGAKU KOGYO CO., LTD.
    Inventors: Ken Hirota, Xiaoteng Ge, Hideo Kimura
  • Patent number: 9896345
    Abstract: Electrode materials such as LixMnO2 where 0.2<x?2 compounds for use with rechargeable lithium ion batteries can be formed by mixing LiMn2O4 compounds or manganese dioxide compounds with lithium metal or stabilized and non-stabilized lithium metal powders.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: February 20, 2018
    Assignee: FMC CORPORATION
    Inventors: Yuan Gao, Marina Yakovleva, Kenneth Brian Fitch
  • Patent number: 9872746
    Abstract: The invention relates to kit of parts comprising a solution, a porous zirconia article, optionally application equipment, the solution comprising cation(s) of non-coloring agent(s) selected from ions of Y, Gd, La, Yb, Tm, Mg, Ca and mixtures thereof, solvent(s) for the ion(s), optionally complexing agent(s), optionally thickening agent(s), optionally organic marker substance(s), optionally additive(s), the porous zirconia article showing a N2 adsorption and/or desorption of isotherm type IV according to IUPAC classification. The invention also relates to a method for enhancing the translucency of a zirconia article comprising the steps of providing a porous zirconia article and a solution, applying the solution to at least a part of the outer surface of the porous zirconia article, optionally drying the porous zirconia article of the preceding step, sintering the porous zirconia article to obtain a zirconia ceramic article.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 23, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Holger Hauptmann, Andreas Herrmann, Brant U. Kolb
  • Patent number: 9764989
    Abstract: A multilayer interface coating for composite material fibers includes a first coating layer deposited onto a fiber and a second coating layer deposited onto the first coating layer.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 19, 2017
    Assignee: Rolls-Royce Corporation
    Inventors: Adam L. Chamberlain, Sean E. Landwehr
  • Patent number: 9744646
    Abstract: An abrasive article, comprising a polycrystalline material comprising abrasive grains and a filler material having an average negative coefficient of thermal expansion (CTE) within a range of temperatures between about 70 K to about 1500 K. A method of forming an abrasive article, comprising preparing an abrasive material, preparing a filler material having an average negative coefficient of thermal expansion (CTE) within a range of temperatures between about 150 K to about 1500 K, and forming a polycrystalline material comprising grains of the abrasive material and the filler material.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: August 29, 2017
    Assignee: Baker Hughes Incorporated
    Inventor: Anthony A. DiGiovanni
  • Patent number: 9598318
    Abstract: The disclosure provides a refractory brick system comprising a chromia refractory brick for operation in the slagging environment of an air-cooled gasifier. The chromia refractory brick comprises a ceramically-bonded porous chromia refractory having a porosity greater than 9% and having carbon deposits residing within the pores. The brick may be further comprised of Al2O3. The air-cooled gasifier generates a liquefied slag in contact with the refractory brick and generally operates at temperatures between 1250° C. and 1575° C. and pressures between 300 psi to 1000 psi, with oxygen partial pressures generally between 10?4 and 10?10 atm. The refractory brick performs without substantial chromium carbide or chromium metal formation in the low oxygen partial pressure environment. The inclusion of carbon without chromium carbide formation provides for significant mitigation of slag penetration and significantly reduced refractory wear.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: March 21, 2017
    Assignee: U.S. Department of Energy
    Inventors: James P. Bennett, Kyei-Sing Kwong
  • Patent number: 9592105
    Abstract: The invention relates to a dental mill blank comprising a pre-sintered porous zirconia material, the porous pre-sintered zirconia material showing a N2 adsorption of isotherm type IV according to IUPAC classification, the porous pre-sintered zirconia material having a Vickers hardness from about 25 to about 150, the dental mill blank comprising means for reversible attaching it to a machining device. The invention also relates to a process of producing a zirconia dental article comprising the steps of providing a dental mill blank comprising a porous pre-sintered zirconia material, placing the dental mill blank in a machining device, machining the porous zirconia material and to a dental article obtained by such a process.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: March 14, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Holger Hauptmann, Sybille Schmittner, Gallus Schechner, Brant U. Kolb, Andreas Herrmann
  • Patent number: 9573250
    Abstract: Ceramic shaped abrasive particles have four major sides joined by six common edges. Each one of the four major sides contacts three other of the four major sides. The six common edges have substantially the same length. Methods of making the ceramic shaped particle are disclosed. The ceramic shaped abrasive particles are useful for abrading a surface of a workpiece. An abrasive article includes the ceramic shaped abrasive particles retained in a binder.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: February 21, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Mark G. Schwabel, Maiken Givot, Negus B. Adefris
  • Patent number: 9545363
    Abstract: Provided is a machinable zirconia having high translucency as a sintered body which is formed to include a tetragonal zirconia composite powder containing 79.8 to 92 mol % ZrO2, 4.5 to 10.2 mol % Y2O3, 3.5 to 7.5 mol % Nb2O5 or 5.5 to 10.0 mol % Ta2O5, and a TiO2 nano powder which is added with a weight ratio of more than 0 wt % and up to 2.5 wt % to the composite powder, wherein a density of the sintered body is 99% or more, an average grain size of the sintered body is 2 ?m or larger, hardness of the sintered body is in a range of 4 to 10 GPa, fracture toughness of the sintered body is in a range of 9 to 14 MPa·m1/2, a strength of the sintered body is in a range of 400 to 1000 MPa.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: January 17, 2017
    Assignee: ACUCERA INC.
    Inventors: Dae-Joon Kim, Sang Wook Kim, Seung Won Seo, Yong Hwan Jeong
  • Patent number: 9512039
    Abstract: Shape memory and pseudoelastic martensitic behavior is enabled by a structure in which there is provided a crystalline ceramic material that is capable of undergoing a reversible martensitic transformation and forming martensitic domains, during such martensitic transformation, that have an average elongated domain length. The ceramic material is configured as an oligocrystalline ceramic material structure having a total structural surface area that is greater than a total grain boundary area in the oligocrystalline ceramic material structure. The oligocrystalline ceramic material structure includes an oligocrystalline ceramic structural feature which has an extent that is less than the average elongated domain length of the crystalline ceramic material.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: December 6, 2016
    Assignees: Massachusetts Institute of Technology, Nanyang Technological University
    Inventors: Christopher A. Schuh, Alan Lai, Zehui Du
  • Patent number: 9413023
    Abstract: The present invention relates to a powder of molten grains of yttria-stabilized zirconia, said grains having the following chemical analysis, in weight percent on the basis of the oxides: ZrO2+HfO2: remainder up to 100%; 11.8%?Y2O3?18.6%; 0.07%?Al2O3?1.8%; TiO2?0.6%, provided that 0.5<Al2O3 0.3%?TiO2 if 0.6%<Al2O3; and other oxides: ?2.0%.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: August 9, 2016
    Assignee: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Caroline Levy, Samuel Marlin
  • Patent number: 9404171
    Abstract: A rare earth oxide-containing sprayed plate is prepared by thermally spraying a rare earth oxide on a support to a thickness of up to 5 mm and peeling the sprayed coating from the support. Thin plates of rare earth oxide ceramics can be prepared without molding, firing and sintering steps.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: August 2, 2016
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Noriaki Hamaya, Koji Nakamura, Ryoji Iida
  • Patent number: 9371253
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of verticalzA macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: June 21, 2016
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman, James Munroe
  • Patent number: 9249057
    Abstract: An object of the present invention is to provide a colored translucent zirconia sintered body having red color and high translucency. The present invention relates to a zirconia sintered body, characterized by containing 6 to 30 mo % of yttria and 0.1 to 5 mol % of cerium oxide in terms of CeO2, the cerium oxide containing an oxide of trivalent cerium. The zirconia sintered body of the present invention has, in addition of high hardness, diamond luster based on high refractive index inherent in zirconia, deep red color and transparency.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: February 2, 2016
    Assignee: TOSOH CORPORATION
    Inventor: Koji Tsukuma
  • Patent number: 9242903
    Abstract: To provide a high zirconia fused cast refractory having high durability, which hardly has cracks at the time of production of the refractory, during the heating, by temperature changes during use and during the cooling at the time of suspension of operation. A high zirconia fused cast refractory which has a chemical composition comprising from 88 to 96.5 mass % of ZrO2, from 2.5 to 9.0 mass % of SiO2, from 0.4 to 1.5 mass % of Al2O3, from 0.07 to 0.26 mass % of Na2O, from 0.3 to 1.3 mass % of K2O, from 0 to 0.3 mass % by outer percentage of Li2O, at most 0.08 mass % by outer percentage of B2O3, and at most 0.08 mass % by outer percentage of P2O5, and contains B2O3+P2O5 in a content of at most 0.1 mass % by outer percentage.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: January 26, 2016
    Assignee: Asahi Glass Company, Limited
    Inventors: Nobuo Tomura, Yukihiro Ushimaru, Shinya Hayashi
  • Patent number: 9051219
    Abstract: A solid solution-comprising ceramic article useful in semiconductor processing, which is resistant to erosion by halogen-containing plasmas. The solid solution-comprising ceramic article is formed from a combination of yttrium oxide, zirconium oxide, and aluminum oxide. In a first embodiment, the solid solution-comprising ceramic article is a solid, sintered body of the solid solution ceramic material. In a second embodiment, the solid solution-comprising article comprises a substrate underlying a solid solution-comprising coating.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: June 9, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Jie Yuan, Li Xu, Kenneth S. Collins
  • Publication number: 20150133285
    Abstract: A solid sintered ceramic article may include a solid solution comprising Y2O3 at a concentration of approximately 30 molar % to approximately 60 molar %, Er2O3 at a concentration of approximately 20 molar % to approximately 60 molar %, and at least one of ZrO2, Gd2O3 or SiO2 at a concentration of approximately 0 molar % to approximately 30 molar %. Alternatively, the solid sintered ceramic article a solid solution comprising 40-100 mol % of Y2O3, 0-50 mol % of ZrO2, and 0-40 mol % of Al2O3.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 14, 2015
    Inventors: Jennifer Y. Sun, Biraja P. Kanungo
  • Patent number: 9028710
    Abstract: The invention is directed to a pulverulent compound of the formula NiaM1bM2cOx(OH)y where M1 is at least one element selected from the group consisting of Fe, Co, Zn, Cu and mixtures thereof, M2 is at least one element selected from the group consisting of Mn, Al, Cr, B, Mg, Ca, Sr, Ba, Si and mixtures thereof, 0.3?a?0.83, 0.1?b?0.5, 0.01?c?0.5, 0.01?x?0.99 and 1.01?y?1.99, wherein the ratio of tapped density measured in accordance with ASTM B 527 to the D50 of the particle size distribution measured in accordance with ASTM B 822 is at least 0.2 g/cm3·?m. The invention is also directed to a method for the production of the pulverulent compound and the use as a precursor material for producing lithium compounds for use in lithium secondary batteries.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: May 12, 2015
    Assignee: H.C. Starck GmbH
    Inventors: Matthias Jahn, Gerd Maikowske, Stefan Malcus, Juliane Meese-Marktscheffel, Armin Olbrich, Rüdiger Zertani
  • Patent number: 9023960
    Abstract: Provided is a method of producing an ?-olefin polymer including a step of polymerizing one or more kinds of ?-olefins each having 6 to 20 carbon atoms with a catalyst obtained by using a specific transition metal compound. By the method, an ?-olefin polymer having a viscosity suitable for use in a lubricating oil can be produced on an industrial scale with ease, and further, the characteristics of the product can be widely changed through the control of reaction conditions.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: May 5, 2015
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Kiyokazu Katayama, Hideaki Noda, Hitomi Shimizu, Kiyohiko Yokota
  • Patent number: 9023148
    Abstract: Methods and a kit. A cement forming method includes nucleating an acidic metallophosphate reaction mixture with first particles, resulting in forming a settable metallophosphate cement from the acidic metallophosphate reaction mixture. The first particles include a first metal oxide. Each particle of the first particles independently have a particle size in a range from about 15 microns to about 450 microns. A method for applying cement includes seeding a solution with particles, resulting in forming a settable cement from the solution. The particles have a size in a range from about 15 microns to about 450 microns. The solution includes a first metal oxide reacting with phosphate. The settable cement is applied to a substrate. A cement application kit is also described.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: May 5, 2015
    Assignee: Orava Applied Technologies Corporation
    Inventor: Janice Lynn Thoren
  • Patent number: 9018117
    Abstract: Shape memory and pseudoelastic martensitic behavior is enabled by a structure in which there is provided a crystalline ceramic material that is capable of undergoing a reversible martensitic transformation and forming martensitic domains, during such martensitic transformation, that have an elongated domain length. The ceramic material is configured as a ceramic material structure including a structural feature that is smaller than the elongated domain length of the ceramic material.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 28, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Christopher Allan Schuh, Alan Lai
  • Patent number: 9005488
    Abstract: The invention aims at an aqueous ink for high-temperature electrochemical cell electrodes and/or electrolyte containing particles of at least one mineral filler, at least one binder, and at least one dispersant. It also concerns the electrode and the electrolyte using such an ink.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 14, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventor: Richard Laucournet
  • Patent number: 8987157
    Abstract: A sintering composition and calcined object which are precursors for a sintered zirconia. The burned surface of the sintered zirconia gives an X-ray diffraction pattern in which the ratio of the height of the peak present around the location where a [200] peak assigned to the cubic system is to appear to the height of the peak present around the location where a [200] peak assigned to the tetragonal system is to appear is 0.4 or more, and a region located at a depth of 100 ?m or more from the burned surface gives an X-ray diffraction pattern in which the ratio of the height of the peak present around the location where a [200] peak assigned to the cubic system is to appear to the height of the peak present around the location where a [200] peak assigned to the tetragonal system is to appear is 0.3 or less.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: March 24, 2015
    Assignee: Noritake Co., Limited
    Inventors: Yoshihisa Ito, Shinji Kato
  • Patent number: 8969227
    Abstract: Sintered bodies containing zirconia-based ceramic materials and partially sintered bodies that are intermediates in the preparation of the sintered bodies are described. The zirconia-based ceramic material is doped with lanthanum and yttrium. The grain size of the zirconia-based ceramic material can be controlled by the addition of lanthanum. The crystalline phase of the zirconia-based ceramic material can be influenced by the addition of yttrium.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: March 3, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: James P. Mathers, Kathleen M. Humpal, Brant U. Kolb, Mark J. Hendrickson, Myles L. Brostrom, Holger Hauptmann
  • Publication number: 20150007614
    Abstract: Fused cast refractory product comprising in percentages by weight on the basis of the oxides and for a total of 100%, —ZrO2; balance to hj 100%, —Hf2O: <5% SiO2: 2% to 10%; —Y2O3: 0.4% to 2.0%; —CaO: 4.0% to 8.0%; —B2O3+Na2O+K2O: 0.4% to 3.0% —Al2O3: 0.3% to 2.0%; —P2O5: <0.05%; —Fe2O3+TiO2: <0.55%; —other species: <1.5%. Application in glass melting furnaces.
    Type: Application
    Filed: December 19, 2012
    Publication date: January 8, 2015
    Inventors: Michel Gaubil, Ludovic Massard
  • Publication number: 20140371062
    Abstract: Disclosed herein is a ceramic body comprising at least one phase comprising a pseudobrookite-type crystal structure and at least one phase comprising zirconium tin titanate. Also disclosed are porous ceramic honeycomb structures comprising a ceramic body comprising at least one phase comprising a pseudobrookite-type crystal structure and at least one phase comprising zirconium tin titanate and methods of preparing a ceramic body comprising at least one phase comprising a pseudobrookite-type crystal structure and at least one phase comprising zirconium tin titanate.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 18, 2014
    Inventors: Gregory Albert Merkel, Bryan Ray Wheaton
  • Patent number: 8889576
    Abstract: The invention relates to a composite ceramic material which comprises: (a) a first phase based on zirconia containing CeO2 as stabilizer, and (b) a second phase based on an aluminate. The invention also relates to a ceramic powder composition, processes for the preparation of the composite ceramic material and the ceramic powder composition as well as uses thereof.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 18, 2014
    Assignee: Ivoclar Vivadent AG
    Inventors: Wolfram Höland, Elke Apel, Christian Ritzberger, Frank Rothbrust, Heinrich Kappert, Volker Rheinberger, Jérôme Chevalier, Helen Reveron, Nicolas Courtois, Ricardo Dellagiacomo
  • Patent number: 8877664
    Abstract: Provided is a high-strength zirconia sintered body in which the progression of low-temperature degradation is inhibited. The zirconia sintered body contains partially-stabilized zirconia as a matrix phase and contains at least one element from among phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi). The content of the abovementioned element(s) in the zirconia sintered body ranges from 4×10?4 mol to 4×10?2 mol with respect to 1 mol of zirconium(IV) oxide. Preferably, the zirconia sintered body further contains 0.03% to 3% by mass of silicon dioxide.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 4, 2014
    Assignee: Noritake Co., Limited
    Inventors: Yoshihisa Ito, Yoshihisa Yamada, Hiroshi Inada, Kiyoko Ban
  • Publication number: 20140311186
    Abstract: To provide a tin oxide refractory which prevents volatilization of SnO2 in a high temperature zone from an early stage and which also has high erosion resistance to glass. A tin oxide refractory comprising SnO2, SiO2 and ZrO2 as essential components, wherein the total content of SnO2, SiO2 and ZrO2 in the tin oxide refractory is at least 70 mass %, and, based on the total content of SnO2, SiO2 and ZrO2, the content of SnO2 is from 32 to 98 mol %, the content of SiO2 is from 1 to 35 mol % and the content of ZrO2 is from 1 to 35 mol %.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Shuhei OGAWA, Yasuo Shinozaki
  • Patent number: 8841223
    Abstract: The invention describes a dental article comprising zirconium oxide and at least two different coloring substances A and B, substance A showing a light emission in the range of about 470 nm to about 510 nm and substance B showing a light absorption in the range from about 520 nm to about 750 nm. The invention also relates to different processes of producing the dental article e.g. by a process comprising a casting step, a pressing step, or an infiltration step and to the use of certain compositions containing either substance A or substance B for producing such a dental article.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: September 23, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Michael Jahns, Gallus Schechner
  • Patent number: 8835004
    Abstract: A sintering support comprising a fully stabilized zirconia outer surface; wherein the sintering support withstands sintering a ceramic part in contact with the outer surface without adhesion between the outer surface and the ceramic part, and methods of making and using the sintering support are disclosed.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: September 16, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Rainer K. Dittmann, Stefan Hoescheler
  • Patent number: 8822360
    Abstract: An article which includes a structure of a ceramic material that has a composition SiOxMzCy, where Si is silicon, O is oxygen, M is at least one metal and C is carbon and wherein x<2, y>0 and z<1 and x and z are non-zero.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: September 2, 2014
    Assignee: United Technologies Corporation
    Inventors: Wayde R. Schmidt, Paul Sheedy, Tania Bhatia Kashyap, Daniel G. Goberman, Xia Tang