Trivalent Metal Compound (e.g., Iron Oxide, Chromium Oxide, Trivalent Rare Earth Oxide, Etc.) Containing Patents (Class 501/126)
  • Patent number: 6815386
    Abstract: A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: November 9, 2004
    Inventors: Kyei-Sing Kwong, Cynthia P. Dogan, James P. Bennett, Richard E. Chinn, Arthur V. Petty
  • Patent number: 6800204
    Abstract: The invention is a new composition and process for lanthanum oxide concentrate that is used to significantly reduce arsenic and/or selenium concentration levels in aqueous solutions. The lanthanum oxide concentrate is a mixture of lanthanum oxide and one or more oxides from the following group: neodymium oxide, cerium oxide, parseodymiun oxide, strontium oxide, calcium oxide and sodium oxide. The process of manufacture comprises the steps of sintering the lanthanum oxide concentrate, then washing the resultant media. The process of use is the contact of the lanthanum oxide concentrate with an aqueous solution containing arsenic and/or selenium whereby the lanthanum oxide concentrate removes at least a portion of the arsenic and/or selenium from the aqueous solution.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: October 5, 2004
    Assignee: Clear Water Filtration Systems
    Inventors: John F. Harck, Stephanie Wilkis, Ivan Winters
  • Publication number: 20040159984
    Abstract: A method for casting Y2O3 has steps of adding an acid to a slurry comprising at least a ceramic material having a purity of an Y2O3 being 99 wt % or more with an average particle diameter of 2 &mgr;m or less, water, a binder and a dispersant so that a pH value can be adjusted ranging from 8.5 to 10.5 and injecting the slurry into a mold.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 19, 2004
    Applicant: TOSHIBA CERAMICS CO., LTD.
    Inventors: Keiichiro Isomura, Takayuki Ikeda, Yukitaka Murata
  • Patent number: 6770773
    Abstract: The present invention relates to ferroxanes and a method of making wherein a ferroxane may be defined by the general formula [Fe(O)x(OH)y(O2CR)z]n wherein x, y and z may be any integer or fraction such that 2x+y+z=3 and n may be any integer. The ferroxanes may be doped with at least one other element other than iron. The present invention further relates to a ceramic made from the ferroxanes of the present invention and a method of making. The present invention still further relates to supported and unsupported membranes made from the ceramic of the present invention.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: August 3, 2004
    Assignee: William Marsh Rice University
    Inventors: Jerome Rose, Mark Wiesner, Andrew Barron
  • Patent number: 6762875
    Abstract: A method for creating refractive index changes in a substrate is provided by irradiating the substrate with infrared (IR) or visible light radiation. Ultra-violet (UV) radiation is generated in the substrate responsive to the IR or visible light radiation such that the change in the refractive index of the substrate is generated responsive to the UV radiation. Preferably, the substrate comprises a glass doped with rare earth ions.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: July 13, 2004
    Assignee: Corning Incorporated
    Inventor: Bryce N. Samson
  • Patent number: 6758991
    Abstract: Ceramic inert anodes useful for the electrolytic production of aluminum are disclosed. The inert anodes comprise an oxide of Ni and Fe having a controlled Ni/(Ni+Fe) mole ratio which results in a single-phase structure at the operation temperatures of aluminum production cells. The Ni and Fe oxide material may also have a single-phase structure at the sintering temperature of the material. The single-phase inert anode materials maintain sufficient electrical conductivity at the operating temperatures of the cell, and also possess good mechanical stability.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: July 6, 2004
    Assignee: Alcoa Inc.
    Inventors: Robert A. DiMilia, Joseph M. Dynys, Douglas A. Weirauch, Jr., Siba P. Ray, Xinghua Liu, Frankie E. Phelps
  • Publication number: 20040119180
    Abstract: The invention relates to a method of producing a dental prosthesis, comprising the steps:
    Type: Application
    Filed: February 3, 2004
    Publication date: June 24, 2004
    Inventors: Sybille Frank, Holger Hauptmann, Stefan Moscheler, Robert Schnagl, Daniel Suttor
  • Publication number: 20040110440
    Abstract: Monazite or xenotime-based blanket coatings that stiffen ceramic fabrics without causing embrittlement at temperatures of at least as high as 2400° F. are provided. Methods for making the coatings are also provided. The methods comprise the synthesis of high purity, monazite and xenotime powders with the stoichiometric ratio of metal to phosphorous of about 1:1.
    Type: Application
    Filed: November 19, 2003
    Publication date: June 10, 2004
    Inventors: Janet B. Davis, David B. Marshall, Peter Ernest David Morgan, Kris Shigeko Oka
  • Patent number: 6716407
    Abstract: Monazite or xenotime-based blanket coatings that stiffen ceramic fabrics without causing embrittlement at temperatures of at least as high as 2400° F. are provided. Methods for making the coatings are also provided. The methods comprise the synthesis of high purity, monazite and xenotime powders with the stoichiometric ratio of metal to phosphorous of about 1:1.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: April 6, 2004
    Assignee: The Boeing Company
    Inventors: Janet B. Davis, David B. Marshall, Peter Ernest David Morgan, Kris Shigeko Oka
  • Patent number: 6669749
    Abstract: Fused abrasive particles comprising eutectic colonies. The fused abrasive particles can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: December 30, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Ahmet Celikkaya, Donna W. Bange
  • Patent number: 6654161
    Abstract: A two and three dimensional display based on up conversion of near infrared light to the visible. The display medium is a transparent polymer containing particles of crystals doped with Yb3+ and other rare earth ions. The Yb3+ ions absorb light from a commercially available diode laser emitting near 975 nm and transfer that energy to the other dopant ions. Using a fluoride crystal host, NaYF4, co-doped with Tm3+ ions we obtain blue light at ˜480 nm, with Ho3+ or Er3+ ions we obtain green light at ˜550 nm and with Er3+ we obtain red light at ˜660 nm. The display medium is also used with a preferred component layout with experimentation test data, along with applications for full color, high brightness, high resolution, displays.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: November 25, 2003
    Assignee: University of Central Florida
    Inventors: Michael Bass, Alexandra Rapaport, Hans Jennsen
  • Patent number: 6632763
    Abstract: A ceramic composite containing alkali-metal-beta- or beta″-alumina and an oxygen-ion conductor is fabricated by converting alpha-alumina to alkali-metal-beta- or beta″-alumina. A ceramic composite with continuous phases of alpha-alumina and the oxygen-ion conducting ceramic, such as zirconia, is exposed to a vapor containing an alkali-metal oxide, such as an oxide of sodium or potassium. Alkali metal ions diffuse through alkali-metal-beta- or beta″-alumina converted from &agr;-alumina and oxygen ions diffuse through the oxygen-ion conducting ceramic to a reaction front where alpha-alumina is converted to alkali-metal-beta- or beta″-alumina. A stabilizer for alkali-metal-beta″-alumina is preferably introduced into the &agr;-alumina/oxygen-ion conductor composite or introduced into the vapor used to convert the alpha-alumina to an alkali-metal-beta″-alumina.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: October 14, 2003
    Assignee: Materials and Systems Research, Inc.
    Inventors: Anil Vasudeo Virkar, Jan-Fong Jue, Kuan-Zong Fung
  • Patent number: 6607570
    Abstract: Fused abrasive particles comprising eutectic material. The fused abrasive particles can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: August 19, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Ahmet Celikkaya, Donna W. Bange
  • Patent number: 6605316
    Abstract: Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: August 12, 2003
    Assignee: The Regents of the University of California
    Inventors: Steven J. Visco, Craig P. Jacobson, Lutgard C. DeJonghe
  • Patent number: 6596041
    Abstract: Fused abrasive particles comprising eutectic material comprising Al2O3—MgO-REO eutectic. The fused abrasive particles can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: July 22, 2003
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Patent number: 6592640
    Abstract: Fused abrasive particles comprising eutectic material. The fused abrasive particles can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: July 15, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Ahmet Celikkaya, Donna W. Bange
  • Patent number: 6589305
    Abstract: Fused abrasive particles comprising eutectic material. The fused abrasive particles can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: July 8, 2003
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Publication number: 20030122288
    Abstract: An oxide magnetic material comprising main constituents including Fe2O3, ZnO, CuO and NiO. Y2O3 of 0.003 to 0.021 wt % and-ZrO2 of 0.06 to 0.37 wt % are included in said main constituents with respect to all amounts. It is also preferable that Si of 0.010 to 0.0112 wt % is included in said main constituents with respect to all amounts. Further, it is also preferable that Y2O3of 0.001 to 0.011 wt % , ZrO2 of 0.031 to 0.194 wt %, and Si of 0.010 to 0.056 wt % are included in said main constituents with respect to all amounts.
    Type: Application
    Filed: September 11, 2002
    Publication date: July 3, 2003
    Applicant: TDK CORPORATION
    Inventors: Ko Ito, Yukio Takahashi, Takuya Ono, Hiroshi Harada
  • Publication number: 20030118315
    Abstract: A new and improved hybrid of Ga:La:S (GLS) glass is provided, namely a glass comprising gallium sulfide, lanthanum oxide, and at least 2 mol % lanthanum fluoride. The Ga:La:S:O:F (GLSOF) glass retains the important properties of the Ga:La:S system, while introducing improved thermal stability and spectroscopic properties. In addition, GLSOF glasses are non-toxic. The glass formation region for GLSOF has been carefully evaluated with compositional variations. It has been identified that an area of glass formation as indicated by circles, is a new and previously undiscovered glass formation region.
    Type: Application
    Filed: August 2, 2002
    Publication date: June 26, 2003
    Applicant: THE UNIVERSITY OF SOUTHAMPTON
    Inventors: Daniel William Hewak, Mohammed Khawar Arshad Mairaj
  • Patent number: 6583080
    Abstract: Fused, crystalline eutectic material comprising aluminum oxycarbide/nitride-Al2O3.rare earth oxide eutectics. Examples of useful articles comprising the fused eutectic material include fibers and abrasive particles.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: June 24, 2003
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Patent number: 6582488
    Abstract: Fused, crystalline eutectic material comprising Al2O3-rare earth oxide-ZrO2 eutectic. Examples of useful articles comprising the fused eutectic material include fibers and abrasive particles.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: June 24, 2003
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Patent number: 6562761
    Abstract: Methods for preparing thick film rare-earth Ba2Cu3O7-&dgr; (such as YBCO) superconductive layers, particularly including deposition of a precursor as a dispersion of solid-state materials, including a binder or a solvent or both constituents. The solid-state materials include oxides, fluorides, and acetates of yttrium, barium, and copper in the form of ultrafine particles.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: May 13, 2003
    Assignee: American Superconductor Corporation
    Inventors: Leslie G. Fritzemeier, Christopher A. Craven, Cornelis Leo Hans Thieme
  • Publication number: 20030085375
    Abstract: The subject invention includes a composite material comprising a ferroelectric material and a ferromagnetic material having a loss factor (tan &dgr;) for the composite material which includes a dielectric loss factor of the ferroelectric material and a magnetic loss factor of the ferromagnetic material. The composite material achieves the loss factor of from 0 to about 1.0 for a predetermined frequency range greater than 1 MHz. The ferroelectric material has a dielectric loss factor of from 0 to about 0.5 and the ferromagnetic material has a magnetic loss factor of from 0 to about 0.5 for the predetermined frequency range. The ferroelectric material is present in an amount from 10 to 90 parts by volume based on 100 parts by volume of the composite material and the ferromagnetic material is present in an amount from 10 to 90 parts by volume based upon 100 parts by volume of the composite material such that the amount of the ferroelectric material and the ferromagnetic material equals 100 parts by volume.
    Type: Application
    Filed: November 1, 2001
    Publication date: May 8, 2003
    Applicant: Delphi Technologies Inc.
    Inventors: Norman W. Schubring, Joseph V. Mantese, Adolph L. Micheli
  • Patent number: 6537940
    Abstract: A ceramic composite containing alkali-metal-&bgr;- or &bgr;″-alumina and an oxygen-ion conductor is fabricated by converting &agr;-alumina to alkali-metal-&bgr;- or &bgr;″-alumina. A ceramic composite with continuous phases of &agr;-alumina and the oxygen-ion conducting ceramic, such as zirconia, is exposed to a vapor containing an alkali-metal oxide, such as an oxide of sodium or potassium. Alkali metal ions diffuse through alkali-metal-&bgr;- or &bgr;″-alumina converted from &agr;-alumina and oxygen ions diffuse through the oxygen-ion conducting ceramic to a reaction front where &agr;-alumina is converted to alkali-metal-&bgr;- or &bgr;″-alumina. A stabilizer for alkali-metal-&bgr;″-alumina is preferably introduced into the &agr;-alumina/oxygen-ion conductor composite or introduced into the vapor used to convert the &agr;-alumina to an alkali-metal-&bgr;″-alumina.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: March 25, 2003
    Assignee: Materials and Systems Research, Inc.
    Inventors: Anil Vasudeo Virkar, Jan-Fong Jue, Kuan-Zong Fung
  • Patent number: 6517693
    Abstract: The invention presents an ion conductor with high reliability, that is one of the following perovskite oxides: {circle around (1)} perovskite oxide of the composition BaZr1-xCexO3-p (0<x<0.8); {circle around (2)} perovskite oxide consisting essentially of Ba, Zr, Ce and O, and substantially conducting protons only; {circle around (3)} perovskite oxide of the composition BaZr1-x-yCexMyO3-p (M, O≦x<1,0<y<1, x+y<1) that is a single-phase polycrystal of cubic, tetragonal or orthorhombic crystal structure whose unit cell edges a, b and c (with a≧b≧c) satisfy 0.8386 nm<a<0.8916 nm and b/a≧0.90; {circle around (4)} perovskite oxide of the same composition as in {circle around (3)} that is a single-phase sintered product with a density of at least 96% of the theoretical density; and {circle around (5)} perovskite oxide of the same composition as in {circle around (3)} that is a single-phase sintered product with 1 to 30 &mgr;m granular diameter.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: February 11, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Noboru Taniguchi
  • Patent number: 6512879
    Abstract: Phosphate free, Er/Yb co-doped borosilicate glass compositions and optical devices made from said compositions are disclosed; said compositions comprising, for 100 parts by weight of: 60 to 70 parts by weight SiO2 or SiO2+GeO2 with SiO2 always being greater than 40 parts by weight, 8 to 12 parts by weight of B2O3, 10 to 25 parts by weight M2O wherein M2O is an alkali metal oxide, 0 to 3 parts by weight of BaO, 0.1 to 5 parts by weight Er2O3, and from 0.1 to 12 parts by weight of Yb2O3 and from 0 to less than 5 parts by weight F; and within which, the boron atoms are of tetrahedral spatial coordination.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: January 28, 2003
    Assignee: Corning Incorporated
    Inventors: Alain Beguin, Patrice Camy, Pascale LaBorde, Christian Lerminiaux
  • Patent number: 6501590
    Abstract: Two and three dimensional color image displays. The displays include a display medium having a substantially uniform dispersion of red, green and blue visible light emitting particles sized between approximately 0.5 to approximately 50 microns therethrough. The particles can be dye doped polymethylmethacrylate(pmma) plastic, and the display medium can be pmma, acrylic plastic or glass. Other particles can be used such as rare earth doped crystals. The two dimensional display uses three laser sources each having different wavelengths that direct light beams to each of three different types of particle in the display medium. Light is absorbed by the particles which then become excited and emit visible fluorescence. Modulators, scanners and lens can be used to move and focus the laser beams to different pixels in order to form the two dimensional images having different visible colors.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: December 31, 2002
    Assignee: University of Central Florida
    Inventors: Michael Bass, Hans Jennsen
  • Publication number: 20020197049
    Abstract: An optical device is proposed having a rare earth doped glass composition consisting essentially of.
    Type: Application
    Filed: June 21, 2002
    Publication date: December 26, 2002
    Applicant: ALCATEL
    Inventors: Pascal Baniel, Stephanie Blanchandin, Fabien Roy, Laurent Bigot, Ismahane Didi-Alaoui, Anne-Marie Jurdyc
  • Publication number: 20020193236
    Abstract: A method for manufacturing spherical ceramic powder is provided. The method includes essentially a spray drying step and a sintering step. In the spray drying step, a spray nozzle is used to spray slurry containing powdered raw material consisting essentially of ceramic ingredients to form liquid droplets, and liquid contents in the liquid droplets are heated and removed to obtain ceramic granular powder. In the sintering step, the ceramic granular powder is sintered to form spherical ceramic powder. The method provides ceramic powder having a mean particle size of about 1-50 &mgr;m and a sphericity of about 0.8 or higher, which is suited for mixing with resin material to form a compound. The ceramic powder has high dispersant and filling properties against the resin material.
    Type: Application
    Filed: May 29, 2002
    Publication date: December 19, 2002
    Inventors: Minoru Takaya, Yoshiaki Akachi, Tomohiro Sogabe, Hisashi Kobuke
  • Publication number: 20020189496
    Abstract: Monazite or xenotime-based blanket coatings that stiffen ceramic fabrics without causing embrittlement at temperatures of at least as high as 2400° F. are provided. Methods for making the coatings are also provided. The methods comprise the synthesis of high purity, monazite and xenotime powders with the stoichiometric ratio of metal to phosphorous of about 1:1.
    Type: Application
    Filed: June 18, 2001
    Publication date: December 19, 2002
    Inventors: Janet B. Davis, David B. Marshall, Peter Ernest David Morgan, Kris Shigeko Oka
  • Patent number: 6475950
    Abstract: A chromium catalyst is disclosed for use in dehydrogenation and dehydrocyclization processes.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: November 5, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Patent number: 6468441
    Abstract: The present invention provides a Mn—Zn ferrite having an electrical resistivity exceeding 1 &OHgr;m order and a low core loss in a high frequency region exceeding 1 MHz. A basic component composition of the Mn—Zn ferrite includes 44.0 to 49.8 mol % of Fe2O3, 6.0 to 15.0 mol % of ZnO (15.0 mol % is excluded), 0.1 to 3.0 mol % of CoO, 0.02 to 1.20 mol % of Mn2O3, and the remainder of MnO. The Mn—Zn ferrite achieves desired purposes by controlling Fe2O3 content to a range less than 50 mol % that is the stoichiometric composition, adding a proper amount of CoO, restraining amount of Mn2O3 formation to 1.20 mol % or less, and further setting their average grain sizes to less than 10 &mgr;m.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: October 22, 2002
    Assignee: Minebea Co., Ltd.
    Inventors: Osamu Kobayashi, Osamu Yamada, Kiyoshi Ito
  • Patent number: 6461531
    Abstract: The present invention provides a Mn—Zn ferrite having an electrical resistivity exceeding 1 &OHgr;m order and having a low core loss in a high frequency region exceeding 1 MHz. The basic component composition of the Mn—Zn ferrite includes 44.0 to 49.8 mol % Fe2O3, 6.0 to 15.0 mol % ZnO (15.0 mol % is excluded), 0.1 to 4.0 mol % at least one of TiO2 and SnO2, and remainder MnO, wherein desired results are obtained by limiting Fe2O3 content to less than 50 mol % that is the stoichiometric composition and adding a proper amount of TiO2 or SnO2 and further controlling its average grain size to less than 10 &mgr;m.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: October 8, 2002
    Assignee: Minebea Co., Ltd.
    Inventors: Osamu Kobayashi, Osamu Yamada, Kiyoshi Ito
  • Patent number: 6458731
    Abstract: Fused, crystalline eutectic material comprising aluminum oxycarbide/nitride-Al2O3.Y2O3 eutectics. Examples of useful articles comprising the fused eutectic material include fibers and abrasive particles.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: October 1, 2002
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Patent number: 6458732
    Abstract: A dry refractory composition having superior insulating value. The dry refractory composition also may have excellent resistance to molten metals and slags. The composition includes filler lightweight material, which may be selected from perlite, vermiculite, expanded shale, expanded fireclay, expanded alumina silica hollow spheres, bubble alumina, sintered porous alumina, alumina spinel insulating aggregate, calcium alumina insulating aggregate, expanded mulllite, cordierite, and anorthite, and matrix material, which may be selected from calcined alumina, fused alumina, sintered magnesia, fused magnesia, silica fume, fused silica, silicon carbide, boron carbide, titanium diboride, zirconium boride, boron nitride, aluminum nitride, silicon nitride, Sialon, titanium oxide, barium sulfate, zircon, a sillimanite group mineral, pyrophyllite, fireclay, carbon, and calcium fluoride.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: October 1, 2002
    Assignee: Allied Mineral Products, Inc.
    Inventors: Douglas K. Doza, John Y. Liu
  • Patent number: 6454822
    Abstract: Fused abrasive particles comprising eutectic material. The fused abrasive particles can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: September 24, 2002
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Patent number: 6451077
    Abstract: Fused abrasive particles comprising at least one eutectic. The fused abrasive particles can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: September 17, 2002
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Publication number: 20020102412
    Abstract: A vapor-deposition material for the production of high-refractive-index optical layers of titanium oxide, titanium and lanthanum oxide under reduced pressure comprising a sintered mixture having the composition TiOx+z*La2O3, where x=1.5 to 1.8 and z=10 to 65% by weight, based on the total weight of the mixture. The constituents of the mixture are in the range of 10 to 65% by weight of lanthanum oxide, 38 to 74% by weight of titanium oxide and 2 to 7% by weight of titanium.
    Type: Application
    Filed: December 28, 2001
    Publication date: August 1, 2002
    Applicant: MERCK KGAA
    Inventors: Uwe Anthes, Martin Friz
  • Patent number: 6410470
    Abstract: It is found that calcining chromium oxide powders having a particle size component smaller than 10 microns reduces the volume proportion of smaller particles and increases the general uniformity of particle sizes in the distribution and the roundness of the particles.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: June 25, 2002
    Assignee: Saint-Gobain Industrial Ceramics, Inc.
    Inventors: Howard Wallar, Robert F. Quinlivan, Sung H. Yu
  • Patent number: 6387832
    Abstract: Transition metal NZP type compounds are synthesized. Examples of these compounds include MnZr4(PO4)6, FeZr4(PO4)6, CoZr4(PO4)6, NiZr4(PO4)6, and CuZr4(PO4)6. These compounds are synthesized by the Xerogel process. These transition metal NZP type compounds can be used as colorants in applications such as ceramic glazes where high thermal stability of the colorant is important.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: May 14, 2002
    Assignee: The Penn State Research Foundation
    Inventors: Sridhar Komarneni, William W. Gould
  • Patent number: 6372119
    Abstract: An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe2O3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe2O3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe2O3; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni—Fe—Co—O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: April 16, 2002
    Assignee: Alcoa Inc.
    Inventors: Siba P. Ray, Xinghua Liu, Douglas A. Weirauch, Jr.
  • Patent number: 6368734
    Abstract: An NTC thermistor has an electrically insulating substrate, a temperature-sensitive film on a surface of the substrate containing oxide of rare earth elements such as LaCoO3 as its principal component by at least 50 weight %, and a pair of electrodes which are separated from each other and are each electrically connected to this film. An NTC thermistor chip is obtained by further forming a pair of outer electrodes which are each on a corresponding end portion and electrically connected to a corresponding one of the surface electrodes.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: April 9, 2002
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenjiro Mihara, Yuichi Takaoka
  • Publication number: 20020035950
    Abstract: Doped, pyrogenically prepared oxides of metals and/or non-metals which are doped with one or more doping components in an amount of 0.00001 to 20 wt. %. The doping component may be a metal and/or non-metal or an oxide and/or a salt of a metal and/or a non-metal. The BET surface area of the doped oxide may be between 5 and 600 m2/g. The doped pyrogenically prepared oxides of metals and/or non-metals are prepared by adding an aerosol which contains an aqueous solution of a metal and/or non-metal to the gas mixture during the flame hydrolysis of vaporizable compounds of metals and/or non-metals.
    Type: Application
    Filed: August 9, 2001
    Publication date: March 28, 2002
    Inventors: Helmut Mangold, Rainer Golchert, Stipan Katusic, Karlheinz Janzon
  • Publication number: 20020013214
    Abstract: An oxide ion conductor is manufactured having a relatively high mechanical strength while the ionic conduction thereof is maintained at a satisfactory level. The oxide ion conductor is represented by the formula Ln11-xAxGa1-y-z-wB1yB2zB3wO3-d. In the oxide ion conductor, Ln1 is at least one element selected from the group consisting of La, Ce, Pr, Nd, and Sm, A is at least one element selected from the group consisting of Sr, Ca, and Ba, B1 is at least one element selected from the group consisting of Mg, Al, and In, B2 is at least one element selected from the group consisting of Co, Fe, Ni, and Cu, and B3 is at least one element selected from the group consisting of Al, Mg, Co, Ni, Fe, Cu, Zn, Mn, and Zr, wherein x is 0.05 to 0.3, y is 0.025 to 0.29, z is 0.01 to 0.15, w is 0.01 to 0.15, y+z+w is 0.035 to 0.3, and d is 0.04 to 0.3.
    Type: Application
    Filed: March 5, 2001
    Publication date: January 31, 2002
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kiyoshi Kuroda, Takashi Yamada, Yoshitaka Tamo, Kazunori Adachi
  • Publication number: 20020013215
    Abstract: A sintered ceramic for a scintillator having a composition represented by the general formula of Gd3-xCexAlySizGa5-y-zO12, wherein 0.001≦x≦0.05, 1≦y≦4, and 0.0015≦z≦0.03, is produced by mixing gadolinium oxide, aluminum oxide, gallium oxide, a cerium salt, a silicon compound and a fluorine compound in such proportions as to provide the above composition; calcining the resultant mixture at a temperature of 1400-1600° C.; disintegrating the resultant calcined body to ceramic powder; pressing the ceramic powder to provide a green body; and sintering the green body at a temperature of 1600-1700° C. in a non-oxidizing atmosphere at 5×104 Pa or more, and optionally further by hot isostatic pressing at a temperature of 1400-1600° C. in an argon atmosphere.
    Type: Application
    Filed: April 6, 2001
    Publication date: January 31, 2002
    Inventor: Ryouhei Nakamura
  • Publication number: 20020008336
    Abstract: Provided are an inexpensive Mn—Zn ferrite material having a high resistance, a high permeability, and a low core loss, a manufacturing method thereof, and a deflection yoke core using the material. The ferrite material contains, as main components, 43.0-49.5 mol % of Fe2O3, 33.5-49.0 mol % of MnO, and 8.0-17.0 mol % of ZnO, wherein the ratio of ZnO mol %/Fe2O3 mol % is in a range of 0.35 or less. Preferably, the ferrite material further contains, as sub-components, at least one or more of 0.006-0.12 wt % of CaO, 0.001-0.05 wt % of SiO2, and 0.1-1.0 wt % of Bi2O3. The oxygen concentration of its atmosphere for sintering of the deflection yoke core is specified in a range of 3 to 13%. Preferably, the cooling rate until cooled to 500° C. after the sintering is set in a range of 120° C./hr to 400° C./hr.
    Type: Application
    Filed: July 20, 1999
    Publication date: January 24, 2002
    Inventors: SHUICHI OTOBE, TETUJI AKIYAMA, YASUYUKI MASUDA
  • Patent number: 6327074
    Abstract: Two and three dimensional color image displays. The displays include a display medium having a substantially uniform dispersion of red, green and blue visible light emitting particles sized between approximately 0.5 to approximately 50 microns therethrough. The particles can be dye doped polymethylmethacrylate(pmma) plastic, and the display medium can be pmma, acrylic plastic or glass. Other particles can be used such as rare earth doped crystals. The two dimensional display uses three laser sources each having different wavelengths that direct light beams to each of three different types of particle in the display medium. Light is absorbed by the particles which then become excited and emit visible fluorescence. Modulators, scanners and lens can be used to move and focus the laser beams to different pixels in order to form the two dimensional images having different visible colors.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: December 4, 2001
    Assignee: University of Central Florida
    Inventors: Michael Bass, Hans Jennsen
  • Publication number: 20010036895
    Abstract: The present invention provides a Mn—Zn ferrite having an electrical resistivity exceeding 1 &OHgr;m order and having a low core loss in a high frequency region exceeding 1 MHz. The basic component composition of the Mn—Zn ferrite includes 44.0 to 49.8 mol % Fe2O3, 6.0 to 15.0 mol % ZnO (15.0 mol % is excluded), 0.1 to 4.0 mol % at least one of TiO2 and SnO2, and remainder MnO, wherein desired results are obtained by limiting Fe2O3 content to less than 50 mol % that is the stoichiometric composition and adding a proper amount of TiO2 or SnO2 and further controlling its average grain size to less than 10 &mgr;m.
    Type: Application
    Filed: March 1, 2001
    Publication date: November 1, 2001
    Applicant: MINEBEA CO., LTD.
    Inventors: Osamu Kobayashi, Osamu Yamada, Kiyoshi Ito
  • Publication number: 20010007381
    Abstract: The invention relates to a process for production of a sintered oxide ceramic of composition CexMyDzO2-a with dense structure without open porosity or with a predetermined porosity. The first doping element M is at least one element of the group consisting of the rare earths but M≢Ce, alkali and earth alkali metals. The educts are used with a second doping element D of at least one metal of the group consisting of Cu, Co, Fe, Ni and Mn, in the submicron particle size or as a salt solution, and sintered at a temperature in the range of 750-1250° C. into an oxide ceramic with extremely fine structure of a grain size of maximum around 0.5 &mgr;m.
    Type: Application
    Filed: January 17, 2001
    Publication date: July 12, 2001
    Inventors: Christoph Kleinlogel, Martin Goedickemeier, Ludwig Gauckler
  • Patent number: 6251306
    Abstract: The present invention relates to ceramic materials that are capable of generating continuous infrared radiation and have enhanced thermal, chemical and physical stability. The object of the invention is to raise the efficiency of emitting IR radiation. The goal is achieved by supplementing the material on the basis of Cr2O3 and Fe2O3, with CaCO3.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: June 26, 2001
    Inventor: Rustam Rakhimov