Alkaline Earth Or Magnesium Containing Patents (Class 501/135)
  • Patent number: 10315959
    Abstract: Disclosed are embodiments of tungsten bronze crystal structures that can have both a high dielectric constant and low temperature coefficient, making them advantageous for applications that experience temperature changes and gradients. In particular, tantalum can be substituted into the crystal structure to improve properties. Embodiments of the material can be useful for radiofrequency applications such as resonators and antennas.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: June 11, 2019
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventor: Michael David Hill
  • Patent number: 9718696
    Abstract: A low temperature co-fired ceramic powder has a chemical composition of xR2O-yR?O-zM2O3-wM?O2, wherein R is Li, Na and/or K, R? is Mg, Ca, Sr, Ba, Zn and/or Cu, M is B, Al, Ga, In, Bi, Nd, Sm, and/or La, M? is Si, Ge, Sn, Ti, and/or Zr, x?0, y?0, z?20%, w?15%, and x+y+z+w=1. The preparation method comprises: weighing constituent powders according to the composition of the ceramic powder, and uniformly mixing these powders as a raw material powder; and presintering the raw material powder in a muffle furnace followed by grinding, the presintering comprising gradiently heating the raw material powder to a maximum temperature of 950° C. by first rising to 350-450° C. and staying thereat for a period, then staying at intervals of 50-100° C. for a period.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: August 1, 2017
    Assignee: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhifu Liu, Yongxiang Li
  • Patent number: 9502637
    Abstract: A piezoelectric material is expressed as a mixed crystal including a first component formed of a complex oxide having a perovskite structure and a rhombohedral structure and containing Bi in an A-site and Fe in a B-site, a second component formed of a complex oxide having a perovskite structure and a tetragonal structure and containing Ba in an A-site and Ti in a B-site, and a third component formed of a complex oxide having a perovskite structure and a tetragonal structure and containing Bi and K in an A-site and Ti in a B-site.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: November 22, 2016
    Assignee: Seiko Epson Corporation
    Inventor: Xiaoxing Wang
  • Patent number: 9362480
    Abstract: The present invention relates to an energy harvester device comprising an elongate resonator beam extending between first and second ends. A base connected to the resonator beam at the first end with the second end being freely extending from the base as a cantilever. A mass is attached to the second end of the elongate resonator beam. The elongate resonator beam comprises either: (1) a first oxide layer on a first piezoelectric stack layer over a cantilever layer on a second oxide layer over a second piezoelectric stack layer on a third oxide layer or (2) a first oxide layer on a first piezoelectric stack layer over a second oxide layer on a cantilever layer over a third oxide layer on a second piezoelectric stack over a fourth oxide layer. Also disclosed is a system comprising an electrically powered apparatus and the energy harvester device, as well as methods of making and using the energy harvester.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: June 7, 2016
    Assignee: MicroGen Systems, Inc.
    Inventor: Robert G. Andosca
  • Patent number: 9321689
    Abstract: A mold (30), which has a first region (10) comprising an electroceramic material and a second region (20) comprising a structural ceramic material, is provided. A heating device with this mold is also specified. Furthermore, a method for producing a mold is provided.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: April 26, 2016
    Assignee: EPCOS AG
    Inventors: Jan Ihle, Werner Kahr, Bernhard Steinberger
  • Publication number: 20150136350
    Abstract: The object of the present invention is to provide an embedding material composition for casting that makes it possible to conduct a favorable casting in the case where casting is conducted using a resin pattern that is different from a conventional wax pattern in disappearance temperature and disappearance behaviors through “rapid heating” excellent in treatment efficiency. The present invention relates to an embedding material composition for casting not using a heat-expandable refractory material as a main component, comprising: a binder; and a non-heat-expandable refractory material having an average particle diameter of 5 to 20 ?m as main components, in which a content of the binder is 25 to 40 parts by mass and a content of the non-heat-expandable refractory material is 60 to 75 parts by mass in the case where the total amount of the main components is 100 parts by mass, and the present invention also relates to a casting process using the embedding material composition for casting.
    Type: Application
    Filed: June 17, 2013
    Publication date: May 21, 2015
    Applicant: Yoshino Gypsum Co., Ltd.
    Inventors: Emi Mamada, Kenichi Sugano, Masato Yoshikane
  • Publication number: 20150125361
    Abstract: A permanent filter for a medical sterilization container is provided. The permanent filter is made from a ceramic. The ceramic is made from globular substrate grains. A medical sterilization container is also provided, in particular for receiving and storing objects to be sterilized, having a container bottom part and a container top part for closing the container bottom part in a closed position of the sterilization container. At least one of the container bottom part and the container top part have a gas exchange orifice, which is closed with a permanent filter. The permanent filter is made from a ceramic and the ceramic is made from globular substrate grains. In addition, a method is provided for producing a permanent filter for a medical sterilization container. The permanent filter is produced from a ceramic material by sintering. Globular substrate grains are used as the ceramic material.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Inventors: Dieter Weisshaupt, Thomas Weik, Stefan Schuster, John Gray-Dreizler, Wolfgang Burger
  • Patent number: 9023747
    Abstract: There are provided a dielectric composition and a preparation method thereof, the dielectric composition including: a first perovskite powder for a core represented by ABO3: and a second perovskite powder for a shell represented by ABO3, having an average particle diameter corresponding to ? to 1/10 of an average particle diameter of the first perovskite powder, and included in an amount of 1 to 70 parts by weight with respect to 100 parts by weight of the first perovskite powder, wherein particles of the second perovskite powder have pores having a volume fraction of 3 to 50 vol % therein. According to the present invention, there are provided a dielectric composition having excellent dielectric characteristics and electrical characteristics, and a preparation method thereof.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: May 5, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Chang Hak Choi, Chang Hoon Kim, Sang Min Youn, Kwang Hee Nam, Ki Myoung Yun, Hyung Joon Jeon, Jong Hoon Yoo
  • Patent number: 9018118
    Abstract: A liquid composition is provided for forming a thin film in the form of a mixed composite metal oxide in which a composite oxide B containing copper (Cu) and a composite oxide C containing manganese (Mn) are mixed into a composite metal oxide A represented with the general formula: Ba1-xSrxTiyO3, wherein the molar ratio B/A of the composite oxide B to the composite metal oxide A is within the range of 0.002<B/A<0.05, and the molar ratio C/A of the composite oxide C to the composite metal oxide A is within the range of 0.002<C/A<0.03.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: April 28, 2015
    Assignees: Mitsubishi Materials Corporation, STMicroelectronics(Tours) SAS
    Inventors: Toshiaki Watanabe, Hideaki Sakurai, Nobuyuki Soyama, Guillaume Guegan
  • Patent number: 8999872
    Abstract: Porous composites of acicular mullite and tialite are formed by firing an acicular mullite body in the presence of an oxide of titanium. In some variations of the process, the oxide of titanium is present when the acicular mullite body is formed. In other variations, the oxide of titanium is applied to a previously-formed acicular mullite body. Surprisingly, the composites have coefficients of linear thermal expansion that are intermediate to those of acicular mullite and tialite alone. Some of the tialite is believed to form at grain boundaries and/or points of intersection between acicular mullite needles, rather than merely coating the needles. The presence of the titanium oxide(s) during acicular mullite formation does not significantly affect the ability to produce a highly porous network of mullite needles.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: April 7, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Daniel Grohol, Mark L. Dreibelbis, Michael T. Malanga
  • Patent number: 8974687
    Abstract: A piezoelectric ceramic is expressed by the composition formula 100[(Sr2?xCax)1+y/4Na1?yNb5?2/5zMnzO15]+?SiO2 (in the formula, 0?x<0.3, 0.1<y<0.6, 0<z<0.1 and 1<?<8) and constituted by polycrystal of tungsten bronze structure, wherein the degree of orientation of axis c of the polycrystal is 60% or more in Lotgering factor. The piezoelectric ceramic offers excellent temperature characteristics and supporting high-power driving.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: March 10, 2015
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Hiroyuki Shimizu, Yutaka Doshida
  • Patent number: 8970324
    Abstract: A multilayer component includes a dielectric ceramic material that can be co-sintered with a varistor ceramic to form a monolithic multilayer component according to the invention. The multilayer component therefore includes a layer of a varistor ceramic and another layer of a dielectric. Both layers can be arranged directly adjacent to one another in the multilayer component. In the multilayer component, metallizations are arranged on or between the ceramic layers. The metallizations are structured to form conductor sections and metallized areas. The metallizations form together with the ceramic layers alongside a varistor at least one further component selected from at least one of the component functions.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: March 3, 2015
    Assignee: Epcos AG
    Inventors: Pavol Dudesek, Guenter Pudmich, Hannes Schiechl, Edmund Payr, Thomas Feichtinger, Werner Salz, Christian Hoffmann
  • Patent number: 8936731
    Abstract: A process for the preparation of a niobium compound of formula (I): D?Nb?E?O3-???(I) wherein D is an alkali metal (e.g. Li, Na, K, Rb, Cs and/or Fr), alkaline earth metal (such as Ba, Ca, Mg and/or Sr), La and/or Bi and may be present as a mixture of two or more metals; E is Ta, Sb and/or Fe and may be present as a mixture of two or more metals; ? is a positive number ? is a positive number ? is zero or a positive number ? is a number 0???0.5; and wherein the formula (I) has the perovskite or tungsten bronze structure; comprising spray pyrolising a solution, for example an aqueous solution, comprising metal (D) ions, Nb ions and if present, metal (E) ions.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: January 20, 2015
    Assignee: Cerpotech AS
    Inventors: Francesco Madaro, Tor Grande, MariAnn Einarsrud, Kjell Wiik
  • Patent number: 8932477
    Abstract: A compound having a tungsten bronze structure exhibiting a high Curie temperature, good insulating resistance and mechanical quality factor, and excellent piezoelectric properties is provided. The compound contains a tungsten bronze structure oxide represented by general formula (1): x(BaB2O6)-y(CaB2O6)-z{(Bi1/2C1/2)B2O6}??(1) where B represents at least one of Nb and Ta; C represents at least one of Na and K; x+y+z=1; x satisfies 0.2?x?0.85; y satisfies 0?y?0.5; and z satisfies 0<z?0.8.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: January 13, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takayuki Watanabe, Jumpei Hayashi
  • Patent number: 8921248
    Abstract: Dielectric ceramic composition comprising a compound shown by a general formula {A1-x(RE)2x/3}y-B2O5+y and has a tungsten bronze-type structure. In the formula, “A” is at least one selected from a group comprising Ba, Ca, Sr and Mg, “B” is at least one selected from Nb and Ta, “RE” is at least one selected from Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and said “x” and “y” satisfies 0<x<1 and y<1.000, respectively. The dielectric ceramic composition further comprises an oxide of at least one selected from V, Mo, Fe, W, Mn and Cr.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: December 30, 2014
    Assignee: TDK Corporation
    Inventors: Toshihiro Iguchi, Akitoshi Yoshii, Tatsuya Kojima, Satoshi Takagi
  • Publication number: 20140378295
    Abstract: The present invention aims to provide an amorphous dielectric film and an electronic component in which the relative permittivity and the temperature coefficient of electrostatic capacitance can be maintained and the withstand voltage can be increased even if the dielectric film is further thinned. The amorphous dielectric film of the present invention is characterized in that it is a dielectric film composed of an amorphous composition with A-B—O as the main component, wherein A contains at least two elements selected from the group consisting of Ba, Ca and Sr, and B contains Zr. When the main component of the dielectric film is represented by (BaxCaySrz)?—B—O, x, y and z meet the conditions of 0?x?1, 0?y?1, 0?z?1, respectively, x+y+z=1 and at least any two of x, y and z are 0.1 or more. When A/B is represented by ?, 0.5???1.5.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 25, 2014
    Inventors: Toshihiko KANEKO, Saori TAKEDA, Yuki YAMASHITA, Junichi YAMAZAKI
  • Patent number: 8906272
    Abstract: An infra-red reflective material is a perovskite-like multiple oxide which includes at least an alkaline-earth metal and at least one type of element selected from a group of titanium, zirconium and niobium, and further, if necessary, manganese and/or iron, an element belonging to the IIIa group of the periodic table such as aluminum and gallium, etc., or zinc, etc., has sufficient infra-red reflective power, is excellent in thermal stability and heat resistance, and does not raise concerns on safety and environmental issues. The infra-red reflective material can be produced by, for example, mixing an alkaline-earth metal compound and a titanium compound and further, if necessary, a manganese compound and/or an iron compound, a compound belonging to the IIIa group of the periodic table, or a zinc compound in predetermined amounts, and firing the mixture.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: December 9, 2014
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Yoichi Takaoka, Norihiko Sanefuji, Emi Ohta
  • Publication number: 20140342900
    Abstract: The invention relates to a communication device using radio waves with frequencies of 800 MHz to 3 GHz, comprising a ceramic cover at least partially exposed to the external environment of the device, at least one portion of said waves passing therethrough during the use of the device, said cover being at least partially made of a sintered product having a chemical composition such as, by weight and for a total of 100%, 32%?ZrO2?95%, 1%<Y2O3+CeO2+Sc2O3+MgO+CaO, 0%?CeO2?26%, 0%?MgO?43%, 0%?CaO?37%, 0%?SiO2?41%, 0%?Al2O3?55%, 0%?TiO2?30%, 0%?lanthanide oxide, except for CeO2?50% 0%SrO?24%, o %?iAlON compounds ?50%, and other compounds ?15%.
    Type: Application
    Filed: December 20, 2012
    Publication date: November 20, 2014
    Applicant: Saint-Gobain Centre De Rocherches Et D'Etudes Europeen
    Inventors: Nabil Nahas, Daniel Urffer
  • Publication number: 20140336035
    Abstract: An insulator for spark plug with a main constituent of alumina and containing silicon includes a grain boundary phase positioned between alumina particles. The grain boundary phase contains: a group 2A element; a rare earth element; and at least one kind of zirconium, titanium, chrome, niobium, manganese, and iron (a first element). Assuming that a total amount of the rare earth element is X (mass %), a total amount of the group 2A element is Y (mass %), and a total amount of the first element is Z (mass %), the following are met: 0.40?Y/X?2.00 0.10?Z/X?0.40.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Katsuya TAKAOKA, Yutaka YOKOYAMA, Kengo FUJIMURA, Hironori UEGAKI, Hiroki TAKEUCHI, Hirokazu KURONO, Toshitaka HONDA, Kuniharu TANAKA, Takeshi MITSUOKA
  • Publication number: 20140315708
    Abstract: The invention provides an artificial marble and a method for manufacturing the artificial marble. The artificial marble is manufactured using raw materials such as silica, fluorspar and one or more waste materials. The one or more waste materials are selected from a group that includes limestone, clay, magnesite and phosphate.
    Type: Application
    Filed: April 20, 2013
    Publication date: October 23, 2014
    Applicant: King Abdul Aziz City for Science and Technology (KACST)
    Inventor: King Abdul Aziz City for Science and Technology (KACST)
  • Patent number: 8859447
    Abstract: Provided are aluminum titanate capable of providing a sintered body having a low coefficient of thermal expansion, a high porosity, and high mechanical strength, a production method of the same, and a sintered body of the columnar aluminum titanate. The columnar aluminum titanate has an average aspect ratio (=(number average major-axis length)/(number average minor-axis length)) of 1.5 or more and its magnesium content is preferably within the range of 0.5% to 2.0% by weight relative to the total amount of titanium and aluminum in terms of their respective oxides.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: October 14, 2014
    Assignee: Otsuka Chemical Co., Ltd.
    Inventors: Nobuki Itoi, Hiroyoshi Mori, Takahiro Mishima, Hidetoshi Ogawa
  • Patent number: 8853116
    Abstract: A method of forming composition-modified barium titanate ceramic particulate includes mixing a plurality of precursor materials and a precipitant solution to form an aqueous suspension. The plurality of precursors include barium nitrate, titanium chelate, and a metal or oxometal chelate. The precipitant solution includes tetraalkylammonium hydroxide and tetraalkylammonium oxalate. The method further includes treating the aqueous suspension at a temperature of at least 150° C. and a pressure of at least 200 psi, and separating particulate from the aqueous suspension after treating.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: October 7, 2014
    Assignee: EEStor, Inc.
    Inventors: Richard D. Weir, Carl W. Nelson
  • Patent number: 8853115
    Abstract: A dielectric ceramic composition comprising a compound shown by a general formula {A1?x(RE)2x/3}y-D2O5+y having tungsten bronze-type structure and an oxide of “M”. “A” is at least one selected from Ba, Ca, Sr and Mg, “D” is at least one selected from Nb and Ta, “RE” is at least one selected from Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, “x” and “y” satisfies 0<x<1 and y>0, respectively and said “M” is at least one selected from Al, Si, B and Li. It is preferable to further comprise Mg oxide.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: October 7, 2014
    Assignee: TDK Corporation
    Inventors: Toshihiro Iguchi, Akitoshi Yoshii, Tatsuya Kojima, Satoshi Takagi
  • Patent number: 8853114
    Abstract: The invention is to provide an aluminum titanate-based ceramics showing a good mechanical strength. The invention is an aluminum titanate-based ceramics obtained by firing a starting material mixture which contains a titanium element and an aluminum element, and further contains a chromium element and/or a tungsten element. Preferably, a content of a chromium source which contains the chromium element is from 0.001 to 5 parts by mass, and a content of a tungsten source which contains the tungsten element is from 0.001 to 1.0 part by mass relative to 100 parts by mass of the starting material mixture.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: October 7, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kentaro Iwasaki, Akiyoshi Nemoto
  • Patent number: 8841224
    Abstract: Dielectric ceramic composition comprising a compound shown by a general formula {A1?x(RE)2x/3}y-B2O5+y and has a tungsten bronze-type structure. In the formula, “A” is at least one selected from a group comprising Ba, Ca, Sr and Mg, “B” is at least one selected from Nb and Ta, “RE” is at least one selected from Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and said “x” and “y” satisfies 0<x<1 and y>1.000, respectively. The dielectric ceramic composition further comprises an oxide of at least one selected from V, Mo, Fe, W, Mn and Cr.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: September 23, 2014
    Assignee: TDK Corporation
    Inventors: Toshihiro Iguchi, Akitoshi Yoshii, Tatsuya Kojima, Satoshi Takagi
  • Publication number: 20140265065
    Abstract: Ceramic materials comprising charge-compensating dopants and related methods. In some embodiments, the materials may comprise dopants such as Y2O3, Gd2O3, Nb2O5, and/or Ta2O5. Some embodiments may comprise a molar concentration of Y2O3 and/or Gd2O3 that is at least approximately equal to the molar concentration of Nb2O5 and/or Ta2O5. Certain embodiments and implementations may comprise particular, unique concentrations or concentration ranges of various compounds/materials in order to improve performance for use of such ceramic materials as biomedical implants.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: Amedica Corporation
    Inventors: Ryan M. Bock, Bryan J. McEntire, Ramaswamy Lakshminarayanan
  • Patent number: 8835339
    Abstract: A framework for developing high quality factor (Q) material for electronic applications in the radio frequency range is provided. In one implementation, ceramic materials having a tungsten bronze crystal structure is modified by substituting one or more elements at one or more lattice sites on the crystal structure. The substitute elements are selected based on the ionic radius and other factors. In other implementations, the modified ceramic material is prepared in combination with compositions such as rutile or a perovskite to form a orthorhombic hybrid of perovskite and tetragonal tungsten bronze.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: September 16, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventor: Michael D. Hill
  • Patent number: 8822044
    Abstract: Ceramic material of the general formula: [SE1-xMIIx][Cr1-y-zRyLz]O3, wherein SE stands for one or more rare earth metals, MII stands for one or more metals of the oxidation state +II, L stands for Al and/or Ga, R stands for one or more metals selected from Fe, Zn, Ge, Sn, and it holds that: 0<x<1; 0<y<1; 0.5<z<1; y+z<1.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: September 2, 2014
    Assignee: EPCOS AG
    Inventors: Danilo Neuber, Adalbert Feltz
  • Patent number: 8778514
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 15, 2014
    Assignees: Intermolecular, Inc., Guardian Industries Corporation
    Inventors: Minh Huu Le, Zhi-Wen Sun, Guowen Ding, Mohd Hassan, Sandeep Jaggi, Muhammad Imran, Jingyu Lao, Yiwei Lu, Richard Blacker
  • Publication number: 20140177130
    Abstract: Disclosed herein are a dielectric composition including a compound represented by the following Chemical Formula A5-xB10O30-x (A necessarily includes Ba, and a portion of Ba is substituted by at least one selected from Sr and Ca; B necessarily includes Nb, and a portion of Nb is substituted by at least one selected from Ta and V; and x satisfies the following equation: 1<x<5) as a main component and a multilayered ceramic capacitor including the same as a dielectric layer.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 26, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Ki Hyun PARK, Jeong Hyun PARK
  • Publication number: 20140178639
    Abstract: Body made of a ceramic material, the body having as an integral part thereof a surface region reaching from the surface of the body down to a predetermined depth. According to the invention, the surface region is enriched with a magnesium component thereby forming a hydrophilic surface area.
    Type: Application
    Filed: June 22, 2012
    Publication date: June 26, 2014
    Applicant: Straumann Holding AG
    Inventor: Simon Berner
  • Patent number: 8753995
    Abstract: A high-frequency and low-dielectric-constant ceramic dielectric material matched with nickel internal electrode and a method for producing capacitor using same. The ceramic dielectric material consists of main crystalline phase, modifying additive and sintering flux. The main crystalline phase is MgZrxSi(1?x)O3, wherein 0.05?x?0.15. The modifying additive is one or more of MnO2, Al2O3, CaO, Bi2O3 and TiO2, and the sintering flux is one or more of B2O3, SiO2, ZnO, Li2O, K2O and BaO. The ceramic dielectric material has good uniformity, and excellent dielectric properties, meets the requirements of COG characteristics in EIA standard, and meets the environmental requirements. The ceramic dielectric material can be sintered under the reducing atmosphere and can be matched with nickel electrodes. The chip multilayer ceramic capacitor made of the ceramic dielectric material and nickel internal electrodes has stable performance.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: June 17, 2014
    Assignee: Guangdong Fenghua Advanced Technology Holding Co., Ltd.
    Inventors: Beibei Song, Yongsheng Song, Fangce Mo, Juan Li, Xiaoguo Wang, Jinghua Guo
  • Publication number: 20140150389
    Abstract: Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Inventors: Adriane Marie Divens-Dutcher, Patrick David Tepesch, Elizabeth Marie Vileno
  • Publication number: 20140155248
    Abstract: The present application is directed to a zirconia toughened alumina body and process for making the body. The process involves combining tetragonally stabilized ZrO2 nanoparticles, Mg(OH)2 particles and alumina powder into a mixture. All particles of the mixture are milled, formed into a green compact and then sintered. The final composition of the body includes ?-Al2O3 toughened with 0.5 to 2.5 weight percent ZrO2 in a stabilized tetragonal form and 0.03 to 0.1.0 weight percent MgO. The composition results in an Al2O3 body with a density less than 4.0 g/cc and strength greater than 50 kpsi.
    Type: Application
    Filed: February 5, 2014
    Publication date: June 5, 2014
    Applicant: Superior Technical Ceramics Corporation
    Inventors: Tariq Quadir, Brian H. Gold
  • Patent number: 8728635
    Abstract: An oxide sintered body having zinc oxide as a main component and containing magnesium, and a transparent conductive substrate are provided, and an oxide sintered body having zinc oxide and magnesium, wherein content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Mg); an oxide sintered body having zinc oxide, magnesium, gallium and/or aluminum, wherein content of gallium and/or aluminum is over 0 and equal to or lower than 0.09 as atom number ratio of (Ga+Al)/(Zn+Ga+Al), and content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Ga+Al+Mg); a target obtained by processing these oxide sintered bodies; and a transparent conductive film formed on a substrate by a sputtering method or an ion plating method, by using this target.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8709962
    Abstract: Provided is an anti-reductive high-frequency ceramic dielectric material sintered at low temperature and matched with copper internal electrode, which can be used for producing multi-layer ceramic capacitor with a copper internal electrode. The ceramic dielectric material consists of main crystalline phase, modifying additive and sintering flux. The formula of the main crystalline phase is MgxBa(1-x)ZrySi(1-y)O3, wherein 0.8?x?0.95, 0.05?y?0.2. The modifying additive is one or more of MnO2, CaO, Li2O, Bi2O3 and TiO2, and the sintering flux is one or more of B2O3, SiO2, ZnO, CuO, K2O and BaO. The ceramic dielectric material meets the requirements of COG characteristics by EIA standard, has such characteristics as uniform particle size distribution, high dispersiveness, optimized molding process, eco-friendliness and excellent dielectric properties.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 29, 2014
    Assignee: Guangdong Fenghua Advanced Technology Holding Co., Ltd.
    Inventors: Beibei Song, Yongsheng Song, Fangce Mo, Juan Li, Xiaoguo Wang, Jinghua Guo
  • Publication number: 20140113800
    Abstract: Disclosed is a refined white ceramic material, which belongs to the field of ceramic materials for component packaging, and comprises the following raw materials by weight in percentage: aluminum oxide 87-93, magnesium oxide 0.8-5, silicon dioxide 1-6, calcium oxide 0.6-4, titanium dioxide 0.01-0.5, and zirconium dioxide 0.5-3. The method for preparing same comprises: (1) washing aluminum oxide grinding balls and a ball-milling tank, and drying for later use; (2) weighing a solvent NP-10 of 0.5-4 by weight in percentage, and adding the solvent into the ball-milling tank; (3) weighing raw materials, adding the raw materials into the ball-milling tank, and performing ball milling for 72±0.5 h. By means of the refined white ceramic material of the present invention, the obtained ceramic grains have even sizes, small surface roughness, and high fracture resistance performance of ceramic body.
    Type: Application
    Filed: February 17, 2012
    Publication date: April 24, 2014
    Applicant: THE 13TH RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Hongyu Zheng, Pengyuan Shi, Huajiang Jin, Caihua Ren, Bingqu Zhang, Jinli Zhang
  • Patent number: 8663493
    Abstract: Provided is an oriented piezoelectric material with satisfactory sintering property free of Pb that is a hazardous substance, and a water-soluble alkaline ion, and a production method therefor. To this end, provided is a compound, including a tungsten bronze structure metal oxide, in which: the tungsten bronze structure metal oxide contains at least metal elements of Ba, Bi, Ca, and Nb, the metal elements satisfying the following conditions in terms of molar ratio; and has a C-axis orientation. The compound shows Ba/Nb=a: 0.363<a<0.399, Bi/Nb=b: 0.0110<b<0.0650, and Ca/Nb=c: 0.005<c<0.105. The tungsten bronze structure metal oxide preferably includes (1?x).Ca1.4Ba3.6Nb10O30?x.Ba4Bi0.67Nb10O30 (0.30?x?0.95).
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: March 4, 2014
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takanori Matsuda, Takayuki Watanabe, Hiroshi Saito, Nobuhiro Kumada
  • Publication number: 20140016243
    Abstract: Provided in a dielectric ceramic having flat capacitance characteristics and a high dielectric constant, and a multilayer ceramic electronic component (such as a multilayer ceramic capacitor) in which the dielectric ceramic is used. A multilayer ceramic capacitor includes a multilayer body having a plurality of dielectric ceramic layers and a plurality of internal electrodes, and external electrodes formed on the multilayer body. The composition of the multilayer body includes any of a bismuth layered compound containing Sr, Bi and Ti, a bismuth layered compound containing Sr, Bi and Nb, and a bismuth layered compound containing Ca, Bi and Ti as a primary ingredient, Bi and at least one of Cu, Ba, Zn and Li, and satisfies the conditions that if the Ti content is 400 molar parts or the Nb content is 200 molar parts, then (Bi content-Ti content) or (Bi content-Nb content) is equal to or greater than 1 molar part and less than 7.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 16, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Shoichiro Suzuki, Koichi Banno, Taisuke Kanzaki, Akihiro Shiota
  • Publication number: 20130341812
    Abstract: The present disclosure relates to a dental ceramic article comprising ceramic components, the ceramic components having ZrO2 and Al2O3 and at least one component comprising Mn, Er or mixtures thereof, Al2O3 being present in an amount below about 0.15 wt.-% with respect to the weight of the ceramic article. The present disclosure relates also to kit of parts comprising a ceramic article and a colouring solution and processes for producing a dental ceramic article.
    Type: Application
    Filed: March 16, 2012
    Publication date: December 26, 2013
    Applicant: 3M Innovative Properties Company
    Inventors: Gallus Schechner, Holger Hauptmann, Rainer K. Dittmann, Hans R. Schnagl
  • Patent number: 8614001
    Abstract: A sintered particle has the following chemical analysis, as percentages by weight: ZrO2 partially stabilized with CeO2 and Y2O3: complement to 100%; Al2 10%-60%; additive selected from CaO, a manganese oxide, La2O3, SrO, BaO, and mixtures thereof: 0.2%-6; the quantity of CaO being less than 2%; impurities: <2%; the zirconia being stabilized with CeO2 and Y2O3 present in quantities such that, as molar percentages based on the sum of ZrO2, CeO2 and Y2O3: CeO2: 6 mol %-11 mol %; and Y2O3: 0.5 mol %-2 mol %; the particle being obtained by sintering at a sintering temperature higher than 1300° C., the sintering temperature being higher than 1400° C. if the additive is CaO or if the molar CeO2 content is in the range 10% to 11%.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 24, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Emmanuel P. M. Nonnet, Yves M. L. Boussant Roux
  • Patent number: 8598068
    Abstract: New photocatalytic product comprising compounds of titanium integrated with limestone. The product is obtained by reacting limestone with a suitable precursor of titanium dioxide in a basic solution, followed by accurately washing the solid obtained, drying it and calcining it. A composite is obtained containing limestone, titanium dioxide and calcium titanate. The composite thus obtained, used as such or in mixture with other components, has shown an unexpectedly high photocatalytic activity.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 3, 2013
    Assignee: Italcementi S.p.A.
    Inventors: Renato Ancora, Massimo Borsa, Maurizio Iler Marchi
  • Patent number: 8597536
    Abstract: Disclosed is a non-lead perovskite oxide having a low Curie temperature and high ferroelectricity represented by General Formula (P) given below. (Bix1,Bax2,Xx3)(Fey1,Tiy2,Mny3)O3??(P) (where, Bi and Ba are A-site elements, X is one kind or a plurality of kinds of A-site elements, other than Pb and Ba, with an average ion valence of 2. Fe, Ti, and Mn are B-site elements. O is oxygen. 0<x1+X2<1.0, 0<x3<1.0, 0<y1+y2<1.0, 0?y3<1.0, 0<x1, 0<x2, 0<y1, 0<y2. The standard molar ratios among A-site elements, B-site elements, and oxygen are 1:1:3, but the molar ratios among them may deviate from the standard ratios within a range in which a perovskite structure may be formed.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 3, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Tsutomu Sasaki, Yukio Sakashita
  • Patent number: 8597537
    Abstract: A perovskite oxide, which includes a first component represented by General Formula (P1) given below and a second component represented by General Formula (P2) given below. (Bix1, Xx2) (Fez1, Mnz2)O3 ??(P1) (Ay1, Yy2)BO3 ??(P2) (where, Bi is an A-site element and X is an A-site element with an average ion valence of not less than four. A is one kind or a plurality of kinds of A site elements other than Pb with an average ion valence of two, Y is a one kind or a plurality of kinds of A-site elements with an average valence of not less than three. Fe and Mn are B-site elements, and B is one kind or plurality of kinds of B-site elements with an average ion valence of four.) 0.6?x1<1.0, 0?x2?0.4, 0.65?y1<1.0, 0?y2?0.4, x2+y2>0, 0.6?z1<1.0, 0?z2?0.4.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 3, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Tsutomu Sasaki, Yukio Sakashita
  • Patent number: 8598064
    Abstract: New photocatalytic product comprising compounds of titanium integrated with limestone. The product is obtained by reacting limestone with a suitable precursor of titanium dioxide in a basic solution, recovering the product in particular conditions, drying it and calcining it. By operating in presence of sodium, a composite is obtained substantially free from titanium dioxide, containing limestone and calcium titanate. The composite thus obtained, used as such or in mixture with other components, has shown an unexpectedly high photocatalytic activity.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 3, 2013
    Assignee: Italcementi S.p.A.
    Inventors: Renato Ancora, Massimo Borsa, Maurizio Iler Marchi
  • Patent number: 8586494
    Abstract: The invention relates to a mixture of fused grains having the following chemical composition, in weight percentages on the basis of the oxides: less than 55% of Al2O3; more than 35% and less than 80% of TiO2; more than 1% and less than 20% of MgO; more than 0.7% and less than 20% of ZrO2; and less than 20% of SiO2, said fused grains also corresponding to the following composition, in molar percentages, on the basis of the single oxides Al2O3, TiO2, MgO, ZrO2: 90<2a+3m<110, 100+a<3t<210?a with a+t+m+zr=100, in which: a is the molar percentage of Al2O3; t is the molar percentage of TiO2; m is the molar percentage of MgO; and zr is the molar percentage of ZrO2. The invention also relates to a ceramic product obtained from such fused grains.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: November 19, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventor: Stephane Raffy
  • Publication number: 20130298650
    Abstract: A moisture-sensitive ceramic material having a composition represented by the general formula RE(A,B)O3, wherein RE is a rare earth element, A is a divalent metal element, and B is a tetravalent metal element. More specifically, the moisture-sensitive ceramic material has a composition represented by the general formula RE(A1-xBx)O3, and A is Ni or Mg, and B is Ti or Sn.
    Type: Application
    Filed: July 17, 2013
    Publication date: November 14, 2013
    Inventor: Tadamasa Miura
  • Patent number: 8562852
    Abstract: According to a preferred embodiment, the piezoelectric ceramic includes a complex oxide having the composition represented by formula (1) or (2), and Mn at 0.2-1.2 mass % or 0.2-3 mass %, respectively, in terms of MnCO3. (Pb1-aA1a)TixZr1-x-y-z-b(Zn1/3A22/3)y(Yb1/2A21/2)zSnbO3??(1) (Pb1-aA1a)TixZr1-x-y-b(Zn1/3A22/3)ySnbO3??(2) [In formula (1), A1 represents at least one element selected from the group consisting of Ca, Sr and Ba, and A2 is at least one element selected from the group consisting of Nb, Ta and Sb, and includes at least Nb. In formula (2), A1 represents at least one element selected from among Ca, Sr and Ba, A2 represents at least one element selected from among Nb and W, and A2 includes at least Nb.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 22, 2013
    Assignee: TDK Corporation
    Inventors: Goushi Tauchi, Daisuke Tanaka, Masahito Furukawa
  • Patent number: 8557724
    Abstract: A semiconductor porcelain composition is prepared by separately preparing a composition of (BaR)TiO3 (R is La, Dy, Eu, Gd or Y) and a composition of (BiNa)TiO3, and calcining the composition of (BaR)TiO3 at a temperature of 900° C. through 1300° C. and calcining the composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing, forming and sintering the calcined powders. Similarly, a semiconductor porcelain composition is prepared by separately preparing a composition of (BaM)TiO3 (M is Nb, Ta or Sb) and a composition of (BiNa)TiO3, and calcining the composition of (BaM)TiO3 at a temperature of 900° C. through 1300° C. and calcining the composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing, forming and sintering the calcined powders.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: October 15, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Koichi Terao, Kazuya Toji
  • Patent number: 8551910
    Abstract: The invention relates to a porous structure comprising a ceramic material comprising mainly or consisting of an oxide material of the pseudobrookite type comprising titanium, aluminum, magnesium and zirconium in proportions such that the phase of the pseudobrookite type substantially satisfies the formula: (Al2TiO5)x(MgTi2O5)y(MgTiZrO5)z. This material satisfies the following composition, in mol % on the basis of just the oxides Al2O3, TiO2, MgO and ZrO2: 90<2a+3m<110; 100+a<3t<210?a; and a+t+m+zr=100, in which: a is the molar content of Al2O3; t is the molar content of TiO2; m is the molar content of MgO; and zr is the molar content of ZrO2.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 8, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Stephane Raffy, Philippe Auroy