Aluminum Compound Containing Patents (Class 501/153)
  • Publication number: 20100173768
    Abstract: Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Michael P. Bakas, Thomas M. Lillo, Henry S. Chu
  • Publication number: 20100167056
    Abstract: Disclosed is a process for producing ceramic particles, such as proppants, that have at least 10 percent total porosity. The process includes forming a particle precursor that includes 5 percent to 30 percent of a first ceramic material and at least 40 percent of a second ceramic material. The sintering temperature of the first ceramic material may be lower than the sintering temperature of a second ceramic material. Heating the precursor to a maximum temperature above the sintering temperature of the first material and below the sintering temperature of the second material. Also disclosed is a ceramic article that has a particular combination of chemistry and alumina crystalline phase.
    Type: Application
    Filed: December 31, 2009
    Publication date: July 1, 2010
    Inventors: Tihana Fuss, Laurie San-Miguel, Kevin R. Dickson, Walter T. Stephens
  • Publication number: 20100162924
    Abstract: Nanoparticles are claimed which consist of 50-99.99% by weight of alumina and 0.01-50% by weight of metal oxide of elements of main group I and II of the Periodic Table. These nanoparticles are obtained by drying a suspension of aluminum chlorohydrate, oxide formers and, if desired, crystallization nuclei, followed by calcining and comminution of the resultant agglomerates.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 1, 2010
    Applicant: CLARIANT FINANCE (BVI) LIMITED
    Inventors: Norbert ROESCH, Ernst KRENDLINGER, Anja HEINZE, Karl ZEISBERGER, Peter KLUG, Waltraud SIMSCH
  • Publication number: 20100159226
    Abstract: A hydrothermal process for making Alpha Alumina (?-Al2O3) crystalline nano-sized powders in the form of at least one of nano-sheets and nano-fibers, the process includes making the Alpha Alumina with an aspect ratio of diameter to thickness ratio of at least two, and with at least one dimension of diameter or thickness being less than 100 nm. A composition in accordance with the process. A porous ceramic that includes the composition.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 24, 2010
    Applicant: Sawyer Technical Materials LLC
    Inventors: Wojciech L. Suchanek, Juan M. Garcés
  • Publication number: 20100152019
    Abstract: A filler for a dental resin composition is disclosed, comprising silica particles derived from a nanoparticulate silica sol, the filler material having at least one crystalline phase. The filler material provides improved wear resistance and other properties.
    Type: Application
    Filed: February 1, 2010
    Publication date: June 17, 2010
    Applicant: PENTRON CLINICAL TECHNOLOGIES, LLC
    Inventors: Jia Weitao, Jin Shuhua
  • Patent number: 7737063
    Abstract: Al2O3-rare earth oxide-ZrO2/HfO2 ceramics (including glasses, crystalline ceramics, and glass-ceramics) and methods of making the same. Ceramics according to the present invention can be made, formed as, or converted into glass beads, articles (e.g., plates), fibers, particles, and thin coatings. The particles and fibers are useful, for example, as thermal insulation, filler, or reinforcing material in composites (e.g., ceramic, metal, or polymeric matrix composites). The thin coatings can be useful, for example, as protective coatings in applications involving wear, as well as for thermal management. Certain ceramic particles according to the present invention can be are particularly useful as abrasive particles.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: June 15, 2010
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Publication number: 20100144511
    Abstract: Inorganic microporous metal oxide materials, such as aluminum-based microporous ceramic materials, useful for loop heat pipes, insulators, thermal management devices, catalyst supports, substrates, and filters, among others. An example method of manufacture includes heating a mixture of alumina (Al2O3) and aluminum carbonate (Al2(CO3)3) powders to a temperature of at least about 1400 degrees Celsius for a pre-selected time.
    Type: Application
    Filed: July 21, 2009
    Publication date: June 10, 2010
    Applicant: LEHIGH UNIVERSITY
    Inventors: Helen M. Chan, W. Dan Powell, Martin P. Harmer, Jentung Ku, Suxing Wu
  • Publication number: 20100139957
    Abstract: To provide a ceramic composition not only having little compositional variation after burning, but a high flexural strength of the sintered body, and a high Q value in a microwave band, a ceramic composition used for forming a ceramic layer of a multi-layer ceramic substrate contains 47.0 to 67.0 wt. % of SiO2, 21.0 to 41.0 wt. % of BaO, and 10.0 to 18.0 wt. % of Al2O3, and contains as a first additive, 1.0 to 5.0 parts by weight of CeO2, relative to a total of 100 parts of SiO2, BaO and Al2O3, and as a second additive, 2.5 to 5.5 parts by weight of MnO, relative to a total of 100 parts by weight of SiO2, BaO, Al2O3 and CeO2, and is substantially free of Cr. As a third additive, at least one of Zr, Ti, Zn, Nb, Mg and Fe, and as a fourth additive, a Co component and/or a V component, may be contained.
    Type: Application
    Filed: February 16, 2010
    Publication date: June 10, 2010
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Machiko MOTOYA, Tsutomu Tatekawa, Jun Urakawa, Tsuyoshi Katsube, Yoichi Moriya
  • Patent number: 7727920
    Abstract: 0.5 to 30 parts by weight of a hexagonal celsian powder is added to 100 parts by weight of a ceramic raw material powder to give a mixture. The mixture is sintered to give a ceramic porcelain so as to precipitate monoclinic celsian in the ceramic porcelain.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: June 1, 2010
    Assignees: NGK Insulators, Ltd., Soshin Electric Co., Ltd.
    Inventors: Takeshi Oobuchi, Tadashi Otagiri, Yoshinori Ide
  • Patent number: 7722520
    Abstract: The compound is a clay aqueous suspension made of at least one 2:1 layer phyllosilicate clay mineral, at least one 1:1 layer phyllosilicate clay mineral, and water that can be used to sequester asbestos, such as chrysotile, as well as dust and other fibrous particles, at all scales of contamination.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: May 25, 2010
    Assignee: George Mason University
    Inventors: Mark P. S. Krekeler, Jillian G. Lepp, Cynthia Tselepis, Ryan B. Wantz
  • Publication number: 20100113249
    Abstract: A batch mixture including ceramic-forming ingredients, a pore former, a binder comprising an ammonium salt of an alkylated cellulose binder, and a liquid vehicle, as defined herein. Also disclosed is a method for producing a ceramic precursor article as defined herein having excellent extrusion properties.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Inventors: Patricia Ann Beauseigneur, Kevin Ying Chou
  • Patent number: 7708957
    Abstract: A chemical processing apparatus that utilizes a ceramic media sintered at a lower temperature than the apparatus' maximum exposure temperature is described. The media's physical and chemical properties may contribute to its thermal stability when exposed to temperatures that exceed the media's sintering temperature by at least 50° C.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: May 4, 2010
    Assignee: Saint-Gobain Ceramics & Plastics Inc.
    Inventor: John Stewart Reid
  • Patent number: 7704315
    Abstract: Aqueous dispersion containing a metal oxide powder with a fine fraction and a coarse fraction, in which—the metal oxide powder is silicon dioxide, aluminum oxide, titanium dioxide, zirconium dioxide, cerium oxide or a mixed oxide of two or more of the aforementioned metal oxides,—the fine fraction is present in aggregated form and has a mean aggregate diameter in the dispersion of less than 200 nm,—the coarse fraction consists of particles with a mean diameter of 1 to 20 ?m, —the ratio of fine fraction to coarse fraction is 2:98 to 30:70, and—the content of metal oxide powder is 50 to 85 wt. %, referred to the total amount of the dispersion. The aqueous dispersion is produced by a process comprising the steps:—production of a fine fraction dispersion by dispersing the pulverulent fine fraction in water by means of an energy input of at least 200 KJ/m3?, and—introducing the coarse fraction in the form of a powder into the fine fraction dispersion under dispersing conditions at a low energy input.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: April 27, 2010
    Assignee: Degussa AG
    Inventors: Monika Oswald, Corinna Kissner, Roland Weiss, Andreas Lauer
  • Patent number: 7704296
    Abstract: Disclosed are high-porosity cordierite honeycomb substrates having fine pore size, narrow pore size distribution, little or no microcracking, and a high thermal shock resistance. The porous ceramic honeycomb substrates generally include a primary cordierite ceramic phase as defined herein. Also disclosed are methods for making and using the cordierite substrates.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: April 27, 2010
    Assignee: Corning Incorporated
    Inventor: Gregory Albert Merkel
  • Publication number: 20100098908
    Abstract: Moulding composition, comprising, in each case based on the total weight of the moulding composition, A) from 83% by weight to 99.5% by weight of a polymer matrix which is composed of at least one (meth)acrylimide (co)polymer, B) from 0.5% by weight to 17.0% by weight of ceramic beads, where the melt volume index MVR of the moulding composition, measured to ISO 1133 at 260° C. using 10 kg, is from 1.0 cm3/10 min to 20.0 cm3/10 min. The moulding composition can be used for production of mouldings with a velvet-matt and preferably rough surface.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 22, 2010
    Applicant: Evonik Roehm GmbH
    Inventors: Klaus Schultes, Ursula Golchert, Stefan Nau
  • Publication number: 20100098907
    Abstract: Moulding composition, comprising, based in each case on the total weight of the moulding composition, A) from 49.5% by weight to 99.5% by weight of a polymer matrix which is composed of a (meth)acrylate (co)polymer or of a mixture composed of (meth)acrylate (co)polymer, B) from 0.5% by weight to 15.0% by weight of ceramic beads, where the melt volume index MVR, measured to ISO 1133 for 230° C. and 3.8 kg, of the moulding composition is from 0.1 cm3/10 min to 5.0 cm3/10 min. The moulding composition can be used for production of mouldings with a velvet-matt and preferably rough surface.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 22, 2010
    Applicant: Evonik Roehm GmbH
    Inventors: Klaus Schultes, Ursula Golchert, Stefan Nau
  • Patent number: 7691765
    Abstract: After synthesizing particles by liquid phase synthesis, the solution is substituted without drying these particles, and here, a solution comprising a grain boundary phase composition consisting of at least one or more types selected from a group consisting of Al2O3, yttrium oxide, silicon oxide, yttrium-silicon complex oxide, aluminum-silicon complex oxide, and a compound having a garnet structure with a lower melting point than the aforementioned particles, or a solution comprising a precipitate is introduced. Microparticles are adjusted by allowing adhesion and growth of the solution comprising a composition of grain boundary phase or the solution comprising a precipitate on the surface of the particles; these microparticles are allowed to align in 3-dimensions in solution and are formed into a molded body, and this molded body is sintered.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 6, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Masayuki Suzuki, Tomotake Ikada
  • Patent number: 7691764
    Abstract: Provided is a translucent ceramic which has a high Abbe number, is advantageous in aberration correction, and can be easily produced. The translucent ceramic contains, as a main component, a garnet type compound represented by the General Formula: Y3AlvOw, wherein the condition of 4.4?v?5.4 is satisfied and w is a positive number for maintaining electrical neutrality, in which the Al is partially or entirely substituted by Ga and the Y is optionally partly substituted by Gd. The translucent ceramic is suitably used, for example, for lenses arranged with a diaphragm interposed therebetween in a Gauss lens optical system, such as an optical system for single-lens reflex cameras.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: April 6, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Takeshi Hayashi, Yuji Kintaka
  • Publication number: 20100081556
    Abstract: An oxide-based ceramic matrix composite and a method of making oxide-based ceramic composite are provided. The oxide-based ceramic matrix composite comprises a ceramic fiber and a mullite-alumina impregnating the ceramic fiber, wherein the mullite-alumina ceramic matrix comprises of 10-70 wt % mullite-alumina mixture.
    Type: Application
    Filed: July 21, 2006
    Publication date: April 1, 2010
    Inventors: Vann Heng, Robert A. DiChiara, JR., Susan Saragosa, Elizabeth Chu, Carlos G. Levi, Frank W. Zok
  • Publication number: 20100079069
    Abstract: A dielectric composition for plasma display panel and a plasma display panel including the same are disclosed. The dielectric composition includes about 38 to 68 parts by weight of Bi2O3, about 10 to 35 parts by weight of B2O3, about 1 to 17 parts by weight of SiO2, and about 1 to 15 parts by weight of Al2O3.
    Type: Application
    Filed: December 11, 2007
    Publication date: April 1, 2010
    Inventors: Woong Choi, Donghee Nam
  • Patent number: 7683001
    Abstract: A method of forming (and an apparatus for forming) a metal-doped aluminum oxide layer on a substrate, particularly a semiconductor substrate or substrate assembly, using a vapor deposition process.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: March 23, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Brian A. Vaartstra
  • Patent number: 7678725
    Abstract: A polycrystalline body includes aluminum oxide, magnesium oxide, zirconium oxide, and lutetium oxide. The lutetium oxide is present in an amount of at least 10 ppm of the weight of the ceramic body, and the magnesium and zirconium oxides are present at a molar ratio of from 0.5:1 to 3:1.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: March 16, 2010
    Assignee: General Electric Company
    Inventors: Karthik Sivaraman, Shuyi Qin, Ming Gao
  • Patent number: 7674525
    Abstract: The present invention provides a process for producing fine ?-alumina particles, which comprises sintering a mixture of ?-alumina precursor particles and seed crystal particles, wherein a center particle diameter of the seed crystal particles is 40 nm or less, and a ratio of the number of coarse particles having a particle diameter greater than 100 nm to the number of the total particles is 1% or less.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 9, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hajime Maki, Yoshiaki Takeuchi, Yuzuru Saitou
  • Publication number: 20100056356
    Abstract: A method for preparing a metal-fly ash composite material includes classifying a fly ash-containing material to provide a classified fly ash material having a mean particle size of from about 4 ?m to about 40 ?m. The classified fly ash material is blended with a metal matrix whereby the fly ash material and the metal matrix form a substantially homogenous mixture. Suitable conditions of temperature and/or pressure are applied to form a metal-fly ash composite material is formed. The metal matrix may be provided as a liquid or as a powder.
    Type: Application
    Filed: August 28, 2009
    Publication date: March 4, 2010
    Inventors: Thomas L. Robl, John Wiseman, Brock Marrs
  • Publication number: 20100044584
    Abstract: Disclosed herein is a material for altering electromagnetic radiation incident on the material. The material disclosed herein comprises carbon nanotubes having a length (L) that meets the following formula (1): L?½ ???(1) where ? is the wavelength of the electromagnetic radiation incident on the material. Also disclosed herein are methods of altering electromagnetic radiation, including mitigating, intensifying, or absorbing and re-transmitting electromagnetic radiation using the disclosed material.
    Type: Application
    Filed: January 7, 2009
    Publication date: February 25, 2010
    Inventors: Christopher H. Cooper, William K. Cooper, Alan G. Cummings
  • Patent number: 7662354
    Abstract: The present invention relates to use of an aluminosilicate particle for deodorization, wherein the aluminosilicate particle has the composition of: s M(1)xOy t M(2)2O.Al2O3 u SiO2 v RmQn w H2O, wherein M(1) is one or more members selected from the group consisting of Ag, Cu, Zn and Fe, M(2) is one or more members selected from the group consisting of Na, K and H, R is one or more members selected from the group consisting of Na, K, Ca and Mg, Q is one or more members selected from the group consisting of CO3, SO4, NO3, and Cl, s satisfies 0<s?3, and t satisfies 0?t?3, with proviso that s+t is from 0.5 to 3, and u satisfies 0.5?u?6, v satisfies 0<v?2, w satisfies w?0, x satisfies 1?x?2, y satisfies 1?y?3, m satisfies 1?m?2, and n satisfies 1?n?3, and wherein the aluminosilicate particle has a specific surface area of 1 m2/g or more and less than 70 m2/g.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: February 16, 2010
    Assignee: Kao Corporation
    Inventor: Kazuo Oki
  • Publication number: 20100028572
    Abstract: A corrosion-resistant member having a high acid resistance, plasma resistance, and hydrophilicity and a process for producing the corrosion-resistant member are provided. The corrosion-resistant member is obtained by surface-treating an untreated member (a ceramic, a metal) to a surface-treatment with a spray of a superheated water vapor having a temperature of 300 to 1000° C. The corrosion-resistant member may be a member contacting with a processing space in a vapor phase surface process apparatus (e.g., a chamber) for the surface process of a substrate by a vapor phase method such as a PVD, a CVD, or a dry etching.
    Type: Application
    Filed: October 2, 2007
    Publication date: February 4, 2010
    Applicant: Asahi Tech Co., Ltd.
    Inventors: Toshio Kobayashi, Yoshimi Morikawa, Koichiro Takayanagi
  • Patent number: 7633217
    Abstract: A white-light light emitting diode device comprising a light emitting diode element capable of emitting violet light at a wavelength of 400 to 419 nm and a ceramic composite material, wherein the ceramic composite material is a solidified body in which a cerium-activated Y3Al5O12 (Y3Al5O12:Ce) crystal and an ?-type aluminum oxide (Al2O3) crystal are continuously and three-dimensionally entangled with each other, the solidified body having not only a photoluminescent property of wavelength-converting a part of the violet light into yellow light but also a function of transmitting a part of the violet light, and the violet light transmitted through the ceramic composite material and yellow light resulting from wavelength conversion by the ceramic composite material are mixed to emit pseudo-white light.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: December 15, 2009
    Assignee: Ube Industries, Ltd.
    Inventors: Shin-ichi Sakata, Atsuyuki Mitani, Itsuhiro Fujii
  • Patent number: 7625546
    Abstract: The invention relates to alkaline-earth or rare-earth metal aluminate precursor compounds, to their method of preparation and to their use in particular as phosphor precursors. These alkaline-earth or rare-earth metal aluminate precursor compounds are essentially crystallized in the form of a transition alumina and in the form of substantially spherical and chemically homogeneous particles including pores whose mean diameter is of at least 10 nm.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: December 1, 2009
    Assignee: Rhodia Electronics & Catalysis
    Inventors: Benjamin Delespierre, Cédric Froidefond, Thierry Le Mercier
  • Patent number: 7622189
    Abstract: Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: November 24, 2009
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Edward B. Ripley, Roland D. Seals, Jonathan S. Morrell
  • Patent number: 7618911
    Abstract: A heat-insulating material has a first phase with the stoichiometric composition of 0.1 to 10 mol-% M12O3, 0.1 to 10 mol-% Li2O, and as the remainder M22O3 with possible impurities. M1 is selected from the elements lanthanum, neodymium, gadolinium, or a mixture thereof, and M2 is selected from the elements aluminum, gallium, iron, or a mixture thereof. The first phase is present in a magnetoplumbite structure.
    Type: Grant
    Filed: February 11, 2006
    Date of Patent: November 17, 2009
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Gerhard Pracht, Robert Vassen, Detlev Stöver
  • Patent number: 7615201
    Abstract: By using a halogen-free siloxane and an organometallic compound containing at least one metal other than silicon as feed stocks, and simultaneously atomizing and burning them in a flame, spherical particles of silica-containing compound oxide are prepared which are substantially halogen-free, consist of 0.5-99% by weight of metal oxides and the balance of silica, and have a particle size of 10 nm to 3 ?m. The particles are useful as a filler in epoxy resin base semiconductor sealants, a refractive index modifier or the like.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: November 10, 2009
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshiharu Konya, Koichiro Watanabe, Susumu Ueno
  • Patent number: 7615577
    Abstract: Aqueous dispersion containing transition aluminium oxide as only solid and a dispersant, in which—the transition aluminium oxide is present in the form of aggregates of primary particles, the content of transition aluminium oxide in the dispersion is from 40 to 65% by weight, the aggregates in the dispersion have a mean aggregate diameter of less than 100 nm,—the dispersant contains polyaluminium hydroxychloride, polyaluminium hydroxynitrate and/or polyaluminium hydroxysulphate, the dispersion has a pH of from 3 to 5.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: November 10, 2009
    Assignee: Evonik Degussa GmbH
    Inventors: Wolfgang Lortz, Heinz Lach, Joachim Von Seyerl
  • Patent number: 7605110
    Abstract: A ceramic body, a ceramic catalyst body, a ceramic catalyst body and related manufacturing methods are disclosed wherein a cordierite porous base material has a surface, formed with acicular particles made of a component different from that of cordierite porous base material, which has an increased specific surface area with high resistance to a sintering effect. The ceramic body is manufactured by preparing a slurry containing an acicular particle source material, preparing a porous base material, applying the slurry onto a surface of the porous base material and firing the porous base material, whose surface is coated with the slurry, to cause acicular particles to develop on the surface of the porous base material. A part of or a whole of surfaces of the acicular particles is coated with a constituent element different from that of the acicular particles.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: October 20, 2009
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Keiichi Yamada, Kazuhiko Koike, Katsumi Yoshida, Hideki Kita, Naoki Kondo, Hideki Hyuga
  • Patent number: 7604893
    Abstract: Disclosed are an electrolyte matrix, particularly for a molten carbonate fuel cell, comprising a matrix material which contains one or several lithium compounds, aluminum oxide, and a carbide, and a method for the production thereof. The inventive matrix material contains a combination of lithium carbonate, aluminum oxide, and titanium carbide. Said matrix material can be produced in a simple manner from inexpensive materials that are available at the required degree of fineness, has a high degree of solidity in both the green state and the sintered state, and has good storage properties in the green state.
    Type: Grant
    Filed: October 11, 2003
    Date of Patent: October 20, 2009
    Assignee: MTU CFC Solutions GmbH
    Inventors: Marc Bednarz, Birgit Hilke
  • Patent number: 7597866
    Abstract: The present invention provides a lutetium oxide sinter to which yttrium is added in an amount of 100 mass ppm to 7000 mass ppm, whose average particle size is from 0.7 to 20 ?m, and with which there is no precipitation of a hetero phase containing yttrium at the grain boundary.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: October 6, 2009
    Assignee: Konoshima Chemical Co., Ltd.
    Inventors: Shunsuke Hosokawa, Hideki Yagi, Takagimi Yanagitani
  • Publication number: 20090246735
    Abstract: Coloring materials are added in dry powder form to the material of the base composition to form a colored ceramic body.
    Type: Application
    Filed: August 24, 2007
    Publication date: October 1, 2009
    Inventors: Dirk Rogowski, Tanja Sprügel, Matthias Eschle
  • Publication number: 20090239030
    Abstract: A ceramic honeycomb structure comprised of at least two separate smaller ceramic honeycombs that have been adhered together by a cement comprised of inorganic fibers and a binding phase wherein the smaller honeycombs and fibers are bonded together by the binding phase which is comprised of an amorphous silicate, aluminate or alumino-silicate glass and the cement has at most about 5% by volume of other inorganic particles. The cement may be made in the absence of other inorganic and organic additives while achieving a shear thinning cement, for example, by mixing oppositely charged inorganic binders in water together so as to make a useful cement for applying to the smaller honeycombs to be cemented.
    Type: Application
    Filed: March 19, 2009
    Publication date: September 24, 2009
    Applicant: Dow Global Technologies Inc.
    Inventors: Jun Cai, Aleksander Jozef Pyzik, Kwanho Yang
  • Patent number: 7592281
    Abstract: A composition is provided that includes a plurality of calcined particles of terbium aluminum oxide having a mean particle domain size of between 30 and 600 nanometers. A translucent article having a surface includes polycrystalline terbium aluminum garnet having a mean grain size from 1 to 10 microns and light scattering inclusions of aluminum-rich oxide and/or terbium-rich oxide that are present at less than 2 surface area percent of the surface. A process for forming such an article involves sintering the above provided composition at a temperature between 1500° C. and 1700° C. to yield a sintered article. The article has improved translucency and even transparency as sintering is performed under vacuum at a temperature between 1610° C. and 1680° C. Hot isostatic pressing alone or in combination with article polishing also improves article translucency.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: September 22, 2009
    Assignee: Nanocerox, Inc.
    Inventors: Yin Tang, Anthony C. Sutorik, Long Nguyen, Tom Hinklin, William H. Rhodes, David Scerbak
  • Publication number: 20090218711
    Abstract: The present invention provides a ceramic precursor batch composition comprising inorganic ceramic-forming ingredients, a binder, an aqueous solvent and a chaotropic agent. The presence of the chaotropic agent provides a composition with a lower viscosity and/or a greater batch stiffening temperature allowing for increased extrusion feedrates. Methods for producing a ceramic honeycomb body using the ceramic precursor batch composition of the present invention are also provided.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 3, 2009
    Inventors: David Dasher, Michael Edward DeRosa
  • Patent number: 7576022
    Abstract: Molten ceramic grains are intended, for example, for applications involving abrading tools, having the following average chemical weight composition, expressed in weight percent based on oxide content: Al2O3: 93% to 97.5%; MgO: 2.2 to 6.5%; SiO2: <0.1%; other impurities: <0.4%.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: August 18, 2009
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventor: Samuel Marlin
  • Patent number: 7575792
    Abstract: A honeycomb filter, for removing from exhaust gas fine solid particles containing carbon, is an aluminum magnesium titanate sintered product obtained by firing at from 1000 to 1700° C. a product formed from a mixture comprising a Mg-containing compound, an Al-containing compound and a Ti-containing compound in the same metal component ratio as the metal component ratio of Mg, Al and Ti in aluminum magnesium titanate represented by the empirical formula MgxAl2(1?x)Ti(1+x)O5 (wherein 0<x<1), or a mixture comprising 100 parts by mass, as calculated as oxides, of the above-mentioned mixture and from 1 to 10 parts by mass of an alkali feldspar represented by the empirical formula (NayK1?y)AlSi3O8 (wherein 0?y?1).
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 18, 2009
    Assignee: Ohcera Co., Ltd.
    Inventors: Tsutomu Fukuda, Masahiro Fukuda, Masaaki Fukuda, Toshinobu Yoko, Masahide Takahashi
  • Patent number: 7575815
    Abstract: Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: August 18, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Charles H. Henager, Jr., Yongsoon Shin, William D. Samuels
  • Publication number: 20090192059
    Abstract: A precursor composition for the production of granulated ceramic material to be used as hydraulic fracture proppant, comprises 20 to 55% pyroxene, and 15 to 50% olivine. The remaining component is quartz and/or feldspar. The precursor composition can be sintered in a broader temperature range. The resulting proppant material shows high mechanical strength and resistance to acids, and also higher stability under hydrothermal conditions than the prior art.
    Type: Application
    Filed: April 7, 2009
    Publication date: July 30, 2009
    Applicant: ILEM Research and Development Establishment
    Inventors: Sergey Shmotev, Sergey Pliner
  • Patent number: 7566408
    Abstract: Lasing systems utilizing YAG and methods for producing a YAG suitable for lasing are provided. The lasing system comprises a laser activator and a laser host material is provided. The laser host material comprises a transparent polycrystalline yttrium aluminum garnet material defined by a low porosity of less than about 3 ppm.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: July 28, 2009
    Assignee: UES, Inc.
    Inventors: Hee Dong Lee, Tai-Il Mah, Triplicane A. Parthasarathy, Kristin A. Keller
  • Patent number: 7563294
    Abstract: Abrasive particles comprising ceramic (including glasses, crystalline ceramics, and glass-ceramics) comprising (on a theoretical oxide basis) Al2O3 and at least one other metal oxide (e.g., REO and; REO and at least one of ZrO2 or HfO2) and methods of making the same. The abrasive particles can be incorporated into a variety of abrasive articles, including bonded abrasives, coated abrasives, nonwoven abrasives, and abrasive brushes.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: July 21, 2009
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Patent number: 7563293
    Abstract: Al2O3-rare earth oxide-ZrO2/HfO2 ceramics (including glasses, crystalline ceramics, and glass-ceramics) and methods of making the same. Ceramics according to the present invention can be made, formed as, or converted into glass beads, articles (e.g., plates), fibers, particles, and thin coatings. The particles and fibers are useful, for example, as thermal insulation, filler, or reinforcing material in composites (e.g., ceramic, metal, or polymeric matrix composites). The thin coatings can be useful, for example, as protective coatings in applications involving wear, as well as for thermal management. Certain ceramic particles according to the present invention can be are particularly useful as abrasive particles.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: July 21, 2009
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Publication number: 20090181844
    Abstract: Conventionally, in order to improve health problems, there have been technologies using ceramic materials, which are considered to have effects of far-infrared radiation, for accessories and films etc. These accessories and films etc. have effects of improving blood circulation or metabolism by far-infrared radiation etc. However, in the conventional technologies, the far-infrared radiation is insufficient, so that health problems cannot be sufficiently improved. The present invention provides a ceramic material, containing silicon, aluminum, iron, calcium, titanium, and potassium as major constituents; and sulfur, strontium, vanadium, and yttrium as accessory constituents. In addition, the ceramic material of the present invention may be used for products such as cloth, accessories, filters for liquid, and cosmetic products.
    Type: Application
    Filed: December 22, 2005
    Publication date: July 16, 2009
    Applicant: CO-EI CO., LTD.
    Inventor: Masakazu Hashimoto
  • Patent number: 7556745
    Abstract: A sintered body for thermistor element of the invention is a sintered body for thermistor element containing Sr, Y, Mn, Al, Fe, and O, wherein not only respective liquid crystal phases of a perovskite type oxide and a garnet type oxide are contained, but also a liquid crystal phase of at least one of an Sr—Al based oxide and an Sr—Fe based oxide. FeYO3 and/or AlYO3 is selected as the foregoing perovskite type oxide, and at least one member selected from Y3Al5O12, Al2Fe3Y3O12, and Al3Fe2Y3O12 is selected as the foregoing garnet type oxide, respectively by the powder X-ray diffraction analysis.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: July 7, 2009
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Takaaki Chosokabe, Masaki Iwaya, Naoki Yamada, Wakako Takano
  • Patent number: 7553563
    Abstract: The invention concerns a composite material consisting of intermetallic phases and ceramic, in particular in the form of a coating on metallic substrates, as well as an arc wire spraying process for production of the composite material in which the intermetallic phases and the ceramics to be deposited are newly formed during the deposit process from the components of the supplied wires by chemical reaction. The invention further concerns wear resistant layers formed by the composites, tribologic layers and plating or hard-facing materials.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: June 30, 2009
    Assignee: Daimler AG
    Inventors: Stefan Grau, Michael Scheydecker, Karl Weisskopf