Fibers Patents (Class 501/35)
-
Patent number: 12084573Abstract: The present invention relates to a thermoplastic molding composition comprising: A mixture of at least one polyamide A1, at least one polyphenylene ether A2 and optionally a compatibilizer A3 and optionally an olefinic and/or vinylaromatic polymer A4; B 10 to 60% by weight of glass filler, the glass composition of which comprises at least 10% by weight of boron oxide and at most 15% by weight for the sum of magnesium oxide and calcium oxide; C 1 to 8% by weight of LDS additive; D 0 to 5% by weight of additives other than components A, B and C; wherein 80 to 100% by weight of mixture A consists of a mixture M of components A1, A2 and A3 and 0 to 20% by weight of component A4, in each case based on the sum of components M and A4, and wherein the sum of components M and A4 gives 100% by weight of mixture A, and wherein 36 to 92% by weight of mixture M is of component A2, from 8 to 60% by weight of component A1 and from 0 to 4% by weight of component A3, based in each case on the sum of components A1 to A3, andType: GrantFiled: June 15, 2021Date of Patent: September 10, 2024Assignee: EMS-CHEMIE AGInventors: Doris Abt, Georg Stoeppelmann, Botho Hoffmann
-
Patent number: 12071373Abstract: The present invention relates to a substrate having a dielectric loss tangent (A) as measured at 20° C. and 10 GHz of 0.1 or less, a dielectric loss tangent (B) as measured at 20° C. and 35 GHz of 0.1 or less, and a ratio [a dielectric loss tangent (C) as measured at an arbitrary temperature in a range of ?40 to 150° C. and at 10 GHz]/[the dielectric loss tangent (A)] of 0.90-1.10, or a substrate having a relative permittivity (a) as measured at 20° C. and 10 GHz of 4 or more and 10 or less, a relative permittivity (b) as measured at 20° C. and 35 GHz of 4 or more and 10 or less, and a ratio [a relative permittivity (c) as measured at an arbitrary temperature in a range of ?40 to 150° C. and at 10 GHz]/[the relative permittivity (a)] of 0.993-1.007.Type: GrantFiled: September 16, 2020Date of Patent: August 27, 2024Assignee: AGC Inc.Inventors: Shuhei Nomura, Kazutaka Ono
-
Patent number: 11787732Abstract: New glass compositions and applications thereof are disclosed. A glass composition as described herein can include 50 to 55 weight percent SiO2, 17 to 26 weight percent B2O3, 13 to 19 weight percent Al2O3, 0 to 8.5 weight percent MgO, 0 to 7.5 weight percent ZnO, 0 to 6 weight percent CaO, 0 to 1.5 weight percent Li2O, 0 to 1.5 weight percent F2, 0 to 1 weight percent Na2O, 0 to 1 weight percent Fe2O3, 0 to 1 weight percent TiO2, and 0 to 8 weight percent of other constituents. Also described herein are glass fibers formed from such compositions, composites, and articles of manufacture comprising the glass compositions and/or glass fibers.Type: GrantFiled: October 14, 2019Date of Patent: October 17, 2023Assignee: Electric Glass Fiber America, LLCInventor: Hong Li
-
Patent number: 11760684Abstract: The present invention provides a glass composition not requiring a large quantity of rare earth material, producible by a common apparatus for producing a glass, having a high Young's modulus and a large crack initiation load, and suitable for glass fibers etc. A glass composition according to the present invention contains, in mol %: 50 to 65% SiO2; 7.5 to 26% Al2O3; 15 to 30% MgO; 0 to 8% CaO; 0 to 3% B2O3; 0 to 3% Li2O; and 0 to 0.2% Na2O. In this glass composition, a total content of MgO and CaO is in a range of 18 to 35 mol %, and a mol ratio calculated by Al2O3/(MgO+CaO) is less than 1.Type: GrantFiled: October 11, 2017Date of Patent: September 19, 2023Assignee: NIPPON SHEET GLASS COMPANY, LIMITEDInventors: Aya Nakamura, Masanori Shojiya
-
Patent number: 11739023Abstract: Glass compositions and glass fibers having low dielectric constants and low dissipation factors that may be suitable for use in electronic applications and articles are disclosed. The glass fibers and compositions of the present invention may include between 48.0 to 58.0 weight percent SiO2; between 15.0 and 26.0 weight percent B2O3; between 12.0 and 18.0 weight percent Al2O3; between greater than 0.25 and 3.0 weight percent P2O5; between greater than 0.25 and 7.00 weight percent CaO; 5.0 or less weight percent MgO; between greater than 0 and 1.5 weight percent SnO2; and 6.0 or less weight percent TiO2. Further, the glass composition has a glass viscosity of 1000 poise at a temperature greater than 1350 degrees Celsius and a liquidus temperature greater than 1000 degrees Celsius.Type: GrantFiled: February 17, 2020Date of Patent: August 29, 2023Assignee: AGY HOLDING CORPORATIONInventors: Robert Lurie Hausrath, Anthony Vincent Longobardo
-
Patent number: 11565966Abstract: Provided is a glass composition for glass fiber having a low dielectric constant and a low dielectric loss tangent, suppressing occurrence of phase separation, and reducing viscosity at high temperatures. The glass composition for glass fiber includes: SiO2 in the range of 52.0 to 59.5% by mass; B2O3 in the range of 17.5 to 25.5% by mass; Al2O3 in the range of 9.0 to 14.0% by mass; SrO in the range of 0.5 to 6.0% by mass; MgO in the range of 1.0 to 5.0% by mass; and CaO in the range of 1.0 to 5.0% by mass, and includes F2 and Cl2 in the range of 0.1 to 2.5% by mass in total, with respect to the total amount.Type: GrantFiled: July 20, 2018Date of Patent: January 31, 2023Assignee: Nitto Boseki Co., Ltd.Inventors: Takanobu Hosokawa, Hiroyuki Yabe, Tadashi Kurita, Takashi Nonaka
-
Patent number: 11384009Abstract: A bioactive glass composition including: 50 to 70% SiO2; 0.1 to 10% Al2O3, 5 to 30% Na2O, 0.1 to 15% K2O, 0.1 to 15% MgO, 0.1 to 20% CaO, and 5 to 10% P2O5, based on a 100 wt % of the composition. Also disclosed is a method of making the bioactive glass composition.Type: GrantFiled: November 28, 2018Date of Patent: July 12, 2022Assignee: Corning IncorporatedInventors: Huayun Deng, Qiang Fu, John Christopher Mauro, Michael Joshua Snyder
-
Glass material with low dielectric constant attributable to high weight percentage of boron trioxide
Patent number: 11345629Abstract: A glass material with a low dielectric constant attributable to a high weight percentage of boron trioxide includes at least one component for forming the main constructure of the glass material, a fluxing component, a reinforcing component, and a modifier; wherein the at least one component for forming the main constructure of the glass material includes silicon dioxide (SiO2); the fluxing component includes boron trioxide (B2O3); the reinforcing component includes aluminum oxide (Al2O3); and the modifier includes calcium oxide (CaO). The glass material is characterized in that it has a boron trioxide (B2O3) content by weight of 30%-40%, which is higher than those in the prior art; a calcium oxide (CaO) content by weight of 1%-6%, which is lower than those in the prior art; and consequently a lower dielectric constant and a lower dissipation factor of the glass material than those in the prior art can be obtained.Type: GrantFiled: September 17, 2019Date of Patent: May 31, 2022Assignee: TAIWAN GLASS INDUSTRY CORP.Inventor: Chia-Yu Lin -
Patent number: 11339083Abstract: Glass compositions and glass fibers having low dielectric constants and low dissipation factors that may be suitable for use in electronic applications and articles are disclosed. The glass fibers and compositions of the present invention may include between 48.0 to 57.0 weight percent SiO2; between 15.0 and 26.0 weight percent B2O3; between 12.0 and 18.0 weight percent Al2O3; between 3.0 and 8.0 weight percent P2O5; between 0.25 and 7.00 weight percent CaO; 5.0 or less weight percent MgO; and 6.0 or less weight percent TiO2. Further, the glass composition has a glass viscosity of 1000 poise at a temperature greater than 1350 degrees Celsius and a liquidus temperature greater than 1100 degrees Celsius.Type: GrantFiled: January 2, 2020Date of Patent: May 24, 2022Assignee: AGY HOLDING CORPORATIONInventors: Robert Lurie Hausrath, Anthony Vincent Longobardo
-
Patent number: 11214512Abstract: A glass composition is provided that includes about 55.0 to 60.4% by weight SiO2, about 19.0 to 25.0% by weight Al2O3, about 8.0 to 15.0% by weight MgO, about 7 to 12.0% by weight CaO, less than 0.5% by weight Li2O, 0.0 to about 1.0% by weight Na2O, and 0 to about 1.5% by weight TiO2. The glass composition has a fiberizing temperature of no greater than about 2,500° F. Glass fibers formed from the inventive composition may be used in applications that require high stiffness, and low weight. Such applications include woven fabrics for use in forming wind blades and aerospace structures.Type: GrantFiled: December 19, 2018Date of Patent: January 4, 2022Assignee: Owens Coming Intellectual Capital, LLCInventors: Peter Bernard McGinnis, Michelle Korwin-Edson
-
Patent number: 11059946Abstract: Provided is a glass fiber-reinforced resin molded article having high tensile strength and high impact strength in combination with a low dielectric constant and a low dissipation factor. The glass fiber-reinforced resin molded article contains: 10 to 90 mass % of a glass fiber; and 90 to 10 mass % of a resin based on the total amount of the glass fiber-reinforced resin molded article, wherein the glass fiber has composition containing: 52.0 to 57.0 mass % of SiO2; 13.0 to 17.0 mass % of Al2O3; 15.0 to 21.5 mass % of B2O3; 2.0 to 6.0 mass % of MgO; 2.0 to 6.0 mass % of CaO; 1.0 to 4.0 mass % of TiO2; and less than 1.5 mass % of F2, and the total amount of Li2O, Na2O, and K2O is less than 0.6 mass %, based on the total amount of the glass fiber, and the glass fiber has a number-average fiber length of 30 to 5000 ?m.Type: GrantFiled: June 29, 2017Date of Patent: July 13, 2021Assignee: Nitto Boseki Co., Ltd.Inventors: Akane Tsuchigane, Yuya Onodera, Yuta Takahashi, Tadashi Kurita, Tsunefumi Aizawa
-
Patent number: 10981824Abstract: A highly temperature-resistant glass fiber and a preparation method therefor. The glass fiber comprises 62-66 wt % of SiO2, 14-19 wt % of Al2O3, 15-20 wt % of CaO, 0-2 wt % of MgO, 0-3 wt % of Fe2O3, and 0-1.2 wt % of TiO2, the total content of Na2O and K2O is 0.1-0.8 wt %. By precisely controlling the mixture of the components, the glass fiber has good resistance to high temperature and formability, and significantly increases the high-temperature softening point. The glass fiber has a forming temperature of not exceeding 1380° C., an upper limit temperature of devitrification of lower than 1280° C., and a high temperature softening temperature of 950° C. or above.Type: GrantFiled: March 30, 2018Date of Patent: April 20, 2021Assignee: CHONGQING POLYCOMP INTERNATIONAL CORPORATIONInventors: Cong Zhang, Hongbin Li, Bo Yu, Yuan Yao, Bin Zhou, Guoyun Yang, Baijiang Gong, Shaorong Ban, Lixiong Han
-
Patent number: 10894737Abstract: Apparatus and methods for forming melt-formed fibres and melt-formed biosoluble fibers are disclosed. The apparatus comprises a spinning head comprising one or more rotors; a plurality of nozzles or slots disposed around at least part of the one or more rotors; a conveyor; and a barrier between the spinning head and the conveyor.Type: GrantFiled: January 11, 2017Date of Patent: January 19, 2021Assignee: Thermal Ceramics UK LimitedInventors: Michael Hankinson, Gary Jubb
-
Patent number: 10875804Abstract: An apparatus and method for producing a glass article includes a melting vessel, a fining vessel located downstream from the melting vessel, and a bubbling vessel that is downstream from the melting vessel and upstream from the fining vessel. The fining vessel may include at least a first zone and a second zone downstream from the first zone, wherein the average temperature of the first zone is higher than the average temperature of the second zone.Type: GrantFiled: August 24, 2016Date of Patent: December 29, 2020Assignee: Corning IncorporatedInventors: Memduh Volkan Demirbas, William Gurney Dorfeld, Susan Lee Schiefelbein, Randy Dean Ziegenhagen
-
Patent number: 10751367Abstract: An aluminoborate composition, an alumino-borosilicate glass composition, or a mixture thereof, and solid or hollow microspheres thereof, as defined herein. Also disclosed are methods of making and using the disclosed compositions, for example, forming microspheres for use in bioactive applications, and composition extracts for use in treating or healing wounds.Type: GrantFiled: May 23, 2017Date of Patent: August 25, 2020Assignee: Corning IncorporatedInventors: Huayun Deng, Ye Fang, Qiang Fu, Lina Ma, John Christopher Mauro, Michael Joshua Snyder, Dana Lynne Widmer-Quiel
-
Patent number: 10479721Abstract: New glass compositions and applications thereof are disclosed. A glass composition as described herein can include 50 to 55 weight percent SiO2, 17 to 26 weight percent B2O3, 13 to 19 weight percent Al2O3, 0 to 8.5 weight percent MgO, 0 to 7.5 weight percent ZnO, 0 to 6 weight percent CaO, 0 to 1.5 weight percent Li2O, 0 to 1.5 weight percent F2, 0 to 1 weight percent Na2O, 0 to 1 weight percent Fe2O3, 0 to 1 weight percent TiO2, and 0 to 8 weight percent of other constituents. Also described herein are glass fibers formed from such compositions, composites, and articles of manufacture comprising the glass compositions and/or glass fibers.Type: GrantFiled: May 11, 2016Date of Patent: November 19, 2019Inventor: Hong Li
-
Patent number: 10399889Abstract: The present invention provides a glass fiber composition, glass fiber and composite material therefrom. The glass fiber composition comprises the following components expressed as percentage by weight: 58.5-62.5% SiO2, 14.5-17% Al2O3, 10.5-14.5% CaO, 8-10% MgO, 0.5%<Li2O?1%, 0.05-1% Na2O, 0.05-1% K2O, 0.05-1% Fe2O3, 0.15-1.5% TiO2, wherein the range of the molar percentage ratio C1=Li2O/Al2O3 is 0.105-0.22, and the range of the molar percentage ratio C2=MgO/(CaO+MgO) is 0.435-0.55. Said composition can increase the mechanical properties of the glass while reducing the glass viscosity, crystallization risk and amount of bubbles, thereby making it more suitable for large-scale production with refractory-lined furnaces.Type: GrantFiled: April 6, 2016Date of Patent: September 3, 2019Assignee: JUSHI GROUP CO., LTD.Inventors: Lin Zhang, Guorong Cao, Wenzhong Xing, Guijiang Gu, Xiucheng Hong
-
Patent number: 10301213Abstract: An inorganic fiber containing silica and magnesia as the major fiber components and which further includes intended addition of lithium oxide to improve the thermal stability of the fiber. The inorganic fiber exhibits good thermal performance at 1260° C. and greater, low linear shrinkage, retains mechanical integrity after exposure to the use temperature, and exhibits low biopersistence in physiological fluids. Also provided are thermal insulation product forms prepared from a plurality of the inorganic fibers, methods of preparing the inorganic fiber and of thermally insulating articles using thermal insulation prepared from a plurality of the inorganic fibers.Type: GrantFiled: June 28, 2017Date of Patent: May 28, 2019Assignee: Unifrax I LLCInventors: Donghui Zhao, Bruce K. Zoitos, Michael J. Andrejcak, Jason M. Hamilton
-
Patent number: 10189742Abstract: A composition for producing a glass fiber, including the following components with the corresponding percentage amounts by weight: SiO2: 58-62%; Al2O3: 14-18%; CaO+MgO: 20-24.5%; CaO: greater than 14%; Li2O: 0.01-0.5%; Na2O+K2O: less than 2%; TiO2: less than 3.5%; Fe2O3: less than 1%; and F2: less than 1%. The weight percentage ratio of CaO/MgO is greater than 2 and less than or equal to 2.6; and the weight percentage ratio SiO2/CaO is between 3.3 and 4.3. The invention also provides a glass fiber produced using the composition and a composite material including the glass fiber.Type: GrantFiled: November 7, 2017Date of Patent: January 29, 2019Assignee: JUSHI GROUP CO., LTD.Inventors: Lin Zhang, Guorong Cao, Wenzhong Xing, Guijiang Gu
-
Patent number: 10029443Abstract: Provided is a glass fiber fabric-resin composition laminate which is thinner than the conventional glass fiber fabric-resin composition laminates and has a strength equal to or higher than that of the conventional laminates. In the glass fiber fabric-resin composition laminate 1, one or more layers of first glass fiber fabrics 2 to 5 have a total thickness of 50 to 100% with respect to the overall thickness. The glass composition of the first glass fiber fabrics 2 to 5 is 57 to 70 mass % of SiO2, 18 to 30 mass % of Al2O3, 5 to 15 mass % of MgO, 0 to 12 mass % of CaO, 0 to 1 mass % of at least one of Li2O, Na2O, and K2O, 0 to 1 mass % of TiO2, and 0 to 1 mass % of B2O3.Type: GrantFiled: October 16, 2014Date of Patent: July 24, 2018Assignee: Nitto Boseki Co., Ltd.Inventors: Dai Sakuma, Noriyoshi Sato, Toshihiro Tashiro
-
Patent number: 10000404Abstract: One subject of the invention is a process for manufacturing a glass, the chemical composition of which comprises at least 3% by weight of iron oxide, expressed in the form Fe2O3, comprising a step of electric melting, using electrodes submerged in the molten glass, of a vitrifiable batch material mixture containing at least one manganese carrier wherein the manganese is in an oxidation state higher than +2.Type: GrantFiled: December 20, 2013Date of Patent: June 19, 2018Assignee: SAINT-GOBAIN ISOVERInventors: Richard Clatot, Stéphane Maugendre
-
Patent number: 9919948Abstract: A high silica glass composition comprising about 92 to about 99.9999 wt. % SiO2 and from about 0.0001 to about 8 wt. % of at least one dopant selected from Al2O3, CeO2, TiO2, La2O3, Y2O3, Nd2O3, other rare earth oxides, and mixtures of two or more thereof. The glass composition has a working point temperature ranging from 600 to 2,000° C. These compositions exhibit stability similar to pure fused quartz, but have a moderate working temperature to enable cost effective fabrication of pharmaceutical packages. The glass is particularly useful as a packaging material for pharmaceutical applications, such as, for example pre-filled syringes, ampoules and vials.Type: GrantFiled: June 8, 2016Date of Patent: March 20, 2018Assignee: MOMENTIVE PERFORMANCE MATERIALS, INC.Inventors: Kipyung Ahn, Guangjun Xu, Martin Panchula, Samuel Conzone, Tianjun Rong, Konstantin S. Zuyev, Yen Zhou
-
Patent number: 9878941Abstract: A glass composition including SiO2 in an amount from about 70.0 to about 78.2% by weight, Al2O3 in an amount from about 18.6 to about 26.2% by weight, MgO in an amount from about 3.1 to about 10.7% by weight, CaO in an amount from 0.0 to about 7.6% by weight, Li2O in an amount from about 0.1 to about 5.0% by weight, and Na2O in an amount from 0.0 to about 0.2% by weight is provided. In exemplary embodiments, the glass composition is free or substantially free of B2O3 and fluorine. The glass fibers have a specific strength between about 1.6×106 J/kg and 2.24×106 J/kg and a specific modulus between about 3.3×107 J/kg and 3.7×107 J/kg. Glass fibers formed from the inventive composition possess exceptionally high specific strength and a low density, which make them particularly suitable in applications that require high strength, high stiffness, and low weight, such as in wind blades and aerospace structures.Type: GrantFiled: October 18, 2011Date of Patent: January 30, 2018Assignee: OCV Intellectual Capital, LLCInventors: Douglas Alan Hofmann, Peter B. McGinnis
-
Patent number: 9771294Abstract: Methods, systems and apparatus for producing continuous basalt fibers, microfibers, and microspheres from high temperature melts are disclosed. A cold crucible induction furnace is used to super heat crushed basalt rock to form a melt. The melt is cooled prior to forming a fiber. The fiber produced from the superheated melt possesses superior properties not found with conventional basalt fibers produced in gas furnaces. In some implementations, the superheated melt is spun into continuous basalt fibers. In some implementations, the superheated melt is blown into microfibers and microspheres.Type: GrantFiled: April 21, 2016Date of Patent: September 26, 2017Assignee: Americas Basalt Technology, LLCInventors: Yevgeniy Zubko, Yurii Zubko
-
Patent number: 9714189Abstract: Embodiments of the present invention relate to glass compositions, glass fibers formed from such compositions, and related products. In one embodiment, a glass composition comprises 58-62 weight percent SiO2, 14-17 weight percent Al2O3, 14-17.5 weight percent CaO, and 6-9 weight percent MgO, wherein the amount of Na2O is 0.09 weight percent or less.Type: GrantFiled: October 31, 2014Date of Patent: July 25, 2017Assignee: PPG Industries Ohio, Inc.Inventor: Hong Li
-
Patent number: 9650282Abstract: An application of glass fiber with low viscosity, high strength and energy saving, whose nominal diameter goes between 5-13 ?m, the deviation value of the diameter of the said glass fiber is within ±15% of the nominal diameter, characterized in that: the said glass fiber contains Al2O3, SiO2, MgO, CaO, Fe2O3 and Na2O, wherein, calculated as per weight percentage, the said glass fiber contains Al2O3 20-39%, Fe2O3 0.01-3%, Na2O 0.01-8.8%, B2O3 0-10%, MgO 7-20% and F2O 0%, wherein the content of SiO2 is 1.9-4.1 times that of CaO, and the content of CaO is 1-1.8 time(s) that of MgO.Type: GrantFiled: March 15, 2011Date of Patent: May 16, 2017Inventor: Dening Yang
-
Patent number: 9598309Abstract: Glass compositions are provided that are useful in a variety of applications including, for example, electronics applications, reinforcement applications, and others. Some embodiments of glass compositions can provide desirable dielectric constants, desirable dissipation factors, and/or desirable mechanical properties while also having desirable fiber forming properties.Type: GrantFiled: July 27, 2015Date of Patent: March 21, 2017Assignee: PPG Industries Ohio, Inc.Inventor: Hong Li
-
Patent number: 9593038Abstract: Embodiments of the present invention provides fiberizable glass compositions formed from batch compositions comprising amounts of one or more glassy minerals, including perlite and/or pumice.Type: GrantFiled: February 3, 2012Date of Patent: March 14, 2017Assignee: PPG Industries Ohio, Inc.Inventors: Hong Li, James C. Watson
-
Patent number: 9556059Abstract: Embodiments of the present invention provides fiberizable glass compositions formed from batch compositions comprising significant amounts of one or more glassy minerals, including perlite and/or pumice.Type: GrantFiled: August 3, 2009Date of Patent: January 31, 2017Inventors: Hong Li, James C. Watson
-
Patent number: 9556060Abstract: A low dielectric constant glass fiber, in mass percentage, includes 50%˜60% of SiO2, 10%˜20% of Al2O3, 12%˜20% of B2O3, 0˜4% of CaO, 4%˜10% of MgO, 0.1%˜0.5% of Na2O+K2O, 0˜0.5% of Li2O, 0.2%˜3% of F2 and 0˜0.2% of Fe2O3. Compared with the related art, the glass composition contains higher content of SiO2, which can greatly reduce dielectric properties of the glass fiber. Meanwhile, a small amount of F2 is added thereto, which not only can effectively improve the fiberizing temperature of the glass fiber but also can reduce glass viscosity and density and reduce glass refractive index and dielectric properties. In addition, lower content of CaO is further contained, but almost no alkali metal particles such as Na2O+K2O are contained, which further reduces the dielectric properties of the glass fiber.Type: GrantFiled: May 28, 2015Date of Patent: January 31, 2017Assignee: CHONGQING POLYCOMP INTERNATIONAL CORPORATIONInventors: Guoyun Yang, Yuan Yao, Cong Zhang, Haishen Liu, Lixiong Han
-
Patent number: 9428414Abstract: A composition for preparing high-performance glass fiber by tank furnace production comprising in preferred percentage by weight: 57.5˜62.5% of SiO2,14.5˜17.5% of Al2O3,13.5˜17.5% of CaO,6.5˜8.5% of MgO,0.05˜0.6% of Li2O,0.1˜2% of B2O3,0.1˜2% of TiO2,0.1˜2% of Na2O,0.1˜1% of K2O and 0.1˜1% of Fe2O3 and (CaO+MgO)/MgO>3, with the content of at least one of the three components, Li2O, B2O3 and TiO2higher than 0.5%, with the composition yielding glass fiber having improved mechanical property, causing the melting and clarification of glass and forming performance of fiber close to those of boron-free E glass, and facilitating industrial mass production by tank furnace processes with manufacturing costs close to those of conventional E glass.Type: GrantFiled: November 17, 2014Date of Patent: August 30, 2016Assignee: Jushi Group Co., Ltd.Inventors: Yuqiang Zhang, Guorong Cao, Bing Zhang, Lin Zhang, Wenzhong Xing, Guijiang Gu
-
Patent number: 9381277Abstract: Biocompatible and resorbable melt derived glass compositions which include: SiO2 60-70 weight-%, Na2O 5-20 weight-%, CaO 5-25 weight-%, MgO 0-10 weight-%, P2O5 0.5-3.0 weight-%, B2O3 0-15 weight-%, Al2O3 0-5 weight-%, and which contain less than 0.05 weight-% potassium. Biocompatible and resorbable glass fibers manufactured from these glass compositions, medical devices containing fibers of the invention, the use of these compositions for the manufacture of glass fiber and the use of the fibers for the manufacture of medical devices are also disclosed.Type: GrantFiled: April 4, 2014Date of Patent: July 5, 2016Assignee: Purac Biochem bvInventors: Timo Lehtonen, Jukka Tuominen, Fredrik Ollila
-
Patent number: 9340449Abstract: Ceramic frit compositions including a cathode ray tube (CRT) glass component and methods for their manufacture are provided. Also provided are coating compositions including these ceramic frit compositions.Type: GrantFiled: November 3, 2014Date of Patent: May 17, 2016Inventor: Nazim Muhammad
-
Patent number: 9289534Abstract: A composite material including biocompatible and bioresorbable glass, a biocompatible and bioresorbable matrix polymer and a coupling agent capable of forming covalent bonds. The composite also includes a compatibilizer, where at least 10% of the structural units of the compatibilizer are identical to the structural units of the matrix polymer, and the molecular weight of the compatibilizer is less than 30000 g/mol. The use of this composite, a medical device which includes the composite and a method for preparing the composite are also disclosed.Type: GrantFiled: April 22, 2010Date of Patent: March 22, 2016Assignee: Purac Biochem bvInventors: Timo Lehtonen, Jukka Tuominen
-
Patent number: 9287023Abstract: An electromagnetically active composite has an electrically-nonconductive host matrix and electrically-conductive nanostrand bodies embedded in a substantially uniform distribution throughout the host matrix. Each of the nanostrand bodies comprises a volume containing at least one nanostrand of filamentary metal. Adjacent nanostrand bodies that are sufficiently mutually proximate will interact electromagnetically with each other. The filamentary metal of the one or more nanostrands in each of the nanostrand bodies occupies a deminimus fraction of the overall volume occupied by the at least one nanostrand that comprises each of the nanostrand bodies. The filamentary metal is chosen from among the group of metals that includes nickel, nickel aluminides, iron, iron aluminides, alloys of nickel and iron, and alloys of nickel and copper.Type: GrantFiled: January 23, 2013Date of Patent: March 15, 2016Assignee: Conductive Composites Company, LLCInventors: George Clayton Hansen, Nathan D. Hansen, Lauren Hansen
-
Patent number: 9242892Abstract: Glass fibers having non-circular cross sections, excellent strength and excellent modulus of elasticity, and a fiber-reinforced resin compact using the same are provided. The glass fibers having non-circular cross sections are obtained by spinning the molten glass prepared by melting a glass composition as a raw material for the glass fibers. The glass fibers have a composition in which the content of SiO2 is 57.0 to 63.0% by mass, the content of Al2O3 is 19.0 to 23.0% by mass, the content of MgO is 10.0 to 15.0% by mass and the content of CaO is 5.5 to 11.0% by mass, in relation to the total amount of the glass fibers, and the ratio of the content of MgO to the content of CaO, MgO/CaO falls within a range from 0.8 to 2.0.Type: GrantFiled: December 4, 2012Date of Patent: January 26, 2016Assignee: Nitto Boseki Co., Ltd.Inventors: Takashi Nonaka, Tsunefumi Aizawa
-
Patent number: 9227870Abstract: There is provided a glass fiber comprising the SiO2 content is 57.0 to 63.0% by weight; the Al2O3 content is 19.0 to 23.0% by weight; the MgO content is 10.0 to 15.0% by weight; the CaO content is 4.0 to 11.0% by weight; and the total content of SiO2, Al2O3, MgO and CaO is 99.5% by weight or higher based on the total weight.Type: GrantFiled: August 22, 2014Date of Patent: January 5, 2016Assignee: NITTO BOSEKI CO., LTD.Inventors: Takashi Nonaka, Hiroshi Kanno, Takamichi Inaba
-
Patent number: 9205030Abstract: Provided are a hard tissue restoration material, which is excellent in hard tissue restoration ability, extremely effective in promoting recalcification of dental enamel, and excellent in protection properties and aesthetic properties, and a hard tissue restoration method. The hard tissue restoration material according to the present invention is a biocompatible ceramic film with flexibility and pliability that is obtained, for example, by immersing a substrate, having the biocompatible ceramic film formed thereon, in a solvent, which does not dissolve the biocompatible ceramic but dissolves at least a portion of the substrate, to dissolve or separate the substrate. Also, with the hard tissue restoration method according to the present invention, the hard tissue restoration material according to the present invention is bonded to or wound around a hard tissue defect site.Type: GrantFiled: January 29, 2013Date of Patent: December 8, 2015Assignee: KINKI UNIVERSITYInventors: Shigeki Hontsu, Hiroaki Nishikawa, Masanobu Kusunoki, Kazushi Yoshikawa, Kazuyo Yamamoto
-
Patent number: 9206068Abstract: A method of forming high strength glass fibers in a continuous system is provided. The method includes supplying a glass batch to a glass melting furnace lined with a material substantially free of noble metals. The glass batch comprises about 50-about 75 weight percent SiO2, about 15-about 30 weight percent Al2O3, about 5-about 20 weight percent MgO, about 0-about 10 weight percent CaO, about 0.25-about 5 weigh percent R2O. The method further includes melting the glass batch in the furnace and forming a pool of molten glass in contact with the furnace glass contact surface, transporting the molten glass from the furnace to the bushing using a forehearth that is at least partially lined with a material substantially free of noble metal materials, discharging the molten glass from the forehearth into the bushing; and forming the molten glass into continuous fibers.Type: GrantFiled: June 26, 2013Date of Patent: December 8, 2015Assignee: OCV Intellectual Capital, LLCInventors: Peter B. McGinnis, Douglas Hofmann, David J. Baker, John W. Wingert, Byron Bemis
-
Publication number: 20150133284Abstract: The present invention concerns glass fibre composition comprising the following oxides: Si02: 57.5-59.5 wt. % AI2O3: 17.0-20.0 wt. % CaO: 11.0-13.5 wt. % MgO: 8.5-12.5 wt. % wherein the sum of Na2O, K2O, and TiO2 is at least 0.1 wt. % and Li2O?2.0 wt. %, all amounts being expressed in weight % with respect to the total weight of the composition. It also concerns composite materials reinforced with such fibres, used in applications such as wind(a) mill blades, pressure vessels, components in the automotive, machinery, aerospace applications and such products produced therewith, and wherein the temperature difference, ?T, defined as the difference between the temperature, T3, at which the composition has a viscosity of 103 Poise and the liquidus temperature, Tliq, is at least 50° C.Type: ApplicationFiled: April 16, 2013Publication date: May 14, 2015Inventors: Houet Yves, Laurent Dimitri
-
Patent number: 9029279Abstract: A glass composition including SiO2 in an amount from 74.5 to 80.0% by weight, Al2O3 in an amount from 5.0 to 9.5%>> by weight, MgO in an amount from 8.75 to 14.75% by weight, CaO in an amount from 0.0 to 3.0% by weight, Li2O in an amount from 2.0 to 3.25% by weight, Na2O in an amount from 0.0 to 2.0% by weight is provided. Glass fibers formed from the inventive composition may be used in applications that require high strength, high stiffness, and low weight. Such applications include woven fabrics for use in forming wind blades, armor plating, and aerospace structures.Type: GrantFiled: June 30, 2011Date of Patent: May 12, 2015Assignee: OCV Intellectual Capital, LLCInventors: Douglas Alan Hofmann, Peter Bernard McGinnis
-
Publication number: 20150125823Abstract: The present application provides a glass composition comprising 10-50% by weight CaO, at least 15% and less than 50% by weight P2O5, less than 3% by weight Al2O3, less than 10% by weight Li2O, Na2O, and K2O combined, and 0-60% by weight of SrO, MgO, BaO, ZnO, or combinations thereof; dental compositions comprising the glass composition, and methods of making and using such dental compositions.Type: ApplicationFiled: January 12, 2015Publication date: May 7, 2015Inventors: Richard P. Rusin, Kevin M. Cummings, Sumita B. Mitra, Paul A. Burgio, Tsi-Zong Tzou, David S. Arney
-
Patent number: 9012342Abstract: The invention relates to a melt composition for the production of man-made vitreous fibers and man-made vitreous fibers comprising the following oxides, by weight of composition: SiO2 39-43 weight % Al2O3 20-23 weight % TiO2 up to 1.5 weight % Fe2O3 5-9 weight %, preferably 5-8 weight % CaO 8-18 weight % MgO 5-7 weight % Na2O up to 10 weight %, preferably 2-7 weight % K2O up to 10 weight %, preferably 3-7 weight % P2O5 up to 2% MnO up to 2% R2O up to 10 weight % wherein the proportion of Fe(2+) is greater than 80% based on total Fe and is preferably at least 90%, more preferably at least 95% and most preferably at least 97% based on total Fe.Type: GrantFiled: October 12, 2012Date of Patent: April 21, 2015Assignee: Rockwool International A/SInventors: Mette Solvang, Svend Grove-Rasmussen, Mathilde Rosendahl Foldschack
-
Patent number: 8987154Abstract: An R-glass composition including SiO2 in an amount from 59.0 to 64.5% by weight, Al2O3 in an amount from 14.5 to 20.5% by weight, CaO in an amount from 11.0 to 16.0% by weight, MgO in an amount from 5.5 to 11.5% by weight, Na2O in N an amount from 0.0 to 4.0% by weight, TiO2 in an amount from 0.0 to 2.0% by weight, Fe2O3 in an amount from 0.0 to 1.0% by weight, B2O3 in an amount from 0.0 to about 3.0% by weight, K2O, Fe2O3, ZrO2, and Fluorine, each of which is present in an amount from 0.0 to about 1.0% by weight, and SrO and ZnO, each of which is present in an amount from 0.0 to about 2.0% by weight. In exemplary embodiments, the glass composition does not contain lithium or boron.Type: GrantFiled: August 4, 2010Date of Patent: March 24, 2015Assignee: OCV Intellectual Capital, LLCInventors: Douglas Hofmann, Peter McGinnis, John Wingert, Anne Berthereau
-
Patent number: 8986845Abstract: A ceramic composite article includes ceramic carbide fibers and a ceramic matrix in which the ceramic carbide fibers are embedded. The ceramic matrix includes a laminar structure with at least one layer of a first ceramic material and at least one layer of a second, different ceramic material.Type: GrantFiled: July 22, 2011Date of Patent: March 24, 2015Assignee: United Technologies CorporationInventors: Michael A. Kmetz, Kirk C. Newton, Douglas M. Berczik, Timothy Coons
-
Patent number: 8969225Abstract: A method includes a providing a molten glass fiber core and disposing a plurality of nanoparticles that include a transition metal oxide on the molten glass fiber core at or above the softening temperature of the glass fiber core, thereby forming a nanoparticle-laden glass fiber. The plurality of nanoparticles are embedded at the surface of said glass fiber core. A method includes providing a mixture of molten glass and a plurality of nanoparticles. The plurality of nanoparticles include a transition metal. The method further includes forming nanoparticle-laden glass fibers, in which the plurality of nanoparticles are embedded throughout the glass fibers.Type: GrantFiled: July 29, 2010Date of Patent: March 3, 2015Assignee: Applied Nano Structured Soultions, LLCInventors: Tushar K. Shah, Harry C. Malecki
-
Publication number: 20150057143Abstract: Embodiments of the present invention relate to glass compositions, glass fibers formed from such compositions, and related products. In one embodiment, a glass composition comprises 58-62 weight percent SiO2, 14-17 weight percent Al2O3, 14-17.5 weight percent CaO, and 6-9 weight percent MgO, wherein the amount of Na2O is 0.09 weight percent or less.Type: ApplicationFiled: October 31, 2014Publication date: February 26, 2015Inventor: Hong Li
-
Publication number: 20150018194Abstract: The present invention relates generally to glass compositions incorporating rare earth oxides. In one embodiment, a glass composition suitable for fiber forming comprises 51-65 weight percent SiO2, 12.5-19 weight percent Al2O3, 0-16 weight percent CaO, 0-12 weight percent MgO, 0-2.5 weight percent Na2O, 0-1 weight percent K2O, 0-2 weight percent Li2O, 0-3 weight percent TiO2, 0-3 weight percent ZrO2, 0-3 weight percent B2O3, 0-3 weight percent P2O5, 0-1 weight percent Fe2O3, at least one rare earth oxide in an amount not less than 0.05 weight percent, and 0-11 weight percent total other constituents. In some embodiments, the at least one rare earth oxide comprises at least one of La2O3, Y2O3, Sc2O3, and Nd2O3. The at least one rare earth oxide is present in an amount of at least 1 weight percent in some embodiments. The at least one rare earth oxide, in some embodiments, is present in an amount of at least 3 weight percent.Type: ApplicationFiled: July 8, 2014Publication date: January 15, 2015Inventors: Hong Li, Paul A. Westbrook
-
Patent number: 8932968Abstract: A biodegradable ceramic fiber composition for a high-temperature thermal insulator is provided. The composition includes: 58 to 67% by weight SiO2, 26 to 34% by weight CaO, 2 to 8% by weight MgO, 0 to 1% by weight Al2O3, 0 to 5% by weight B2O3, 0 to 3% by weight Na2O+K2O, and 1% by weight or less impurities selected from TiO2 and Fe2O3. The composition has a linear thermal contraction coefficient of 3% or less (when maintained at 1100° C. for 24 hours) and a dissolution rate constant of 700 ng/cm2·hr or more in a synthetic body fluid. When compared to known biodegradable ceramic fibers, the ceramic fiber composition also has a significantly improved solubility in a synthetic body fluid so that it can easily be dissolved and removed even when inhaled into the human lungs, thereby reducing harmfulness to the human body.Type: GrantFiled: November 17, 2010Date of Patent: January 13, 2015Assignee: KCC CorporationInventors: Jin Heuk Lee, Si Moo Lee, Hong Kyeom Kim, Won Sik Jung
-
Patent number: RE45450Abstract: A method for producing a glass wool molded product includes the steps of processing a glass material into fibers so as to obtain a glass wool, gathering such glass wools to form a glass wool mat, and subjecting the glass wool mat to press molding, wherein the above described press molding is carried out, while supplying water so that the water content of the above described glass wool mat becomes 0.1% to 7.0% by mass, and while maintaining a temperature between 250° C. and 450° C.Type: GrantFiled: March 18, 2013Date of Patent: April 7, 2015Assignees: Mag-Isover K.K., Panasonic CorporationInventor: Toru Murakami