And Zinc Or Zirconium Patents (Class 501/67)
  • Patent number: 11952312
    Abstract: Glass compositions are provided with low Young's modulus and compatibility with slot drawing techniques, due at least in part to liquidus viscosity and liquidus temperature. When ion-exchanged the resulting glass articles are capable of exhibiting a ratio of a peak compressive stress value in MPa to a Young's modulus value in GPa of 13.0 or more. The glass articles may have a peak compressive stress value in a range of 850 MPa to 1400 MPa. The glass articles are suitable for various high-strength applications, including cover glass applications that experience significant bending stresses during use, for example, cover glasses for flexible displays.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: April 9, 2024
    Assignee: Corning Incorporated
    Inventors: Binghui Deng, Xiaoju Guo, Peter Joseph Lezzi
  • Patent number: 11884583
    Abstract: The present invention relates to a method of producing a colored glass for a pharmaceutical container by which the transmittance of a glass to be obtained is easily controlled so as to satisfy the standards of the Japanese Pharmacopoeia.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: January 30, 2024
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Yuki Yokota
  • Patent number: 11814316
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: November 14, 2023
    Assignee: Corning Incorporated
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Patent number: 11807573
    Abstract: A glass article (and methods for forming the same) includes a glass body having first and second opposing primary surfaces and a thickness defined between the primary surfaces. The glass body includes a compressive stress region that includes: a surface stress of greater than about 900 MPa (compressive), a spike region having a first slope, and a tail region having a second slope. The spike region and the tail region can intersect at a knee region having a stress of greater than about 35 MPa (compressive), wherein the stress at the knee region is defined as the point where the asymptotic extrapolation of the spike region and the tail region intersect. The first slope of the spike region can be steeper than about ?30 MPa/?m.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: November 7, 2023
    Assignee: Corning Incorporated
    Inventors: Yuhui Jin, Joshua James McCaslin, Jong Se Park, Vitor Marino Schneider, Wei Sun
  • Patent number: 11807575
    Abstract: The present invention relates to a glass for a pharmaceutical container that is excellent in ultraviolet shielding ability, and is also excellent in chemical durability. The glass for a pharmaceutical container of the present invention includes as a glass composition, in terms of mass %, 67% to 81% of SiO2, more than 4% to 7% of Al2O3, 7% to 14% of B2O3, 3% to 12% of Na2O+K2O, 0% to 1.8% of CaO+BaO, 0.5% to less than 2% of Fe2O3, and 1% to 5% of TiO2, and satisfies a relationship of CaO/BaO?0.5.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: November 7, 2023
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Satoshi Arai
  • Patent number: 11765846
    Abstract: Disclosed are device display screen protectors comprising a first strengthened substrate sized to cover a display screen of an electronic device, the first strengthened substrate having a central tension value in the range greater than 0 MPa and less than 20 MPa, a surface having a Knoop lateral cracking scratch threshold of at least 3 N.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: September 19, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Jaymin Amin, Joshua Michael Jacobs, Jonathan David Pesansky, Kevin Barry Reiman, Ananthanarayanan Subramanian
  • Patent number: 11702360
    Abstract: A chemically temperable borosilicate glass article has a low boron content and a corresponding Na2O content. The articles have good diffusivities and hydrolytical resistance values. When chemically tempered, the borosilicate glass article exhibits a compressive stress CS >400 MPa and a penetration depth DoL >20 ?m. A pharmaceutical primary packaging including the borosilicate glass article is also disclosed.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: July 18, 2023
    Assignee: Schott AG
    Inventors: Malte Grimm, Christof Kass, Rainer Eichholz
  • Patent number: 11629094
    Abstract: Bulk paint and ceramic powder systems, methods of forming same, and methods of forming a flexible ceramic coating on a metal substrate are disclosed. The systems may include a ceramic composition having between 2 to 30 weight percent of an alkali metal oxide, such as K2O, Na2O, and Li2O or mixtures thereof, between 10 to 74 weight percent SiO2, and between 23 to 79 weight percent B2O3. Additives that are nonwetting with molten metals, such as boron nitride, provide durable coatings for metal processing operations. The ceramic composition may include less than 5 weight percent additional metal oxides. The bulk paint system further may include water and a cellulosic suspension agent to form a bulk paint. The ceramic powder system may be processed to form a uniform powder. The bulk paint or uniform powder may be applied to a metal substrate, such as a ferrous metal substrate, dried, and heated to form a flexible coating on the metal substrate.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: April 18, 2023
    Assignee: ZYP Coatings, Inc.
    Inventors: William Brent Webb, Cressie E. Holcombe, Jr.
  • Patent number: 11629093
    Abstract: Strengthened glass substrates with glass fits and methods for forming the same are disclosed. According to one embodiment, the present invention provides a glass frit with a coefficient of thermal expansion less than or equal to the coefficient of thermal expansion of the glass substrate where it is going to be painted. The glass frit of the present invention has similar ion exchange properties to the glass substrate that is going to be used to paint with the glass frit allowing the glass substrate to be ion-exchanged. The glass frit of the present invention is mixed with an organic carrier.
    Type: Grant
    Filed: September 29, 2018
    Date of Patent: April 18, 2023
    Assignee: AGP America S.A.
    Inventors: Mario Arturo Mannheim Astete, Ivan Arturo Cornejo
  • Patent number: 11572304
    Abstract: An alkali-free glass of the present invention includes as a glass composition, in terms of mass %, 55% to 70% of SiO2, 15% to 25% of Al2O3, 0% to 5% of B2O3, 3% to 10% of MgO, 7% to 20% of SrO, and 0% to 5% of BaO, is substantially free of an alkali metal oxide, and has a strain point of more than 720° C.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: February 7, 2023
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Atsuki Saito
  • Patent number: 11554984
    Abstract: An article comprises a glass substrate. The glass substrate has a first surface having a plurality of vias therein, and a second surface parallel to the first surface. At least one of the first surface and the second surface is an etched surface having a surface roughness (Ra) of 0.75 nm or less. The glass substrate comprises, in mol percent on an oxide basis: 65 mol %?SiO2?75 mol %; 7 mol %?Al2O3?15 mol %; 26.25 mol %?RO+Al2O3?B2O3; 0 mol %?R2O?2 mol %. RO=MgO+CaO+SrO+BaO+ZnO. R2O=Li2O+Na2O+K2O+Rb2O+Cs2O.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: January 17, 2023
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Yuhui Jin, Ruchirej Yongsunthon, Liying Zhang
  • Patent number: 11548265
    Abstract: Scratch and damage resistant laminated glass articles are disclosed. According to one aspect, a laminated glass article may include a glass core layer formed from core glass composition and includes a core glass elastic modulus EC and at least one glass clad layer fused directly to the glass core layer. The at least one glass clad layer may be formed from an ion exchangeable clad glass composition different than the core glass composition and includes a clad glass elastic modulus ECL. The laminated glass article may have a total thickness T and the at least one glass clad layer may have a thickness TCL that is greater than or equal to 30% of the total thickness T. EC may be at least 5% greater than ECL.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: January 10, 2023
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Charlene Marie Smith
  • Patent number: 11548266
    Abstract: Scratch and damage resistant laminated glass articles are disclosed. According to one aspect, a laminated glass article may include a glass core layer formed from an ion exchangeable core glass composition and includes a core glass elastic modulus EC and at least one glass clad layer fused directly to the glass core layer. The at least one glass clad layer may be formed from an ion exchangeable clad glass composition different than the ion exchangeable core glass composition and includes a clad glass elastic modulus ECL. The laminated glass article may have a total thickness T and the at least one glass clad layer may have a thickness TCL that is less than 30% of the total thickness T. EC may be at least 5% greater than ECL.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: January 10, 2023
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Charlene Marie Smith
  • Patent number: 11453610
    Abstract: A method of reworking lithium containing ion exchanged glass articles is provided. The method includes a reverse ion exchange process that returns the glass article to approximately the composition of the glass from which the glass article was produced, before being subjected to ion exchange. The reworked glass articles exhibit a K2O concentration profile comprising a portion wherein a K2O concentration increases to a local K2O concentration maximum.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: September 27, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Ryan Claude Andrews, Jill Marie Hall, Pascale Oram, Rostislav Vatchev Roussev, Vitor Marino Schneider, Ljerka Ukrainczyk
  • Patent number: 11434167
    Abstract: A glass article (and methods for forming the same) includes a glass body having first and second opposing primary surfaces and a thickness defined between the primary surfaces. The glass body includes a compressive stress region that includes: a surface stress of greater than about 900 MPa (compressive), a spike region having a first slope, and a tail region having a second slope. The spike region and the tail region can intersect at a knee region having a stress of greater than about 35 MPa (compressive), wherein the stress at the knee region is defined as the point where the asymptotic extrapolation of the spike region and the tail region intersect. The first slope of the spike region can be steeper than about ?30 MPa/?m.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: September 6, 2022
    Assignee: Corning Incorporated
    Inventors: Yuhui Jin, Joshua James McCaslin, Jong Se Park, Vitor Marino Schneider, Wei Sun
  • Patent number: 11401198
    Abstract: Provided is a silicate article comprising SiO2, Al2O3, Na2O, K2O, MgO and ZrO2, wherein the content of Al2O3 is 15-28 parts by weight, the content of Na2O is 13-25 parts by weight, the content of K2O is 6-15 parts by weight, the content of MgO is 7-16 parts by weight, and the content of ZrO2 is 0.1-5 parts by weight, relative to 100 parts by weight of SiO2; and M is 5-13, as calculated by the following formula: M=P1*wt (Na2O)+P2*wt (K2O)+P3*wt (MgO)+P4*wt (ZrO2)?P5*wt (Al2O3)*wt (Al2O3). In the formula, P1 has a value of 0.53, P2 has a value of 0.153, P3 has a value of 0.36, P4 has a value of 0.67, and P5 has a value of 0.018.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: August 2, 2022
    Assignee: TUNGHSU GROUP CO., LTD.
    Inventors: Debao Li, Qing Li, Zihan Shen, Feng Guo, Ruhua Gong, Zhonghua Wang, Jiajia Chen
  • Patent number: 11319241
    Abstract: The invention discloses a composition for preparing glass, a glass article and a use thereof, and a glass article made from the composition. The glass article is preferably a glass substrate made from a composition with an M value of from about 1 to about 10 as calculated by the empirical equation: M=0.13×wt (B2O3)×wt (B2O3)+0.42×wt (CaO)+0.55×wt (MgO)+0.75×wt (SrO)?0.05×wt (Al2O3)×wt (Al2O3). A use of the glass article (especially the glass substrate) for manufacturing a display device is disclosed herein, wherein the glass article has better properties, such as lowered content of solid inclusions and gas inclusions, lowered thickness range and lowered warpage.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 3, 2022
    Assignee: TUNGHSU GROUP CO., LTD.
    Inventors: Debao Li, Qing Li, Guangtao Zhang, Zhonghua Wang, Feng Guo, Dongcheng Yan
  • Patent number: 11066325
    Abstract: To provide an alkali-free glass having a high specific elastic modulus, a suitable strain point, a low density, a not too low thermal expansion coefficient, a good clarity and a good solubility. An alkali-free glass, which comprises, as represented by mol % based on oxides, SiO2: 62 to 70%, Al2O3: 11 to 14%, B2O3: 3 to 6%, MgO: 7 to 10%, CaO: 3 to 9%, SrO: 1 to 5% and BaO: 0 to 1%, wherein [SiO2]+0.7[Al2O3]+1.2[B2O3]+0.5[MgO]+0.4[CaO]?0.25[SrO]?0.88[BaO] is at least 85, [SiO2]+0.45[Al2O3]+0.21[B2O3]?0.042[MgO]+0.042[CaO]+0.15[SrO]+0.38[BaO] is from 72 to 75, 0.4[SiO2]+0.4[Al2O3]+0.25[B2O3]?0.7[MgO]?0.88[CaO]?1.4[SrO]?1.7[BaO] is at most 19, the specific modulus is at least 32 MN·m/kg, the strain point is from 690 to 710° C., the density is at most 2.54 g/cm3, the average thermal expansion coefficient at from 50 to 350° C. is at least 35×10?7/° C., and the temperature T2 at which the glass viscosity reaches 102 dPa·s is from 1,610 to 1,680° C.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: July 20, 2021
    Assignee: AGC Inc.
    Inventors: Hirofumi Tokunaga, Kazutaka Ono
  • Patent number: 11021389
    Abstract: A supporting glass substrate has a ratio of a Young's modulus (GPa) to a density (g/cm3) that is 37.0 (GPa·cm3/g) or more and the ratio has a value larger than a ratio calculation value, the ratio calculation value being a ratio of a Young's modulus (GPa) calculated from a composition to a density (g/cm3). The ratio calculation value is represented by the following expression: ?=2·?{(Vi·Gi)/Mi·Xi}, where, in the expression, Vi is a filling parameter of a metal oxide contained in the supporting glass substrate, Gi is a dissociation energy of a metal oxide contained in the supporting glass substrate, Mi is a molecular weight of a metal oxide contained in the supporting glass substrate, and Xi is a molar ratio of a metal oxide contained in the supporting glass substrate.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: June 1, 2021
    Assignee: AGC Inc.
    Inventors: Seiji Inaba, Yasunari Saito, Kiyoshi Tamai, Kazutaka Ono, Yuha Kobayashi
  • Patent number: 10494293
    Abstract: A thermally tempered glass element is provided made of glass with two opposite faces that are under compressive stress of at least 40 MPa. The glass has a working point at which the glass has a viscosity of 104 dPa·s of at most 1350° C. The glass has a viscosity versus temperature profile and a coefficient of thermal expansion versus temperature profile of the glass are such that a variable (750° C.?T13)/(CTELiq?CTESol) has a value of at most 5*106 K2. The CTELiq is a coefficient of linear thermal expansion of the glass above a glass transition temperature Tg, the CTESol is a coefficient of linear thermal expansion of the glass in a temperature range from 20° C. to 300° C., and the T13 is a temperature at which the glass has a viscosity of 1013 dPa·s.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: December 3, 2019
    Assignee: SCHOTT AG
    Inventors: Michael Schwall, Christian Mlx, Jochen Alkemper, Peter Thomas
  • Patent number: 10450217
    Abstract: A glass for pharmaceutical containers, which is resistant to delamination and has excellent processibility, is provided. The glass for pharmaceutical containers comprises, in mol % on an oxide basis, 69 to 81% of SiO2, 4 to 12% of Al2O3, 0 to 5% of B2O3, to 20% of Li2O+Na2O+K2O, 0.1 to 12% of Li2O, and 0 to 10% of MgO+CaO+SrO+BaO. The glass has a hydrolytic resistance of Class 1 in a test in accordance with the European pharmacopoeia.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: October 22, 2019
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Kazuyuki Yamamoto, Ken Choju
  • Patent number: 10377656
    Abstract: A method includes contacting a second layer of a glass sheet with a forming surface to form a shaped glass article. The glass sheet includes a first layer adjacent to the second layer. The first layer includes a first glass composition. The second layer includes a second glass composition. An effective viscosity of the glass sheet during the contacting step is less than a viscosity of the second layer of the glass sheet during the contacting step. A shaped glass article includes a first layer including a first glass composition and a second layer including a second glass composition. A softening point of the first glass composition is less than a softening point of the second glass composition. An effective 108.2 P temperature of the glass article is at most about 900° C.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: August 13, 2019
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, John Richard Ridge, Ljerka Ukrainczyk, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 9802857
    Abstract: Substantially alkali free glasses are disclosed with can be used to produce substrates for flat panel display devices, e.g., active-matrix liquid crystal displays (AMLCDs). The glasses have high annealing temperatures and etch rates. Methods for producing substantially alkali free glasses using a downdraw process (e.g., a fusion process) are also disclosed.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 31, 2017
    Assignee: Corning Incorporated
    Inventors: Bradley Frederick Bowden, Adam James Ellison, Timothy James Kiczenski
  • Patent number: 9782949
    Abstract: Laminated articles and layered articles, for example, low alkali glass laminated articles and layered articles useful for, for example, electrochromic devices are described.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: October 10, 2017
    Assignee: Corning Incorporated
    Inventors: David Francis Dawson-Elli, Steven Edward DeMartino, Laura L Hluck
  • Patent number: 9540273
    Abstract: The present invention relates to a non-alkali glass having a strain point of from 710° C. to lower than 725° C., an average thermal expansion coefficient at from 50 to 300° C. of from 30×10?7 to 43×10?7/° C., a temperature T2 at which glass viscosity reaches 102 dPa·s of 1710° C. or lower, a temperature T4 at which the glass viscosity reaches 104 dPa·s of 1320° C. or lower, and containing, indicated by mol % on the basis of oxides, SiO2 66 to 70, Al2O3 12 to 14, B2O3 exceeding 0 to 1.5, MgO exceeding 9.5 to 13 (or 5 to 9.5), CaO 4 to 9 (or 4 to 11), SrO 0.5 to 4.5, BaO 0 to 0.5 and ZrO 0 to 2.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: January 10, 2017
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hirofumi Tokunaga, Tomoyuki Tsujimura, Manabu Nishizawa, Akio Koike
  • Patent number: 9051214
    Abstract: Certain example embodiments relate to an improved method of strengthening glass substrates (e.g., soda lime silica glass substrates). In certain examples, a glass substrate may be chemically strengthened by creating an electric field within the glass. In certain cases, the chemical tempering may be performed by surrounding the substrate by a plasma including certain ions, such as Li+, K+, Mg2+, and/or the like. In some cases, these ions may be forced into the glass substrate due to the half-cycles of the electric field generated by the electrodes that formed the plasma. This may advantageously chemically strengthen a glass substrate on a substantially reduced time scale. In other example embodiments, an electric field may be set in a float bath such that sodium ions are driven from the molten glass ribbon into the tin bath, which may advantageously result in a stronger glass substrate with reduced sodium content.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: June 9, 2015
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Xuequn Hu, Glenn A. Cerny
  • Publication number: 20150147575
    Abstract: Alkali aluminosilicate glasses that are ion exchangeable to high compressive stresses, have fast ion exchange kinetics, and high intrinsic damage resistance. The glasses achieve all of the above desired properties either with only small amounts of P2O5 (<1 mol %) or without addition of any P2O5.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 28, 2015
    Inventors: Matthew John Dejneka, John Christopher Mauro
  • Publication number: 20150140325
    Abstract: Embodiments of glass composition including at least about 65 mol % SiO2, Al2O3 in the range from about 7 mol % to about 11 mol %, Na2O in the range from about 13 mol % to about 16 mol %; and a non-zero amount of one or more alkali earth metal oxides selected from MgO, CaO and ZnO, wherein the sum of the alkali earth metal oxides is up to about 6 mol %, are disclosed. The glass compositions can be processed using fusion forming processes and float forming processes and are ion exchangeable. Glass articles including such glass compositions and methods of forming such glass articles are also disclosed. The glass articles of one or more embodiments exhibit a Vickers indentation crack initiation load of at least 8 kgf.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 21, 2015
    Inventors: Timothy Michael Gross, Xiaoju Guo, Charlene Marie Smith
  • Publication number: 20150118497
    Abstract: An ion exchangeable glass having a high degree of resistance to damage caused by abrasion, scratching, indentation, and the like. The glass comprises alumina, B2O3, and alkali metal oxides, and contains boron cations having three-fold coordination. The glass, when ion exchanged, has a Vickers crack initiation threshold of at least 10 kilogram force (kgf).
    Type: Application
    Filed: January 7, 2015
    Publication date: April 30, 2015
    Inventors: Matthew John Dejneka, Adam James Ellison, John Christopher Mauro
  • Publication number: 20150093561
    Abstract: The present invention relates to an alkali-free glass having a strain point of from 680 to 735° C., an average thermal expansion coefficient at from 50 to 350° C. of from 30×10?7 to 43×10?7/° C., and a specific gravity of 2.60 or less, and containing, indicated by mol % on the basis of oxides, SiO2 65 to 69%, Al2O3 11.5 to 14%, B2O3 3 to 6.5%, MgO 1 to 5%, CaO 7.5 to 12%, SrO 0 to 1%, BaO 0.5 to 6%, and ZrO2 0 to 2%.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hirofumi Tokunaga, Manabu Nishizawa, Akio Koike
  • Publication number: 20150087494
    Abstract: The present invention relates to an alkali-free glass having a strain point of 710° C. or higher, an average thermal expansion coefficient at from 50 to 350° C. of from 30×10?7 to 43×10?7/° C., a temperature T2 at which glass viscosity reaches 102 dPa·s of 1,710° C. or lower, and a temperature T4 at which the glass viscosity reaches 104 dPa·s of 1,320° C. or lower, containing, indicated by % by mass on the basis of oxides: SiO2 58.5 to 67.5, Al2O3 18 to 24, B2O3 0 to 1.7, MgO 6.0 to 8.5, CaO 3.0 to 8.5, SrO 0.5 to 7.5, BaO 0 to 2.5, and ZrO2 0 to 4.0, containing 0 to 0.35% by mass of Cl, 0.01 to 0.15% by mass of F, and 0.01 to 0.3% by mass of SnO2, and having a ?-OH value of the glass of from 0.15 to 0.60 mm?1.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hirofumi TOKUNAGA, Akio Koike, Manabu Nishizawa, Tomoyuki Tsujimura
  • Publication number: 20150087495
    Abstract: The present invention relates to an alkali-free glass having a strain point of 680 to 735° C., an average thermal expansion coefficient at from 50 to 350° C. of from 30×10?7 to 43×10?7/° C., a temperature T2 at which glass viscosity reaches 102 dPa.s of 1,710° C. or lower, and a temperature T4 at which the glass viscosity reaches 104 dPa.s of 1,310° C. or lower, and containing, indicated by mol % on the basis of oxides, SiO2 63 to 74, Al2O3 11.5 to 16, B2O3 exceeding 1.5 to 5, MgO 5.5 to 13, CaO 1.5 to 12, SrO 1.5 to 9, BaO 0 to 1, and ZrO2 0 to 2, in which MgO+CaO+SrO+BaO is from 15.5 to 21, MgO/(MgO+CaO+SrO+BaO) is 0.35 or more, CaO/(MgO+CaO+SrO+BaO) is 0.50 or less, and SrO/(MgO+CaO+SrO+BaO) is 0.50 or less.
    Type: Application
    Filed: December 5, 2014
    Publication date: March 26, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Manabu NISHIZAWA, Hirofumi Tokunaga, Akio Koike
  • Publication number: 20150068595
    Abstract: A glass substrate for a Cu—In—Ga—Se solar cell. The glass substrate includes the specific amounts of SiO2, Al2O3, B2O3, MgO, CaO, SrO, BaO, ZrO2, Na2O and K2O. In the glass substrate, MgO+CaO+SrO+BaO is from 10 to 30%, Na2O+K2O is from 8 to 20%, Na2O/K2O is from 0.7 to 2.0, and (2×Na2O-2×MgO—CaO)×(Na2O/K2O) is from 3 to 22. The glass substrate has a glass transition temperature of from 640 to 700° C., an average coefficient of thermal expansion of from 60×10?7 to 110×10?7/° C., and a density of from 2.45 to 2.9 g/cm3.
    Type: Application
    Filed: March 5, 2013
    Publication date: March 12, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Yutaka Kuroiwa, Shinichi Amma, Reo Usui, Tomomi Abe, Takeshi Tomizawa
  • Patent number: 8969226
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 3, 2015
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Publication number: 20150051060
    Abstract: Alkali-doped boroaluminosilicate glasses are provided. The glasses include the network formers SiO2, B2O3, and Al2O3. The glass may, in some embodiments, have a Young's modulus of less than about 65 GPa and/or a coefficient of thermal expansion of less than about 40×10?7/° C. The glass may be used as a cover glass for electronic devices, a color filter substrate, a thin film transistor substrate, or an outer clad layer for a glass laminate.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 19, 2015
    Inventors: Adam James Ellison, Jason Sanger Frackenpohl, John Christopher Mauro, Douglas Miles Noni, JR., Natesan Venkataraman
  • Publication number: 20150045203
    Abstract: The present invention relates to a non-alkali glass having a strain point of from 710° C. to lower than 725° C., an average thermal expansion coefficient at from 50 to 300° C. of from 30×107 to 43×10?7/° C., a temperature T2 at which glass viscosity reaches 102dPa.s of 1710° C. or lower, a temperature T4 at which the glass viscosity reaches 104 dPd.s of 1320° C. or lower, and containing, indicated by mol % on the basis of oxides, SiO2 66 to 70, Al2O3 12 to 14, B2O3 exceeding 0 to 1.5, MgO exceeding 9.5 to 13 (or 5 to 9.5), CaO 4 to 9 (or 4 to 11), SrO 0.5 to 4.5, BaO 0 to 0.5 and ZrO 0 to 2.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hirofumi TOKUNAGA, Tomoyuki TSUJIMURA, Manabu NISHIZAWA, Akio KOIKE
  • Publication number: 20150038315
    Abstract: To provide a method for producing chemically tempered glass, whereby frequency of replacement of the molten salt can be reduced. A method for producing chemically tempered glass, which comprises repeating ion exchange treatment of immersing glass in a molten salt, wherein the glass comprises, as represented by mole percentage, from 61 to 77% of SiO2, from 1 to 18% of Al2O3, from 3 to 15% of MgO, from 0 to 5% of CaO, from 0 to 4% of ZrO2, from 8 to 18% of Na2O and from 0 to 6% of K2O; SiO2+Al2O3 is from 65 to 85%; MgO+CaO is from 3 to 15%; and R calculated by the following formula by using contents of the respective components, is at least 0.66: R=0.029×SiO2+0.021×Al2O3+0.016×MgO?0.004×CaO+0.016×ZrO2+0.029×Na2O+0×K2O?2.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Jun Endo, Shusaku Akiba, Kazutaka Ono, Shigeki Sawamura
  • Publication number: 20150030827
    Abstract: Glass compositions and glass articles comprising the glass compositions are disclosed. In one embodiment, a glass composition includes from about 65 mol. % to about 70 mol. % SiO2; from about 9 mol. % to about 14 mol. % Al2O3; and from about 0 mol. % to about 11 mol. % B2O3 as glass network formers. The glass composition also includes from about 5 mol. % to less than 10 mol. % alkali oxide R2O, wherein R is at least one of Li, Na, and K. The glass composition also includes from about 3 mol. % to about 11 mol. % of divalent oxide MO, wherein M is at least one of Mg, Ca, Ba, SrO and Zn. The glass composition has a coefficient of thermal expansion which is less than or equal to 55×10-7/° C. and is amenable to strengthening by ion-exchange. The glass composition is well suited for use as the glass cladding layers of a laminated glass article.
    Type: Application
    Filed: February 27, 2013
    Publication date: January 29, 2015
    Applicant: One Incorporated
    Inventors: Sinue Gomez, Timothy James Kiczenski, John Christopher Mauro, Robert Anthony Schaut, Morten Mattrup Smedskjaer, Natesan Venkataraman
  • Publication number: 20150024210
    Abstract: A glass that is down-drawable and ion exchangeable. The glass has a temperature T35kp which the viscosity is 35 kilopoise. T35kp is less than the breakdown temperature Tbreakdown of zircon.
    Type: Application
    Filed: August 11, 2014
    Publication date: January 22, 2015
    Inventors: Matthew John Dejneka, Adam James Ellison, Benjamin Zain Hanson
  • Patent number: 8937027
    Abstract: A glass composition and its use for producing glass tubes is provided. The glass tubes having the provided composition are particularly suitable for the outer tubes of fluorescent lamps in the case of which a phosphor layer is baked at temperatures of up to 700° C. The tubes composed of the glass of the provided composition have a lower tendency to deform or stick together when processed at high temperatures. To obtain the observed effects, the molar ratio of Na2O/(Na2O+K2O), inter alia, is greater than 0.4 and not more than 0.72.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Schott AG
    Inventors: Erhard Dick, Joerg Hinrich Fechner
  • Patent number: 8927444
    Abstract: A constitution of cover glass, the compositions consist in terms of weight % on the oxide basis, of from 64 to 69 wt. % of SiO2; from 7 to 11.5 wt. % of Al2O3; from 1.5 to 2.5 wt. % of B2O3; from 4.5 to 7.5 wt. % of MgO; 0%<CaO?2.5%; 0%<ZnO?2%; 0%<ZrO2?0.2%; 0%<TiO2?1%; from 14.5 to 16.5 wt. % of Na2O; from 1 to 4 wt. % of K2O; and 0%<SnO2?0.4%. The constitution then can be melted to form cover glass. Thereafter, the cover glass is dipped in KNO3 solution so that sodium ions, which is smaller in volume, contained in certain depth from the surface layer of the cover glass can be substituted by potassium ions, which is larger in volume. In this manner, squeezing effect is generated on the surface layer so as to form cover glass having high strength and resistance in both abrasion and scratch.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: January 6, 2015
    Assignee: Fortune Technology Corp.
    Inventor: Allen Yu
  • Patent number: 8916487
    Abstract: The present invention relates to the glass substrate for an information recording medium comprising the following glass components: SiO2: 52 to 67; Al2O3: 8 to 20; B2O3: 0 to 6, with these three oxides FMO: 70 to 85; Li2O: 0.5 to 4; Na2O: 1 to 8; K2O: 0 to 5; and with these three oxides R2O: 5 to 15; MgO: 2 to 9; CaO: 0.1 to 5; BaO: 0 to 3; SrO: 0 to 3; ZnO: 0 to 5; and with these five oxides: 5 to 15; Y2O3: 0 to 4; La2O3: 0 to 4; Gd2O3: 0 to 4; CeO2: 0 to 4; TiO2: 1 to 7; HfO2: 0 to 2; ZrO2: 0 to 5; Nb2O5: 0.2 to 5; and Ta2O5: 0 to 5, and satisfies Li2O/R2O: 0.05 to 0.35; Li2O/FMO: 0.005 to 0.035; Li2O/(MgO+ZnO): less than 2 and Nb2O5/SiO2: 0.01 to 0.075.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: December 23, 2014
    Assignee: Hoya Corporation
    Inventors: Hideki Kawai, Hiroshi Kajita, Akio Oogaki, Toshiharu Mori
  • Publication number: 20140356576
    Abstract: Described herein are various glass compositions, glass articles, and information storage devices that comprise the glass articles as substrates therefor, along with methods for their manufacture and use.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Inventors: Matthew John Dejneka, John Christopher Mauro, Morten Mattrup Smedskjaer
  • Patent number: 8877663
    Abstract: This invention relates to a crystal glass having a refractive index higher than 1.53 and a high mechanical strength, free of any content of compounds of lead, barium and arsenic and guaranteeing maximum safety for health, which consists in that it comprises by weight: 55-70% SiO2, 0.05-3.5% Li2O, 2-15% Na2O, more than 3% and less than 5% or more than 15% and less than 19% K2O, 5 to 10% CaO, more than 1% and less than 4% or more than 7% and less than 8% ZnO, 0.1-3.5% B2O3, 0.1-3.5% Al2O3, 0.1-3.5% TiO2, less than 3.5% ZrO2, 0.05-1.5% Gd2O,3 0.05-1% P2O5, 0.1-1% Sb2O3.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: November 4, 2014
    Assignee: Preciosa A.S.
    Inventors: Miroslav Rada, Kv{hacek over (e)}ta Sázavová, Jan Ko{hacek over (r)}enský, Ji{hacek over (r)}i Vav{hacek over (r)}ena
  • Publication number: 20140323287
    Abstract: Borosilicate glasses, preferably for use in the pharmaceutical sector, are provided. The borosilicate glasses are outstandingly suitable for the use as pharmaceutical primary packaging, such as phials or ampoules, since the aqueous or water-containing medicaments kept in the containers do not attack the glass significantly, and so the glass releases no, or only few, ions. The borosilicate glasses have the following composition in % by weight or consist thereof: SiO2 71-77; B2O3 9-12; Al2O3 5.5-8; Na2O 6-8; K2O 0.1-0.9; Li2O 0-0.3; CaO 0-1.5; BaO 0-1; F 0-0.3; Cl- 0-0.3; and MgO + CaO + BaO + SrO 0-2.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 30, 2014
    Applicant: SCHOTT AG
    Inventors: Stephan Tratzky, Christof Kass, Rainer Eichholz, Peter Nass
  • Publication number: 20140308525
    Abstract: A glass and a glass composition are provided that, following chemical tempering, not only exhibit high values of compressive stress and depth of ion exchange, but also excellent scratch tolerance. The glass composition includes SiO2, Al2O3, B2O3, ZrO2, and Na2O.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 16, 2014
    Applicant: Schott AG
    Inventors: Oliver Hochrein, Inge Burger, Irmgard Westenberger, Jochen Alkemper, Gerd Rudas, Katharina Alt, Gordon Kissl, Gunther Paulus
  • Publication number: 20140309097
    Abstract: A glass element is provided that is made of a glass having SiO2, Al2O3, B2O3, and Na2O. The glass has a scratch tolerance that when scratches of 1 mm length are introduced using a Knoop diamond indenter which presses upon a surface of the glass with a force of 4 Newton and is displaced along the surface with a traverse speed of 0.4 mm/s, not more than 20% of the scratches have a noticeable width including visible chipping of more than 25 ?m. In some embodiments, the glass, after chemical tempering, has sodium ions that are at least partially exchanged for potassium ions so that a compressive stress zone is provided at the surface of the glass. The compressive stress is at least 700 MPa and an exchange depth of alkali ions is at least 25 ?m.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 16, 2014
    Applicant: Schott AG
    Inventors: Oliver Hochrein, Inge Burger, Irmgard Westenberger, Jochen Alkemper, Gerd Rudas, Katharina Alt, Gordon Kissl, Gunther Paulus
  • Patent number: 8852764
    Abstract: To provide a substrate for information recording medium having various properties, in particular higher fracture toughness, required for application of the substrate for information recording medium of the next generation such as perpendicular magnetic recording system, etc. and a material with excellent workability for such purpose. A crystallized glass substrate for information recording medium, consisting of a crystallized glass which comprises one or more selected from RAl2O4 and R2TiO4 as a main crystal phase, in which R is one or more selected from Zn, Mg and Fe, and in which the main crystal phase has a crystal grain size in a range of from 0.5 nm to 20 nm, a degree of crystallinity of 15% or less, and a specific gravity of 3.00 or less.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: October 7, 2014
    Assignee: Ohara Inc.
    Inventors: Toshitaka Yagi, Naoyuki Goto
  • Publication number: 20140284577
    Abstract: Thin glasses having high refractive index (nd), a layer composite assembly made from these thin glasses, a method for the production of the thin glasses, and the uses of the thin glasses are provided. The thin glasses are processed in an in line manufacturing process and have the optical properties of a classical optical glass. The thin glasses are highly transparent, crystallization-resistant, chemically resistant and highly refractive. The viscosity/temperature behavior of the thin glasses is adjusted to the manufacturing process via in line flat glass methods.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 25, 2014
    Applicant: Schott AG
    Inventors: Karl Mennemann, Uwe Kolberg, Holger Wegener, Monika Gierke, Ute Woelfel, Joerg Fechner
  • Publication number: 20140264356
    Abstract: Described herein are aluminoborosilicate glass compositions that are substantially alkali-free and exhibit desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions can be formed into glass sheets by, for example, the float process. When used as substrates, the glass sheets exhibit dimensional stability during processing and damage resistance during cutting.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: Corning Incorporated
    Inventor: Adam James Ellison