Calcium Oxide Containing Patents (Class 501/70)
  • Patent number: 10597322
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: March 24, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 10591652
    Abstract: The present disclosure provides a coated glass or glass-ceramic substrate, wherein at least two coating layers are applied to each side of the substrate. Each of the coating layers comprises one or more metal oxides, and optionally a dopant. The dopant can be a halogen or post transition metal. The coated substrate can have two coating layers on each side, three coating layers on each side, or two coating layers on one side and three coating layers on the other side. The properties of each of the coating layers are adjusted so that the coated substrate can reflect infrared light in targeted wavelength ranges. The properties that can be adjusted include the number of coating layers, the coating layer thickness, the coating layer composition, the index of refraction of each coating layer, and the location of each coating layer according to their index of refraction.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: March 17, 2020
    Assignee: SCHOTT GEMTRON CORP.
    Inventor: Adam O' Ryan
  • Patent number: 10577275
    Abstract: The invention relates to a glass sheet having high transmission of infrared (IR) radiation. More specifically, the invention relates to a glass sheet having a composition which comprises, in a content expressed as percentages by total weight of glass: SiO2 55-85% AI2O3 0-30% B2O3 0-20% Na2O 0-25% CaO 0-20% MgO 0-15% K2O 0-20% BaO 0-20% total iron (expressed in the form of Fe2O3) 0.002-1%, Cr2O3 0.001-0.5% Co 0.0001-0.5% Se 0.0003-0.5%. By virtue of its high transmission of IR radiation, said glass sheet can advantageously be used in a device using a technology requiring very good transmission of IR radiation, whether through the main faces or starting from their edge (for example, a screen or panel or pad) The invention thus also relates to the use of such a glass sheet in a device using infrared radiation propagating essentially inside said sheet.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: March 3, 2020
    Assignee: AGC GLASS EUROPE
    Inventors: Thomas Lambricht, Audrey Dogimont, Aline Degand
  • Patent number: 10358378
    Abstract: It is an object of the present invention to provide near infrared cutoff filter glass having a high transmittance in a visible light range and a low transmittance in a near infrared light range and being excellent in the devitrification resistance, even though the concentration of Cu components in the glass is high for forming a thin plate. A near infrared cutoff filter glass, which comprises, as represented by cation percentage: P5+ 30 to 50%, Al3+ 5 to 20%, R+ 20 to 40% (wherein R+ is the total amount of Li++Na++K+), R?2+ 5 to 30% (wherein R?2+ is the total amount of Mg2++Ca2++Sr2++Ba2++Zn2+), Cu2+ 3 to 15% and comprises, as represented by anion percentage: O2? 30 to 90% and F? 10 to 70%, wherein (Li++Na++K+)/(P5++Al3+) is from 0.45 to 1.0, and (Sr2++Ba2++Cu2+)/(Al3++Mg2++Ca2+) is from 0.5 to 1.0.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 23, 2019
    Assignee: AGC Inc.
    Inventor: Makoto Shiratori
  • Patent number: 10315948
    Abstract: A pharmaceutical packaging is provided including a glass, comprising at least the following components (given in mol % on oxide basis): SiO2: 5 9-84, Al2O3: 7-18.5, CaO: 1-25, SrO: 0-6.5, BaO: 0-5, ZrO2: 0-3, TiO2: 0-5, B2O3: 0-1, wherein the ratio (CaO+SrO+BaO)/Al2O3<2.8, wherein the ratio (CaO+SrO+BaO)/SiO2?0.39, wherein the hydrolytic resistance according to DIN ISO 720 is class HGA 1, and wherein the glass, apart from unavoidable contaminations, is free of alkali oxides and magnesium oxides.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: June 11, 2019
    Assignee: SCHOTT AG
    Inventors: Michael Schwall, Christof Kass, Stephan Tratzky, Rainer Eichholz, Peter Nass
  • Patent number: 10288792
    Abstract: The present disclosure relates to substrates having laser-induced scattering features located either on the surface of the substrate or within the substrate, along with methods of making such scattering substrates. The disclosed scattering substrates provide improved light extraction properties and may be useful in a variety of applications, such as lighting and electronic displays.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: May 14, 2019
    Assignee: Corning Incorporated
    Inventors: Kirk Richard Allen, Daniel Ralph Harvey, Vasudha Ravichandran
  • Patent number: 10252937
    Abstract: A vitreous frit comprising the following by weight percentage ranges: SiO2 40-60 Al2O3 ?5-20 Na2O 10-35 Li2O 0-6 CaO ?0-10 SrO 0-5 BaO 0-5 CeO2 0-5 TiO2 ?0-9.
    Type: Grant
    Filed: June 21, 1988
    Date of Patent: April 9, 2019
    Assignee: Raytheon Company
    Inventor: Alvin R. Stetson
  • Patent number: 10243171
    Abstract: Provided is a laminate for a light emitting device. The laminate for a light emitting device includes a glass substrate having potassium or a glass substrate coated with a mineral layer containing potassium, and an internal light extraction layer formed from a glass frit on the glass substrate. The internal light extraction layer includes an interface void layer at an interface with the glass substrate or the mineral layer. The laminate has an interface void layer inducing the scattering of light for effectively extracting light, which is lost at the interface between the substrate and the internal light extraction layer, to the outside. The laminate is suitable for the fields of optical devices such as organic light emitting diodes (OLEDs), backlights, lighting industry, etc.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: March 26, 2019
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Jin-Woo Han, Young-Seong Lee
  • Patent number: 10065885
    Abstract: A glass sheet for pigment printing contains, as represented by mass percentage on the basis of oxides, from 60% to 75% of SiO2, from 2% to 12% of Al2O3, from 2% to 11% of MgO, from 0% to 10% of CaO, from 0% to 3% of SrO, from 0% to 3% of BaO, from 10% to 18% of Na2O, from 0% to 8% of K2O, and from 0% to 4% of ZrO2, or contains, from 60% to 75% of SiO2, from 1.5% to 12% of Al2O3, from 6% to 12% of MgO, from 0% to 4.5% of CaO, from 0% to 3% of SrO, from 0% to 3% of BaO, from 10% to 18% of Na2O, from 0% to 8% of K2O, and from 0% to 4% of ZrO2.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: September 4, 2018
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Junichiro Kase, Kazutomo Mori, Thomas Lambricht
  • Patent number: 9988298
    Abstract: The present invention provides a high-transparency glass having a high fining action at a low temperature and capable of achieving redox lowering more than before. The present invention relates to a glass containing 1 to 500 ppm of a total iron oxide (t-Fe2O3) in terms of Fe2O3, having a redox ([divalent iron (Fe2+) in terms of Fe2O3]/[total (Fe2++Fe3+) of divalent iron (Fe2+) and trivalent iron (Fe3+) in terms of Fe2O3]) of 0% or more and 25% or less, containing, as expressed by mass percentage based on oxides, 50 to 81% of SiO2, 1 to 20% of Al2O3, 0 to 5% of B2O3, 5 to 20% of Li2O+Na2O+K2O, and 5 to 27% of MgO+CaO+SrO+BaO, and having a bubble disappearance-starting temperature (TD) of 1485° C. or lower.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: June 5, 2018
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yusaku Matsuo, Yutaka Kuroiwa, Yusuke Arai, Hiroyuki Hijiya, Yuki Kondo
  • Patent number: 9919954
    Abstract: An inorganic fiber containing silica and magnesia as the major fiber components and which further includes an intended iron oxide additive to improve the dimensional stability of the fiber. The inorganic fiber exhibits good thermal insulation performance at 1400° C. and greater, retains mechanical integrity after exposure to the use temperature, and which remains non-durable in physiological fluids. Also provided are thermal insulation product forms comprising a plurality of the inorganic fibers, methods of preparing the inorganic fiber and of thermally insulating articles using thermal insulation prepared from a plurality of the inorganic fibers.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: March 20, 2018
    Assignee: UNIFRAX I LLC
    Inventors: Bruce K. Zoitos, Michael J. Andrejcak
  • Patent number: 9862636
    Abstract: A heat-absorbing glass plate containing iron, tin and sulfur, where, as represented by mass % based on oxides, the amount of total iron as calculated as Fe2O3 is at least 0.3%, the amount of total tin as calculated as SnO2 is less than 0.4%, and the ratio (SnO2/SO3) of the amount of total tin to the amount of total sulfur as calculated as SO3 is from 0.2 to 100.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: January 9, 2018
    Assignee: Asahi Glass Company, Limited
    Inventors: Yuya Shimada, Yusuke Arai, Yuki Kondo
  • Patent number: 9764980
    Abstract: A glass composition of the present invention includes, in mol %, 66 to 72% SiO2, 1 to 4% Al2O3, 8 to 15% MgO, 1 to 8% CaO, 12 to 16% Na2O, and 0 to 1% K2O. A total content of MgO and CaO is in a range of 12 to 17%, and a molar ratio of CaO to the total content of MgO and CaO is in a range of 0.1 to 0.4. The glass composition of the present invention is suitable for production by the float process, and is suitable for chemical strengthening.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 19, 2017
    Assignee: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Yutaka Senshu, Junji Kurachi
  • Patent number: 9658437
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: May 23, 2017
    Assignee: PPG Industries Ohio, Inc.
    Inventors: George B. Goodwin, Mehran Arbab, Caroline S. Harris, Larry J. Shelestak
  • Patent number: 9624125
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: April 18, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 9474688
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: October 25, 2016
    Assignee: Corning Incorporated
    Inventors: Wendell Porter Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9474689
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, PROCRIT (epoetin alfa), REMICADE (Infliximab) or DORIBAX (doripenem).
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: October 25, 2016
    Assignee: Corning Incorporated
    Inventors: Wendell Porter Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9434633
    Abstract: Transparent glass sheets having increased mechanical strength include an inner layer surrounded by surface compressive layers wherein the difference of the coefficient of thermal expansion of the inner layer and the surface compressive layer is greater than 50×10?7° C.?1 and wherein the surface compressive layer has a compressive stress of at least about 300 MPa.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: September 6, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Keith Leonard House, Pushkar Tandon
  • Patent number: 9249047
    Abstract: Disclosed is an ultraviolet and infrared absorptive glass characterized by that its coloring component contains, based on mass of the ultraviolet and infrared absorptive glass, 0.05-0.9 mass % of CeO2, 0.50-1.20 mass % of of total iron oxide in terms of Fe2O3, 0.08-0.30 mass % of FeO, 0.1-1.5 mass % of TiO2, 10-25 mass ppm of CoO, and 0.1-50 mass ppm of Cr2O3, that mass ratio (Fe2+/Fe3+) of divalent iron to trivalent iron is 0.20-0.45, and that dominant wavelength measured by using illuminant D65 of JIS Z 8701 is 510-560 nm. This glass has satisfactory optical characteristics, even though the content of CeO2 has been reduced.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 2, 2016
    Assignee: Central Glass Company, Limited
    Inventors: Naoki Mitamura, Tatsuya Tsuzuki
  • Patent number: 9241869
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, LEVEMIR, NOVOLOG, NOVOLIN 70-30, NOVOLIN R, NOVOLIN N, NOVOLOG MIX 70-30 and NOVOLIN L.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: January 26, 2016
    Assignee: Corning Incorporated
    Inventors: Wendell Porter Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9198829
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, NEUPOGEN® (filgrastim), NEULASTA® (pegfilgrastim), (epoetin alfa) or ENBREL® (etanercept).
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: December 1, 2015
    Assignee: Corning Incorporated
    Inventors: Wendell Porter Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9193621
    Abstract: To provide a heat-absorbing glass plate which satisfies both low solar transmittance and high visible light transmittance, presents a green color as transmitted light and contains a small number of coloring components. The heat-absorbing glass plate of the present invention has a solar transmittance of at most 42% calculated as 4 mm thickness, has a visible light transmittance (by illuminant A, 2° visual field) of at least 70% calculated as 4 mm thickness, and provides a transmitted light having a dominant wavelength of from 492 to 520 nm, and it is made of soda lime silica glass having substantially the following composition, as represented by mass % based on oxides. SiO2: 65 to 75%, Al2O3: more than 3% and at most 6%, MgO: at least 0% and less than 2%, CaO: 7 to 10%, total iron as calculated as Fe2O3: 0.45 to 0.65%, and TiO2: 0.2 to 0.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: November 24, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Yuya Shimada, Tomoyuki Kobayashi, Yuki Kondo
  • Patent number: 9187361
    Abstract: A method of forming high strength glass fibers in a refractory-lined glass meter, products made there from and batch compositions suited for use in the method are disclosed. The glass composition for use in the method of the present invention is up to about 64-75 weight percent SiO2, 16-24 weight percent Al2O3, 8-12 weight percent MgO and 0.25-3 weight percent R2O, where R2O equals the sum of Li2O and Na2O, has a fiberizing temperature less than about 2650° F., and a ?T of at least 80° F. By using oxide-based refractory-lined furnaces the cost of production of glass fibers is substantially reduced in comparison with the cost of fibers produced using a platinum-lined melting furnace. High strength composite articles including the high strength glass fibers are also disclosed.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: November 17, 2015
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Peter B. McGinnis, Douglas A. Hofmann
  • Patent number: 9186295
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, LANTUS (insulin glargine [rDNA]), LOVENOX (Enoxaparin), PENTACT-HIB (Hemophilus influenzae type b polysaccharide conjugated to tetanus protein, diphtheria, tetanus, pertussis and inactivated poliovirus vaccines) or FLUZONE or VAXIGRIP (influenza virus vaccine).
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: November 17, 2015
    Assignee: Corning Incorporated
    Inventors: Wendell Porter Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9108879
    Abstract: The present invention relates to an alkali-free glass having a strain point of 735° C. or higher, an average thermal expansion coefficient at from 50 to 350° C. of from 30×10?7 to 40×10?7/° C., a temperature T2 at which a glass viscosity is 102 dPa·s of 1,710° C. or lower, a temperature T4 at which a glass viscosity is 104 dPa·s of 1,340° C. or lower, and a devitrification temperature of 1,330° C. or lower, the alkali-free glass including, in terms of mol % on the basis of oxides: SiO2 66 to 69, Al2O3 12 to 15, B2O3 0 to 1.5, MgO 6 to 9.5, CaO 7 to 9, SrO 0.5 to 3, BaO 0 to 1, and ZrO2 0 to 2, in which MgO+CaO+SrO+BaO is from 16 to 18.2, MgO/(MgO+CaO+SrO+BaO) is 0.35 or more, MgO/(MgO+CaO) is 0.40 or more and less than 0.52, and MgO/(MgO+SrO) is 0.45 or more.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: August 18, 2015
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Tomoyuki Tsujimura, Manabu Nishizawa, Akio Koike
  • Patent number: 9061938
    Abstract: Provided is an alkali-free glass, comprising, as a glass composition in terms of mass %, 58 to 70% of SiO2, 15.5 to 20% of Al2O3, 0 to 1% of B2O3, 0 to 5% of MgO, 3.5 to 16% of CaO, 0.5 to 6.5% of SrO, and 5 to 15% of BaO, being substantially free of alkali metal oxides, and having a strain point of more than 725° C.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: June 23, 2015
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Takahiro Kawaguchi, Shinkichi Miwa
  • Publication number: 20150140325
    Abstract: Embodiments of glass composition including at least about 65 mol % SiO2, Al2O3 in the range from about 7 mol % to about 11 mol %, Na2O in the range from about 13 mol % to about 16 mol %; and a non-zero amount of one or more alkali earth metal oxides selected from MgO, CaO and ZnO, wherein the sum of the alkali earth metal oxides is up to about 6 mol %, are disclosed. The glass compositions can be processed using fusion forming processes and float forming processes and are ion exchangeable. Glass articles including such glass compositions and methods of forming such glass articles are also disclosed. The glass articles of one or more embodiments exhibit a Vickers indentation crack initiation load of at least 8 kgf.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 21, 2015
    Inventors: Timothy Michael Gross, Xiaoju Guo, Charlene Marie Smith
  • Patent number: 9028967
    Abstract: The present invention relates to a chemically strengthened glass for a display device, having a visible light transmittance Tva of 50% or more and less than 91% at a thickness of 1 mm using A light source, and an excitation purity Pe of less than 0.5% at a thickness of 1 mm.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: May 12, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Akio Koike, Yuya Shimada, Isao Saito
  • Patent number: 9029279
    Abstract: A glass composition including SiO2 in an amount from 74.5 to 80.0% by weight, Al2O3 in an amount from 5.0 to 9.5%>> by weight, MgO in an amount from 8.75 to 14.75% by weight, CaO in an amount from 0.0 to 3.0% by weight, Li2O in an amount from 2.0 to 3.25% by weight, Na2O in an amount from 0.0 to 2.0% by weight is provided. Glass fibers formed from the inventive composition may be used in applications that require high strength, high stiffness, and low weight. Such applications include woven fabrics for use in forming wind blades, armor plating, and aerospace structures.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: May 12, 2015
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Douglas Alan Hofmann, Peter Bernard McGinnis
  • Publication number: 20150126354
    Abstract: To provide glass to be used for chemically tempered glass, of which the strength is less likely to be reduced even when indentations are formed thereon. Glass for chemical tempering, which comprises, as represented by mole percentage based on oxides, from 62 to 68% of SiO2, from 6 to 12% of Al2O3, from 7 to 13% of MgO, from 9 to 17% of Na2O, and from 0 to 7% of K2O, wherein the difference obtained by subtracting the content of Al2O3 from the total content of Na2O and K2O is less than 10%, and when ZrO2 is contained, its content is at most 0.8%. Chemically tempered glass obtained by chemically tempering such glass for chemical tempering. Such chemically tempered glass has a compressive stress layer formed on the glass surface, which has a thickness of at least 30 ?m and a surface compressive stress of at least 550 MPa.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Jun ENDO, Shusaku AKIBA, Kazutaka ONO, Tetsuya NAKASHIMA
  • Patent number: 9023745
    Abstract: A photovoltaic cell, for example a thin-film photovoltaic cell, having a substrate glass made of aluminosilicate glass, has a glass composition which has SiO2 and Al2O3 as well as the alkali metal oxide Na2O and the alkaline earth oxides CaO, MgO, and BaO, and optionally further components. The glass composition includes 10 to 16 wt.-% Na2O, >0 to <5 wt.-% CaO, and >1 to 10 wt.-% BaO, and the ratio of CaO:MgO is in the range of 0.5 to 1.7. The aluminosilicate glass used is crystallization stable because of the selected quotient of CaO/MgO and has a transformation temperature >580° C. and a processing temperature <1200° C. Therefore, it represents a more thermally stable alternative to soda-lime glass. The aluminosilicate glass is used as a substrate glass, superstrate glass, and/or cover glass for a photovoltaic cells, for example for thin-film photovoltaic cells, in particular those based on semiconductor composite material, such as CdTe, CIS, or CIGS.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 5, 2015
    Assignee: Schott AG
    Inventors: Jörg Hinrich Fechner, Christof Kass, Franz Ott
  • Patent number: 9023474
    Abstract: A plurality of soda-lime glass batch materials are formed into granules that include a core and a shell surrounding the core. The core comprises a first portion of the plurality of glass batch materials, and the shell comprises a remaining portion of the plurality of glass batch materials. These core-shell granules can be melted in a glass furnace to produce molten soda-lime glass in less time and at a lower temperature than conventional soda-lime glass batch preparations.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 5, 2015
    Inventors: Witold W. Mastek, Desikan Sundararajan, Terence J. Clark, Melisa Y. Zambrano Becerra
  • Patent number: 9016092
    Abstract: A glass for a magnetic recording medium substrate permitting the realization of a magnetic recording medium substrate affording good chemical durability and having an extremely flat surface, a magnetic recording medium substrate comprised of this glass, a magnetic recording medium equipped with this substrate, and methods of manufacturing the same. The glass is an oxide glass not including As or F.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: April 28, 2015
    Assignee: Hoya Corporation
    Inventors: Yoichi Hachitani, Kinobu Osakabe
  • Patent number: 9012342
    Abstract: The invention relates to a melt composition for the production of man-made vitreous fibers and man-made vitreous fibers comprising the following oxides, by weight of composition: SiO2 39-43 weight % Al2O3 20-23 weight % TiO2 up to 1.5 weight % Fe2O3 5-9 weight %, preferably 5-8 weight % CaO 8-18 weight % MgO 5-7 weight % Na2O up to 10 weight %, preferably 2-7 weight % K2O up to 10 weight %, preferably 3-7 weight % P2O5 up to 2% MnO up to 2% R2O up to 10 weight % wherein the proportion of Fe(2+) is greater than 80% based on total Fe and is preferably at least 90%, more preferably at least 95% and most preferably at least 97% based on total Fe.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Rockwool International A/S
    Inventors: Mette Solvang, Svend Grove-Rasmussen, Mathilde Rosendahl Foldschack
  • Patent number: 9007878
    Abstract: An aspect of the present invention relates to glass for a magnetic recording medium substrate, which includes essential components in the form of SiO2, Li2O, Na2O, and one or more alkaline earth metal oxides selected from the group consisting of MgO, CaO, SrO, and BaO, wherein a molar ratio of a content of MgO to a combined content of MgO, CaO, SrO, and BaO (MgO/(MgO+CaO+SrO+BaO)) is equal to or greater than 0.80, and which has a Young's modulus of equal to or greater than 80 GPa, and a glass transition temperature of equal to or greater than 620° C.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: April 14, 2015
    Assignee: Hoya Corporation
    Inventors: Naomi Matsumoto, Kazuaki Hashimoto
  • Patent number: 8999870
    Abstract: A vitreous or glass-ceramic jointing material, which has a coefficient of thermal expansion ?(20-750) of ?7·10?6 K?1 and is free of BaO and SrO except for at the most impurities and is suitable for producing joint connections between chromium-containing alloys or chromium-containing steels.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: April 7, 2015
    Assignee: Schott AG
    Inventors: Dieter Goedeke, Jens Suffner
  • Patent number: 8998790
    Abstract: A method for sequestrating arsenic oxides, comprising forming an insoluble and stable glass incorporating a fully oxidized form of arsenic generated by oxidation of an initial lower oxide of arsenic and stabilization by calcium salt formation. The glass composition for sequestration of arsenic comprises from 50 to 75% silica; from 0.5 to 3% Al2O3; from 1 to 15% MnO; from 5 to 15% CaO; from 1 to 20% As2O5 and from 8 to 14% Na2O, less than four percent of iron oxides, magnesium oxide and other oxides.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: April 7, 2015
    Assignee: Dundee, Technologies Durables Inc.
    Inventors: Jean-Marc Lalancette, Bertrand Dubreuil, David Lemieux
  • Publication number: 20150093581
    Abstract: An object is to devise a tempered glass substrate that has high mechanical strength and hardly undergoes breakage even though having a large size. A tempered glass substrate has a compressive stress layer in a surface thereof, and includes 1 piece/cm3 or less of devitrified stones containing Zr.
    Type: Application
    Filed: December 4, 2014
    Publication date: April 2, 2015
    Inventors: Takashi MURATA, Takako TOJYO, Motokazu OGATA
  • Publication number: 20150087494
    Abstract: The present invention relates to an alkali-free glass having a strain point of 710° C. or higher, an average thermal expansion coefficient at from 50 to 350° C. of from 30×10?7 to 43×10?7/° C., a temperature T2 at which glass viscosity reaches 102 dPa·s of 1,710° C. or lower, and a temperature T4 at which the glass viscosity reaches 104 dPa·s of 1,320° C. or lower, containing, indicated by % by mass on the basis of oxides: SiO2 58.5 to 67.5, Al2O3 18 to 24, B2O3 0 to 1.7, MgO 6.0 to 8.5, CaO 3.0 to 8.5, SrO 0.5 to 7.5, BaO 0 to 2.5, and ZrO2 0 to 4.0, containing 0 to 0.35% by mass of Cl, 0.01 to 0.15% by mass of F, and 0.01 to 0.3% by mass of SnO2, and having a ?-OH value of the glass of from 0.15 to 0.60 mm?1.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hirofumi TOKUNAGA, Akio Koike, Manabu Nishizawa, Tomoyuki Tsujimura
  • Patent number: 8987154
    Abstract: An R-glass composition including SiO2 in an amount from 59.0 to 64.5% by weight, Al2O3 in an amount from 14.5 to 20.5% by weight, CaO in an amount from 11.0 to 16.0% by weight, MgO in an amount from 5.5 to 11.5% by weight, Na2O in N an amount from 0.0 to 4.0% by weight, TiO2 in an amount from 0.0 to 2.0% by weight, Fe2O3 in an amount from 0.0 to 1.0% by weight, B2O3 in an amount from 0.0 to about 3.0% by weight, K2O, Fe2O3, ZrO2, and Fluorine, each of which is present in an amount from 0.0 to about 1.0% by weight, and SrO and ZnO, each of which is present in an amount from 0.0 to about 2.0% by weight. In exemplary embodiments, the glass composition does not contain lithium or boron.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: March 24, 2015
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Douglas Hofmann, Peter McGinnis, John Wingert, Anne Berthereau
  • Publication number: 20150074974
    Abstract: Disclosed are alkali aluminosilicate glasses having unexpected resistance to indentation cracking. The glasses obtain this high resistance as a result of a high level of surface compression accompanied by a shallow depth of layer. The advantaged glasses show greater resistance to radial crack formation from Vickers indentation than glasses with the same compressive stress, but higher depths of layer.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 19, 2015
    Inventors: Jonathan David Pesansky, Chandan Kumar Saha, Trevor E. Wilantewicz
  • Publication number: 20150079318
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Applicant: Corning Incorporated
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 8980777
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: March 17, 2015
    Assignee: Corning Incorporated
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 8975199
    Abstract: A compositional range of high strain point and/or intermediate expansion coefficient alkali metal free aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CdTe or CIGS photovoltaic devices or crystalline silicon wafer devices. These glasses can be characterized as having strain points?600° C., thermal expansion coefficient of from 35 to 50×10?7/° C.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: March 10, 2015
    Assignee: Corsam Technologies LLC
    Inventors: Bruce Gardiner Aitken, James Edward Dickinson, Jr., Timothy James Kiczenski, John Christopher Mauro, Adama Tandia
  • Patent number: 8969226
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 3, 2015
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Patent number: 8962503
    Abstract: To provide a colored glass plate, which uses sodium sulfate (Na2SO3) as a refining agent and which is capable of stably maintaining the mass percentage of divalent iron calculated as Fe2O3 in the total iron calculated as Fe2O3 at a high level, while suppressing development of an amber color that is derived from sodium sulfate. A colored glass plate made of alkali-containing silica glass containing elements of iron, tin and sulfur, wherein the percentage of the total sulfur calculated as SO3 is at least 0.025% as represented by mass percentage based on oxides, the percentage of divalent iron calculated as Fe2O3 in the total iron calculated as Fe2O3 is from 60 to 80% as represented by mass percentage, and the percentage of divalent tin calculated as SnO2 in the total tin calculated as SnO2 is at least 0.1% as represented by mol percentage.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: February 24, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Kensuke Nagai, Yuichi Suzuki, Terutaka Maehara
  • Publication number: 20150038316
    Abstract: To provide a glass plate which can be made to have higher Te than conventional glass plates when its iron content is substantially the same as the conventional glass plates, to have substantially the same level of Te as conventional glass plates when its iron content is larger than the conventional glass plates, or to have very high Te when its iron content is smaller than conventional glass plates, and which presents good productivity. A glass plate which comprises, as represented by mol percentage based on oxides, SiO2: from 57 to 71%, Al2O3: from 0 to 6%, B2O3: from 0 to 5%, Na2O: from 10 to 16%, MgO: from 7.5 to 19.8%, and CaO: from 1.6 to 11%, provided that S-value represented by MgO+Al2O3+B2O3—Na2O (as represented by mol percentage) is from ?10 to 10.5%, and the ratio of the content of MgO, as represented by mol percentage based on oxide, to the content of CaO, as represented by mol percentage based on oxide, ([MgO]/[CaO]), is from 0.8 to 10.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Tomoyuki KOBAYASHI, Yusuke Arai, Yuki Kondo
  • Patent number: 8940996
    Abstract: The object of the invention is a substrate for photovoltaic cell comprising at least one sheet of float glass provided on a face of at least one electrode, characterized in that said glass has a chemical composition comprising the following constituents, in a weight content that varies within the limits defined below: SiO2 69-75% Al2O3 ?0-3% CaO + MgO 11-16.2%? MgO ?0-6.5% Na2O 9-12.4%? K2O ?0-1.5%.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: January 27, 2015
    Assignee: Saint-Gobain Glass France
    Inventors: Octavio Cintora, Guillaume Fourty
  • Publication number: 20150024210
    Abstract: A glass that is down-drawable and ion exchangeable. The glass has a temperature T35kp which the viscosity is 35 kilopoise. T35kp is less than the breakdown temperature Tbreakdown of zircon.
    Type: Application
    Filed: August 11, 2014
    Publication date: January 22, 2015
    Inventors: Matthew John Dejneka, Adam James Ellison, Benjamin Zain Hanson
  • Patent number: 8937028
    Abstract: The invention relates to a glass sheet, the composition of which is of the soda-lime-silica type and comprises the following constituents in contents varying within the weight limits defined below: Fe2O3 (total iron) ??0 to 0.02%; and K2O 1.5 to 10%.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 20, 2015
    Assignee: Saint-Gobain Glass France
    Inventors: Dominique Sachot, Octavio Cintora