Calcium Oxide Containing Patents (Class 501/70)
  • Publication number: 20030054938
    Abstract: A method is provided for adjusting, e.g., lowering, the melting and/or forming and/or liquidus temperatures of a glass composition which can be accomplished without substantially changing the bending and annealing temperatures of the glass composition. The method includes decreasing the amount of MgO in the glass composition and increasing the amount of two or more or all of CaO, R2O (Na2O and K2O), Al2O3 and SiO2 by the same or about the same amount.
    Type: Application
    Filed: October 8, 2001
    Publication date: March 20, 2003
    Inventors: George A. Pecoraro, Jerry C. Ratliff, Richard Markovic
  • Publication number: 20030050176
    Abstract: To suppress breakage of glass for an electric lamp in a process in which the glass that has already been formed is processed further, a glass composition for an electric lamp is provided. The glass composition contains, expressed in mol %, 70 to 85% of SiO2, 12 to 17% of R2O, and 2 to 8.5% of MO (where R represents at least one selected from Li, Na and K, and M represents at least one selected from Mg, Ca, Sr, Ba, Zn and Pb). In the glass composition, the respective contents of CaO, MgO, BaO and SrO satisfy the relationship, CaO+MgO>BaO+SrO. The glass composition has a brittleness index value B determined by the Vickers hardness test of 7,000 m−½. Preferably, the contents of SrO and BaO are 0 to 0.5% and 0.1 to 1%, respectively. More preferably, the respective contents of K2O and Na2O satisfy the relationship, K2O>Na2O.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 13, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akira Kawase, Tomoko Atagi, Masanobu Ito
  • Publication number: 20030050173
    Abstract: A silicate based composition for optical glass used as a substrate for thin film optical interference filters having a stable transmission band center wavelength and bandwidth has a relatively high coefficient of thermal expansion, high Young's modulus and high optical transmittance in the near infrared (NIR) wavelength range of about 950 nm to about 1600 nm. The coefficient of thermal expansion of the glass composition is adjustable to particular values to result in minimal wavelength shift in filters made by depositing thin films of particular dielectric materials onto a substrate made of the glass, the composition being varied from a preferred baseline composition consisting of about 43.2% SiO2, 7% Al2O3, 12.7% CaO, 7.3% SrO, 7.8% Li2O, 13.2% Na2O, 8.0% K2O, 0.7% ZrO, and 0.1% Sb2O3, the baseline composition having a coefficient of thermal expansion of about 112×10−7/° C. over the temperature range of −30° C. to +70° C., a Young's modulus E of 88.
    Type: Application
    Filed: August 14, 2001
    Publication date: March 13, 2003
    Inventor: Jacob W. Lin
  • Patent number: 6528444
    Abstract: For environmental protection, a glass composition for lamps that can suppress the consumption of mercury by the glass is provided. An embodiment of the glass composition consists essentially of, expressed in percentages by weight: SiO2: 65-75, Al2O3: 0.5-4, Na2O: 1-8, K2O: 1-8, Li2O: 0-2, MgO: 0.5-5, CaO: 1-8, SrO: 1-7, BaO: 3.5-7, B2O3: 0-3, Sb2O3: 0-1, Fe2O3: 0-0.2, TiO2: 0-1, CeO2: 0-1; and the total amount of Na2O, K2O and Li2O is not more than 13 weight %. The glass composition is substantially free of lead.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: March 4, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Toshifumi Kondoh, Yutaka Koyamada, Katsuaki Iwama
  • Patent number: 6527846
    Abstract: The invention relates to a glass-ceramic material for dental restoration having a high crystalline leucite content. The leucite crystals are needle- or rod-shaped, have a thickness of between 0.3 and 1.5 micrometers and are between 7.5 and 20 micrometers in length. Said glass-ceramic material is substantially semi-transparent and contains, in% by weight: between 67 and 71% SiO2, between 8 and 12% Al2O3, between 3 and 5% Na2O, between 8 and 10% K2O, between 1 and 3% CaO, between 0.2 and 2% BaO, between 0.5 and 2% CeO2, between 0.2 and 1% TiO2 and between 0.5 and 2% B2O3. The above glass-ceramic material presents improved fracture strength and offers new indications for the use of full ceramic materials in dental technology, notably metal-free dental restoration.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: March 4, 2003
    Assignee: Chemichl AG
    Inventor: Gerhard Beham
  • Patent number: 6524713
    Abstract: The ultraviolet/infrared absorbent low transmittance glass has an almost neutral color such as greenish gray, low visible light transmittance, low total solar energy transmittance, and low ultraviolet transmittance, and is suitable for a rear window of a vehicle and capable of protecting privacy. The glass consists of base glass including: 65 to 80 wt. % SiO2; 0 to 5 wt. % Al2O3; 0 to 10 wt. % MgO; 5 to 15 wt. % CaO wherein a total amount of MgO and CaO is between 5 and 15 wt. %; 10 to 18 wt. % Na2O; 0 to 5 wt. % K2O wherein a total amount of Na2O and K2O is between 10 and 20 wt. %; and 0 to 5 wt. % B2O3, and colorants including: 1.25 to 1.5 wt. % total iron oxide (T—Fe2O3) expressed as Fe2O3; 0.01 to 0.019 wt. % CoO; more than 0.0008 wt. % and equal to or less than 0.003 wt. % Se; and 0.055 to 0.1 wt. % NiO.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: February 25, 2003
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Hiromitsu Seto, Yukihito Nagashima, Shigekazu Yoshii
  • Patent number: 6524685
    Abstract: A high performance green glass composition containing at least 14.5% by weight Na2O, at least 10.5% by weight CaO, at least 0.5% by weight total iron (measured as Fe2O3) and is substantially magnesium-free, the glass thus produced having a ferrous value of at least 30% and a performance (light transmission minus Direct Solar Heat Transmission) of at least 28% at at least one thickness of 2.8 mm to 5 mm. The invention also relates to glasses made from such composition and to a laminated glass assembly in which two sheets of glass sandwich a polymeric material, at least one, preferably both, of the sheets of glass having such a composition.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: February 25, 2003
    Assignee: Pilkington plc
    Inventors: Ashley Carl Torr, Louise Sara Butcher
  • Patent number: 6521558
    Abstract: A grey glass composition employing as its colorant portion at least iron (Fe2O3/FeO) and erbium (Er2O3), and also preferably selenium and cobalt. An exemplary colorant portion for use in a glass composition (with a soda lime silica or other suitable base glass) includes, by weight percentage: Total iron (expressed as Fe2O3): 0.35 to 0.50% Er2O3: 0.50 to 1.20% Se: 0.0002 to 0.0010% CO3O4: 0.0007 to 0.0018% TiO2:  0.0 to 0.15% B2O3: 0.0 to 1.5% The resulting glass may exhibit high visible transmittance (Lta), while at the same time low UV and IR transmittance.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: February 18, 2003
    Assignee: Guardian Industries Corp.
    Inventors: Ksenia A. Landa, Leonid Landa, Scott V. Thomsen, Anthony V. Longobardo
  • Patent number: 6518211
    Abstract: A glass composition capable of being chemically strengthened by ion-exchange within 100 hours to provide a glass with a surface compressive stress of greater then 400 MPa and an ion-exchange depth greater then 200 microns comprising: SiO2 58% to 70% (by weight), Al2O3 5% to 15%, Na2O 12% to 18%, K2O 0.1% to 5%, MgO 4% to 10%, CaO 0% to 1% with the provisos that the total of the Al2O3 and MgO is in excess of 13%, the total of the amounts of Al2O3 plus MgO divided by the amount of K2O is at least 3 and that the sum of the amounts of Na2O, K2O and MgO is at least 22%.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: February 11, 2003
    Assignee: Pilkington, PLC
    Inventors: John Michael Bradshaw, Ian Heaton Smith, Ashley Carl Torr, Stanley Lythgoe
  • Patent number: 6508083
    Abstract: An alkali-free glass applicable to a light transparent glass substrate in a liquid crystal display essentially consists, by weight, of basic elements of 40-70% SiO2, 6-25% Al2O3, 5-20% B2O3, 0-10% MgO, 0-15% CaO, 0-30% BaO, 0-10% SrO, and 0-10% ZnO, and a fining agent of a combination of 0.05-3% Sb2O3 and at least one of 0.05-2% SnO2 and 0.005-1% Cl2, which fining agent makes the resultant glass free from bubbles without the use of toxic As2O3 which has been known as the fining agent in the art.
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: January 21, 2003
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Jun Naka, Toshiharu Narita, Shinkichi Miwa, Shigeru Yamamoto
  • Patent number: 6506700
    Abstract: This invention concerns glass sheets made from a glass containing, in percentages by weight, from 0.85 to 2% of total iron expressed in the form Fe2O3, the content by weight of FeO being from 0.21 to 0.40%, said sheets having, for a thickness of from 2 to 3 mm, a factor (TLA) of at least 70%, a factor (TE) less than 50% and a factor (TUV) less than 25%. The sheets according to the invention are more especially intended for the production of lateral panes for automobile vehicles.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: January 14, 2003
    Assignee: Saint-Gobain Glass France
    Inventors: Jean-Marie Combes, Michel Lismonde
  • Publication number: 20030008759
    Abstract: The invention relates to modeling and other techniques which can be used to find specified interactions among components used to make a glass which can produce specified characteristics of the resulting glass material. Other aspects of the invention relate to specified materials and material combinations in glasses that produce specified results. The materials which are used may interact with one another to produce effects that are based on the interaction with the other materials. One aspect defines a glass which has a solar transmission of less than 40% for a glass less than 4 mm, with a 70% visible transmission. Another aspect teaches a solar control glass with a visible transmission of less than 25% and a solar transmission of less than 15%.
    Type: Application
    Filed: March 15, 2002
    Publication date: January 9, 2003
    Inventors: Darryl J. Costin, Russell D. Blume, Charles H. Drummond, Harold S. Haller, Clarence H. Martin
  • Patent number: 6503860
    Abstract: According to one aspect of the present invention an optically active glass contains Sb2O3, up to about 4 mole % of an oxide of a rare earth element, and 0-20 mole % of a metal halide selected from the group consisting of a metal fluoride, a metal bromide, a metal chloride, and mixtures thereof, wherein this metal is a trivalent metal, a divalent metal, a monovalent metal, and mixtures thereof. In addition, any of the glass compositions described herein may contain up to 15 mole % B2O3 substituted for an equivalent amount of Sb2O3.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: January 7, 2003
    Assignee: Corning Incorporated
    Inventors: James E. Dickinson, Adam J. G. Ellison, Alexandre M. Mayolet, Michel Prassas
  • Publication number: 20030004049
    Abstract: The glass compositions of the present invention contain a limited amount of Al2O3 and MgO resulting in a glass fiber having an acceptable chemical durability for product performance while providing a relatively high biosolubility. The composition includes an amount of BaO which improves fiber durability while controlling viscosity and other processing parameters. The compositions further include amounts of Na2O, K2O, and CaO, which have the effect of increasing fiber biosolubility and allows for the use of reduced amounts of Al2O3 and MgO in the composition. The glass compositions of the present invention have KI values that generally equal or exceed a KI value of 40 and are suitable for rotary processing. The compositions have liquidus temperatures below about 1600° F., and have a &Dgr;T (T at 1000 Poise−liquidus T) of at least 130° F.
    Type: Application
    Filed: July 16, 2001
    Publication date: January 2, 2003
    Inventors: Stephanie M. Mattson, Charles F. Rapp
  • Patent number: 6498118
    Abstract: A glass composition employing as its colorant portion at least iron (total iron expressed as Fe2O3), erbium (e.g., Er2O3), and holmium (e.g., Ho2O3). The glass may be grey or otherwise colored in different embodiments. In certain example embodiments the colorant portion may include, by weight percentage: Ingredient wt. % total iron: 0.10-0.90% erbium oxide: 0.20-2.50% selenium:   0.0-0.0020% cobalt oxide:   0.0-0.0050% titanium oxide: 0.0-2.0% boron oxide: 0.0-2.0% holmium oxide: 0.10-1.60% thulium oxide: 0.0-2.0% ytterbium oxide: 0.0-3.0% lutetium oxide:  0.0-1.0%.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: December 24, 2002
    Assignee: Guardian Industries Corp.
    Inventors: Ksenia A. Landa, Leonid Landa, Anthony V. Longobardo, Scott V. Thomsen, David R. Hall, Jr.
  • Publication number: 20020193233
    Abstract: A glass article of the present invention has a rate of dissolution in an acidic liquid of from 10 to 100 nm/min in terms of etching rate in immersing in a 0.1% by weight 50° C. aqueous solution of hydrofluoric acid and an average linear thermal expansion coefficient of 70×10−7/° C. or higher as measured in the range of from −50° C. to 70° C., and the working temperature T4 (° C.) and the liquidus temperature TL (° C.) thereof satisfy the relationship: T4−TL≧−100° C.
    Type: Application
    Filed: May 29, 2002
    Publication date: December 19, 2002
    Applicant: NIPPON SHEET GLASS CO., LTD.
    Inventors: Shoichi Kishimoto, Akihiro Koyama, Hiroyuki Tanaka, Nobuyuki Yamamoto
  • Publication number: 20020169062
    Abstract: A method is provided for adjusting, e.g., lowering, the melting and/or forming temperatures of a glass composition without substantially changing the bending and annealing temperatures of the glass composition. The method includes increasing the amount of CaO and decreasing the amount of MgO in the glass composition by the same or about the same amount.
    Type: Application
    Filed: February 9, 2001
    Publication date: November 14, 2002
    Inventors: George A. Pecoraro, Larry J. Shelestak, Richard Markovic
  • Patent number: 6472068
    Abstract: A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: October 29, 2002
    Assignee: Sandia Corporation
    Inventors: S. Jill Glass, Scott D. Nicolaysen, Edwin K. Beauchamp
  • Patent number: 6468934
    Abstract: An ultraviolet/infrared absorbent glass is formed of base glass, and colorants. The base glass includes 65 to 80 wt. % SiO2; 0 to 5 wt. % Al2O3; 0 to 10 wt. % MgO; 5 to 15 wt. % CaO; 10 to 18 wt. % Na2O; 0 to 5 wt. % K2O; 5 to 15 wt. % a total amount of MgO and CaO; 10 to 20 wt. % a total amount of Na2O and K2O; 0.05 to 0.3 wt. % SO3; and 0 to 5 wt. % B2O3. The colorants are formed of 0.35 to 0.55 wt. % the total iron oxide (T-Fe2O3) expressed as Fe2O3; 0.08 to 0.15 wt. % FeO; 0.8 to 1.5 wt. % CeO2 and 0 to 1.5 wt. % TiO2. FeO expressed as Fe2O3 is equal to or more than 20 wt.% and less than 27 wt. % of T-Fe2O3. The glass has high visible light transmittance and light greensih color shade so that it is useful for a window of a vehicle and a building.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: October 22, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Yukihito Nagashima, Mitsuhiro Kawazu, Toshifumi Tsujino
  • Patent number: 6468933
    Abstract: An alkali-free glass essentially consists of, by weight percent, 40-70% SiO2, 6-25% Al2O3, 5-20% B2O3, 0-10% MgO, 0-15% CaO, 0-30% BaO, 0-10% SrO, 0-10% ZnO, 0.05-2% SnO2, and 0.005-1% Cl2, and substantially contains no alkali metal oxide.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: October 22, 2002
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Toshiharu Narita, Hiroki Yamazaki
  • Patent number: 6465381
    Abstract: The invention relates to an alkali-free aluminoboro-silicate glass which has the following composition (in % by weight, based on oxide): SiO2 >60-65; B2O3 6.5-9.5; Al2O3 14-21; MgO 1-8; CaO 1-6; SrO 1-9; BaO 0.1-3.5; with MgO+CaO+SrO+BaO 8-16; ZrO2 0.1-1.5; SnO2 0.1-1; TiO2 0.1-1; CeO2 0.01-1. The glass is particularly suitable for use as a substrate glass in display technology.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: October 15, 2002
    Assignee: Schott Glas
    Inventors: Gerhard Lautenschläger, Klaus Schneider, Thomas Kloss, Andreas Sprenger
  • Publication number: 20020147102
    Abstract: A glass substrate for an inorganic EL display comprises an aluminosilicate glass, contains CaO, SrO, BaO, and ZrO2 the contents of which fall within ranges of, by mass percent, 0-13% CaO, 0-13% SrO, 0-13% BaO, 0-10% ZrO2, and 0-13% CaO+SrO+BaO+ZrO2, and has the strain point not lower than 520° C.
    Type: Application
    Filed: February 15, 2002
    Publication date: October 10, 2002
    Inventors: Hiroki Yamazaki, Tomohiro Nagakane
  • Patent number: 6461736
    Abstract: Light-colored high-transmittance glass is provided which is made of a composition containing, as coloring components, on a weight percent basis, 0.02 to 0.06% (excluding 0.06%) total iron oxide based on Fe2O3, less than 0.024% FeO, and 0 to 0.5% cerium oxide and having a ratio of FeO based on Fe2O3 to the total iron oxide of less than 40%. The light-colored high-transmittance glass has a solar radiation transmittance of at least 87.5% and a visible light transmittance measured with the illuminant C of at least 90% when having a thickness of 3.2 mm. A glass sheet with a conductive film also is provided which includes a transparent conductive film formed on a surface of a glass sheet formed of the light-colored high-transmittance glass.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: October 8, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Yukihito Nagashima, Akihiro Koyama, Isamu Kuroda, Masahiro Hirata, Masato Hyodo, Koichiro Nakamura
  • Patent number: 6458436
    Abstract: Mineral fiber products, in particular rigid bonded mineral fiber products, are provided which comprise composite mineral fibers having a coating-core configuration wherein the core provides at least 90% by weight of the fibers and is formed of mineral melt and the coating is coated onto the core. The mineral melt is chosen so that the fibers without coating have adequate biological solubility and the coating comprises a phosphate or hydrogen phosphate of alkali metal, quaternary ammonium or ammonium in an amount of at least 0.3% or by weight of the core. The coated fibers retain their biological solubility while improving resistance to ageing in use.
    Type: Grant
    Filed: August 11, 1998
    Date of Patent: October 1, 2002
    Assignee: Rockwool International A/S
    Inventors: Erling Hansen, Povl Nissen, Soren Lund Jensen
  • Publication number: 20020137619
    Abstract: A glass, in particular a glass powder, is fused from a starting mixture containing 38 wt % to 48 wt % SiO2, 15 wt % to 19 wt % Al2O3, 4.5 wt % to 11 wt % TiO2, 0 wt % to 1.5 wt % Na2O, 0 wt % to 1.5 wt % K2O and 23 wt % to 30 wt % CaO. In addition, a glass powder mixture contains a first such glass powder having a mean particle size of 150 &mgr;m to 250 &mgr;m and a second such glass powder having a mean particle size of less than 100 &mgr;m, in particular from 10 &mgr;m to 70 &mgr;m, as well as carbon black powder and an organic binder. This glass or glass powder mixture is especially suitable for producing a glass ceramic, in particular in the form of a resistor seal and/or a gas-tight glass ceramic solder in a spark plug.
    Type: Application
    Filed: March 22, 2002
    Publication date: September 26, 2002
    Inventors: Heinz Geier, Rudolf Poliner, Ulrich Eisele, Peter Wange
  • Patent number: 6455452
    Abstract: The present invention provides a bronze colored, infrared and ultraviolet absorbing glass composition having a luminous transmittance of up to 60 percent. The glass uses a standard soda-lime-silica glass base composition and additionally iron and selenium, and optionally cobalt, as infrared and ultraviolet radiation absorbing materials and colorants. The glass of the present invention has a luminous transmittance (LTA) of up to 60 percent and its color is characterized by a dominant wavelength in the range of 560 to 590 nanometers and an excitation purity of 12 to 75% at a thickness of 0.160 inches (4.06 mm). In one embodiment of the invention, the glass composition of a bronze colored, infrared and ultraviolet radiation absorbing soda-lime-silica glass article includes a colorant portion having 0.7 to 2.2 percent by weight total iron, 0.15 to 0.5 percent by weight FeO, 3 to 100 PPM Se, and optionally up to 200 PPM CoO, and preferably 1.1 to 1.4 percent by weight total iron, 0.24 to 0.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: September 24, 2002
    Assignee: PPG Industries Ohio, Inc.
    Inventor: John F. Krumwiede
  • Patent number: 6451720
    Abstract: A glass composition is disclosed which has a high modulus of elasticity and a low density, i.e., has a high specific modulus. Also disclosed is an inexpensive glass composition which is suitable for use as an information recording medium substrate, for example, because it can be formed easily, is less apt to suffer devitrification, is suitable for mass production, and can be easily made to have high surface smoothness by polishing. The glass compositions comprise, in terms of mol %, 35 to 45% silicon dioxide (SiO2), 15 to 20% aluminum oxide (Al2O3), 3 to 10% lithium oxide (Li2O), 0.1 to 5% sodium oxide (Na2O), 15 to 30% magnesium oxide (MgO), 0 to 10% calcium oxide (CaO), 0 to 4% strontium oxide (SrO), 25 to 35% RO (MgO+CaO+SrO), 2 to 10% titanium dioxide (TiO2), 0.5 to 4% zirconium oxide (ZrO2), 4 to 12% TiO2+ZrO2, and 0 to 4% yttrium oxide (Y2O3).
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: September 17, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Shoichi Kishimoto, Akihiro Koyama, Hiroyuki Tanaka
  • Patent number: 6448195
    Abstract: There is disclosed a composition for a ceramic substrate comprising a mixture of: powdered borosilicate-based glass comprising about 5% to 17.5% by weight of B2O3, about 28% to 44% by weight of SiO2, 0% to about 20% by weight of Al2O3, and about 36% to 50% by weight of MO (where MO is at least one selected from the group consisting of CaO, MgO, and BaO), and a powdered ceramic; in which the amount of the powdered borosilicate-based glass is about 40% to 49% by weight based on the total amount of the composition for a ceramic substrate, and the amount of the powdered ceramic is about 60% to 51% by weight based on the total amount of the composition for a ceramic substrate.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: September 10, 2002
    Assignee: Murata Manufacturing Co. Ltd.
    Inventors: Kazuo Kishida, Akira Shiratori, Osamu Yokokura, Hiroshi Takagi
  • Patent number: 6448707
    Abstract: A substantially rectangular glass panel for a cathode ray tube is made of a glass having a linear X-ray absorption coefficient of at least 34 cm−1 at a wavelength of 0.6 Å, with the dimensions of the panel satisfying the condition of 0.07≦T/D≦0.09; and the panel is prestressed so that the surface of the face of the panel has a residual compressive stress ranging from 5 to 25 MPa, wherein T is the central thickness of the face of the panel in inches and D is the maximum diagonal line length of the face of the panel in inches.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: September 10, 2002
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Cheon Yoon, Dong-Sang Kim, Byung-Chul Lim, Chang-Wook Bin
  • Patent number: 6436860
    Abstract: The ultraviolet/infrared absorbent low transmittance glass has a grayish, almost neutral color shade, low visible light transmittance, low total solar energy transmittance, and low ultraviolet transmittance, and is suitable for a rear window of a vehicle and capable of protecting privacy. The glass consists of base glass including: 65 to 80 wt. % SiO2; 0 to 5 wt. % Al2O3; 0 to 10 wt. % MgO; 5 to 15 wt. % CaO wherein a total amount of MgO and CaO is 5 to 15 wt. %; 10 to 18 wt. % Na2O; 0 to 5 wt. % K2O wherein a total amount of Na2O and K2O is 10 to 20 wt. %; and 0 to 5 wt. % B2O3, and colorants including: 1.0 to 1.6 wt. % total iron oxide (T-Fe2O3) expressed as Fe2O3; more than 0.019 wt. % and equal to or less than 0.05 wt. % CoO; more than 0.0008 wt. % and equal to or less than 0.003 wt. % Se; and more than 0.05 wt. % and equal to or less than 0.1 wt. % NiO. The glass with any one of thicknesses between 1.8 mm and 5 mm has a visible light transmittance (YA) measured by the C.I.E.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: August 20, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Hiromitsu Seto, Shigekazu Yoshii
  • Patent number: 6436859
    Abstract: The invention relates to a lithium-sodium-aluminosilicate glass composition. This glass composition has a softening point of 700° C. or lower; a first temperature (1450° C. or lower) at which the glass composition exhibits a viscosity of 102 poises; a second temperature (1000° C. or lower) at which the glass exhibits a viscosity of 104 poises; and a mean thermal expansion coefficient between 30° C. and a glass transition temperature of the glass composition. This coefficient is within a range of from 90×10−7/° C. to 130×10−7/° C. The glass composition can be easily formed into a precursor of a glass article by pressing. It is possible to obtain a glass article that is chemically strengthened from the precursor by conducing alkali ion exchange.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: August 20, 2002
    Assignee: Central Glass Company, Limited
    Inventors: Tadashi Muramoto, Shinichi Aratani
  • Patent number: 6436858
    Abstract: The principal object of the present invention is organic lens molds, constituted wholly or in part of at least one specific inorganic glass, advantageously strengthened by a chemical tempering or a thermal tempering. Said glass has the following composition, expressed in percentages by weight: SiO2 56-66, Al2O3 2.5-10, B2O3 0.5-7, Li2O 0-3, Na2O 8-15, K2O 3-12, with Li2O+Na2O+K2O 12-20, ZnO 2-12, MgO 0-3, TiO2 0-0.5, ZrO2 1-9, CaO 0-1, BaO 0-2, SrO 0-2, with MgO+CaO+SrO+BaO 0-5, Cl 0-0.5, As2O3+sb2O3 0-1. The invention also deals with novel inorganic glasses which have the above composition with a single exception relative to the Al2O3 content: Al2O3 2.5-4.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: August 20, 2002
    Assignee: Corning S.A.
    Inventors: Pascale Laborde, Daniel L. G. Ricoult
  • Patent number: 6428614
    Abstract: Opaque porcelains for use with metal cores in the manufacture of PFM restorations. The porcelains exhibit a coefficient of thermal expansion (CTE) substantially equal to or slightly above the CTE of the metal to which it is applied. The porcelains exhibit a CTE equal to or up to about 1.5×10−6/° C. higher than the dental alloys to which they are applied as the opaque. The porcelains are fabricated from a mixture of two frit compositions. A high expansion, leucite containing frit is combined with a low melting glass frit to provide a porcelain having an expansion in the range of 16.9 to about 18×10−6/° C. in the temperature range of 25°-500° C.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: August 6, 2002
    Assignee: Jeneric/Pentron, Inc.
    Inventors: Dmitri Brodkin, Carlino Panzera, Paul Panzera
  • Publication number: 20020103069
    Abstract: An article of manufacture that has a component capable of being sealed with a copper aluminosilicate glass. The sealing glass has a coefficient of thermal expansion (CTEs) of in the range between 20-82×10-7/° C., over a range of 25-500° C.) and a softening points in the range of 660-1000° C. The glass has a composition consisting essentially, in terms of weight percent on an oxide basis, of 35-68 SiO2, 3-25 Al2O3, 2-26 B2O3, 0-20 R2O, 0-30 RO, 2-33 CuO, 0-4 F, 0-10 MxOy, where R2O is an alkali oxide selected from the group consisting of Li2O, Na2O, and K2O, and RO is an alkaline earth oxide selected from the group consisting of CaO, MgO, ZnO, SrO, and BaO, and MxOy is a transition metal oxide selected from the group consisting of Co2O3, TiO2, NiO, MnO2, and Fe2O3. The present invention also pertains to a method of sealing the article.
    Type: Application
    Filed: February 6, 2002
    Publication date: August 1, 2002
    Inventor: Dianna M. Young
  • Patent number: 6417124
    Abstract: The invention relates a alkali-free aluminoborosilicate glasses having the following composition (in % by weight, based on oxide): SiO2 50-70, B2O3 0.5-15, Al2O3 10-25, MgO 0-10, CaO 0-12, SrO 0-12, BaO 0-15, with MgO+CaO+SrO+BaO 8-26, ZnO 0-10, ZrO2 0-5, TiO2 0-5, SnO2 0-2, MoO3 0.05-2. The glasses are particularly suitable as substract glasses for display and photovoltaic applications.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: July 9, 2002
    Assignee: Schott Glas
    Inventors: Ulrich Peuchert, Thomas Pfeiffer, Peter Brix, Hildegard Roemer
  • Patent number: 6413892
    Abstract: A glass substrate for magnetic recording medium, having a composition of, in % by weight: 61-70% SiO2, 9-18% Al2O3, 2-4.5% Li2O, 6-13% Na2O, 0-5% K2O, 10-16% R2O (with the proviso of R2O=Li2O+Na2O+K2O), 0-3.5% MgO, 1-7% CaO, 0-2% SrO, 0-2% BaO, 2-10% RO (with the proviso of RO=MgO+CaO+SrO +BaO), 0-2% TiO2, 0-2% CeO2, 0-2% Fe2O3, and 0-1% MnO (with the proviso of TiO2+CeO2+Fe2O3+MnO=0.01-3%). The glass substrate has melting temperature and working temperature suitable for the float process, and has good water resistance and weathering resistance after tempering treatment.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: July 2, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Akihiro Koyama, Nobuyuki Yamamoto
  • Patent number: 6413893
    Abstract: The present invention provides a green colored, infrared and ultraviolet absorbing glass article having a luminous transmittance of up to 60 percent. The composition of the glass article uses a standard soda-lime-silica glass base composition and additionally iron, cobalt, selenium, and chromium, and titanium, as infrared and ultraviolet radiation absorbing materials and colorants. The glasses of the present invention have a color characterized by a dominant wavelength in the range of about 480 to 565 nanometers, preferably about 495 to 560 nanometers, with an excitation purity of no higher than about 20 percent, preferably no higher than about 10 percent, and more preferably no higher than about 7 percent. The glass compositions may be provided with different levels of spectral performance depending on the particular application and desired luminous transmittance.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: July 2, 2002
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Larry J. Shelestak, Robert B. Heithoff, Andrew Calabrese, John F. Krumwiede, Anthony V. Longobardo
  • Patent number: 6408650
    Abstract: The invention is a method of retaining selenium in a lass containing selenium by including a manganese compound and not including nitrates or nitrites routinely used in the industry to retain selenium. Particularly, a preferred embodiment involves manufacturing a gray soda-lime-silica glass composition including selenium as a colorant, the components of the gray soda-lime-silica glass have colorants consisting essentially of: greater than 0.9 to 1.9 wt. % total iron oxide as Fe2O3; 0.10 to 1.00 wt. % manganese compound as MnO2; 0.0010 to 0.0060 wt. % selenium as Se; 0.002 to 0.025 wt. % cobalt oxide as Co, and 0 to 1.0 wt. % titanium oxide as TiO2 which are combined and melted to make the glass composition. The glass composition has at 4.0 mm. thickness: 10 to 55% light transmittance using Illuminant A, less than 25% ultra violet transmittance, and less than 50% infra red transmittance.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: June 25, 2002
    Assignee: Ford Global Technologies, Inc.
    Inventors: Edward Nashed Boulos, James Victor Jones
  • Patent number: 6410467
    Abstract: A glass consisting essentially of antimony oxide. An optically active glass consisting essentially of antimony oxide and up to about 4 mole % of an oxide of a rare earth element. A rare earth-doped, antimony oxide-containing glass including 0-99 mole % SiO2, 0-99 mole % GeO2, 0-75 mole % (Al, Ga)2O3, 0.5-99 mole % Sb2O3, and up to about 4 mole % of an oxide of a rare earth element. The oxide of the rare earth element may comprise Er2O3. The glass of the invention further includes fluorine, expressed as a metal fluoride. An optical energy-producing or light-amplifying device, in particular, an optical amplifier, comprising the above-described glass. The optical amplifier can be either a fiber amplifier or a planar amplifier, either of which may have a hybrid composition. Embodiments of the glass of the invention can be formed by conventional glass making techniques, while some of the high content antimony oxide embodiments are formed by splat or roller quenching.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: June 25, 2002
    Assignee: Corning Incorporated
    Inventors: James E. Dickinson, Adam J G Ellison, Alexandre M. Mayolet, Michel Prassas
  • Patent number: 6407021
    Abstract: An ultraviolet radiation-absorbing, colorless, transparent soda-lime-silica glass as well as glass bottles formed out of the glass are disclosed which, while maintaining high transmittance to light in the visible region and thereby allowing the contents to be seen clearly, absorbs ultraviolet radiation and thus prevents coloration, discoloration, fading in color or deterioration of the flavor of the contents caused by ultraviolet radiation. The glass is characterized in that its composition includes, in % by weight, SO3 . . . 0.15-0.4%; Cerium oxide . . . 0.2-1% (calculated as CeO2); Fe2O3 . . . 0.01-0.08%; FeO . . . 0-0.008%; Manganese oxide . . . 0.01-0.08% (calculated as MnO); and Cobalt oxide . . . 0-0.0005% (calculated as CoO).
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: June 18, 2002
    Assignee: Nihon Yamamura Glass Co., Ltd.
    Inventors: Masao Kitayama, Teiji Kita
  • Patent number: 6403507
    Abstract: The lead-free bismuth-containing silicate glasses, which are particularly suitable for use as funnel glass or neck glass for cathode ray tubes and as soldering glass, have the following respective compositions (in % by weight, based on oxide): SiO2 40-60; Bi2O3, 10-30; ZrO2, 0-3; Al2O3, 0.5-5; MgO, 0-6; CaO, 0.5-5; SrO, 1-15; BaO, 0-15; sum of the alkaline earth metal oxides, 2-20; ZnO, 0-2; Li2O, 0-10; Na2O, 1-10; K2O, 2-10; Cs2O, 0-3, sum of the alkali metal oxides, 5-20; CeO2, 0-8; WO3, 0.5-5; MoO3, 0-5 and Sb2O3, 0-0.6; and SiO2 30-50; Bi2O3, 20-40; ZrO2, 0-3; Al2O3, 0.5-5; MgO, 0-4; CaO, 0.5-4; SrO, 1-15; BaO, 0-15; sum of the alkaline earth metal oxides, 2-20; ZnO, 0-2; Li2O, 0-5; Na2O, 1-12; K2O, 2-15; Cs2O, 0-3, sum of the alkali metal oxides, 5-20; CeO2, 0-8; WO3, 0.5-5; MoO3, 0-5 and Sb2O3, 0-0.6.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: June 11, 2002
    Assignee: Schott Glas
    Inventors: Karin Naumann, Magdalena Winkler-Trudewig, Ute Woelfel, Christian Kunert
  • Patent number: 6403509
    Abstract: A high LTa, low UV and IR transmittance grey glass employing as its colorant portion iron (Fe2O3/FeO), erbium (Er2O3) and, optionally, titanium (TiO2). Enhanced effects are achieved by forming separate prebatch mixes, one of which includes rouge, metallic Si (optional), SiO and sand, the other including the remainder of ingredients, which after separate formation are then admixed to form the final, overall batch.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: June 11, 2002
    Assignee: Guardian Industries Corp.
    Inventors: Gary Seldon Cochran, Anthony Vincent Longobardo, Ksenia Alexander Landa, Leonid Mendel Landa
  • Publication number: 20020068678
    Abstract: A glass composition having excellent reinforcing capability and excellent solar control performance includes not smaller than 65 wt. % and smaller than 74 wt. % SiO2, 0-5 wt. % B2O3, 0.1-2.5 wt. % Al2O3, not smaller than 0 wt. % and smaller than 2 wt. % MgO, 5-15 wt. % CaO, 0-10 wt. % SrO, 0-10 wt. % BaO wherein a total amount of MgO, CaO, SrO and BaO is greater than 10 wt. % and not greater than 15 wt. %, 0-5 wt. % Li2O, 10-18 wt. % Na2O, 0-5 wt. % K2O wherein a total amount of Li2O, Na2O, and K2O is 10-20 wt. % and 0-0.40 TiO2.
    Type: Application
    Filed: September 28, 2001
    Publication date: June 6, 2002
    Applicant: NIPPON SHEET GLASS CO., LTD.
    Inventors: Hiromitsu Seto, Kosuke Fujiwara, Shigekazu Yoshii
  • Patent number: 6399527
    Abstract: A glass composition having a high Young's modulus and a low density is disclosed which can be mass-produced by a continuous process and easily made to have high surface smoothness. Also disclosed are a substrate including the glass composition and reduced in bending and resonance even upon high-speed rotation, a recording medium usable at a lower flying height, and an information recording device having a higher recording capacity and a shorter access time. The glass composition includes, in terms of mol %, 40 to 55% silicon dioxide (SiO2), 0.5 to 6% aluminum oxide (Al2O3), 2 to 20% lithium oxide (Li2O), 0 to 10% sodium monoxide ((Na2O), 2 to 30% R2O (R2O=Li2O+Na2O), 5 to 25% magnesium oxide (MgO), 0 to 25% calcium oxide (CaO), 0 to 10% strontium oxide (SrO), 10 to 40% RO (RO=MgO+CaO+SrO), 0 to 10% titanium dioxide (TiO2), and 0 to 5% zirconium oxide (ZrO2).
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: June 4, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Shoichi Kishimoto, Akihiro Koyama, Junji Kurachi, Nobuyuki Yamamoto
  • Patent number: 6395660
    Abstract: An ultraviolet/infrared absorbent low transmittance glass consists of base glass, and colorants. The base glass comprises 65 to 80 wt. % SiO2; 0 to 5 wt. % Al2O3; greater than 2 to less than or equal to 10 wt. % MgO; 5 to 15 wt. % CaO wherein a total amount of MgO and CaO is 7 to 15 wt. %; 10 to 18 wt. % Na2O; 0 to 5 wt. % K2O wherein a total amount of Na2O and K2O is 10 to 20 wt. %; and 0 to 5 wt. % B2O3. The colorants without Se is formed of 1.25 to 2.2 wt. % total iron oxide (T—Fe2O3) expressed as Fe2O3; 0.001 to 0.03 wt. % CoO; and 0.003 to 0.2 wt. % NiO. The glass has a turquoise blue or deep green color, and exhibits low or middle visible light transmittance, low total solar energy transmittance and low ultraviolet transmittance.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: May 28, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Hiromitsu Seto, Yukihito Nagashima, Isamu Kuroda, Shigekazu Yoshii
  • Patent number: 6391810
    Abstract: Lead- and barium-free crystal glass for the manual or machine production of high-grade glass objects with a refractive index higher than 1.52 and a density of at least 2.45 g/cc, wherein the crystal glass comprises the following components in weight percent. SiO2 59.0-71.0 TiO2 0.001-8.0  Al2O3 0.01-4.0  CaO  2.0-10.0 MgO 0.5-8.0 ZnO 0.01-11.0 K2O 0.08-11.0 Na2O  3.0-15.5 Sb2O3 or AS2O3 0.001-1.5  SrO 0.001-0.1  B2O3 0.01-3.0  Li2O 0.01-2.0  SO42− 0.0008-1.2   F− 0.008-0.2  as well as at least two components selected from the group consisting of Er2O3, Nd2O3, CeO2, CoO, Pr2O3, SeO, NiO and MnO and has a moisture content of 0.025 to 0.07% by weight.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: May 21, 2002
    Assignee: F. X. Nachtmann Bleikristallwerke GmbH
    Inventor: Armin Lenhart
  • Publication number: 20020058117
    Abstract: The cooking panel is made from an opaque glass-ceramic material uniformly colored throughout and having keatite mixed crystals as the predominant crystalline phase, which is ceramicized with a ceramicizable glass or a transparent glass-ceramic with high quartz mixed crystals as the predominant crystalline phase in a definite color location range according to its later service and wear pattern. The cooking panel makes deposited material, such as dirt and the like, less conspicuous.
    Type: Application
    Filed: December 9, 1999
    Publication date: May 16, 2002
    Inventors: BERND SCHULTHEIS, WALDEMAR WEINBERG, MONICA COTLEAR DE WITZMANN, ROLAND DUDEK, FRIEDRICH SIEBERS, KLAUS SCHOENBERGER
  • Patent number: 6387510
    Abstract: A glass for a data storage medium substrate, which consists essentially of the following components as represented by mol %: SiO2 60 to 72, Al2O3  2 to 9 MgO  3 to 9, CaO  2 to 10, SrO  0 to 15, ZnO  0 to 4, TiO2  0 to 8, ZrO2  0 to 4, Li2O  1 to 12, Na2O  0 to 8, K2O  0 to 5, Y2O3  0 to 5, La2O3  0 to 5, and Li2O + Na2O + K2O  4 to 15, and which has a Young's modulus of at least 85 GPa.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: May 14, 2002
    Assignee: Asahi Glass Company, Limited
    Inventors: Tetsuya Nakashima, Yasumasa Nakao, Akio Koike
  • Patent number: RE37920
    Abstract: A flat panel display comprising an aluminosilicate glass panel that exhibits a strain point higher than 640° C., a weight loss less than 20 mg/cm2 after immersion for 24 hours in an aqueous 5% by weight HCl solution at 95° C., a CTE in the range of 31-57×10−7/° C., is nominally free of alkali metal oxides and has a composition consisting essentially of, as calculated in percent by weight on an oxide basis, 49-67% SiO2, at least 6% Al2O3, the Al2O3 being 6-14% in conjunction with 55-67% SiO2 and 16-23% in conjunction with 49-58% SiO2, SiO2+Al2O3>68%, 0-15% B2O3, at least one alkaline earth metal oxide selected from the group consisting of, in the proportions indicated, 0-21% BaO, 0-15% SrO, 0-18% CaO, 0-8% MgO and 12-30% BaO+CaO+SrO+MgO.
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: December 3, 2002
    Assignee: Corning Incorporated
    Inventors: Dawne M. Moffatt, Dean V. Neubauer
  • Patent number: RE37998
    Abstract: The invention relates to a colored glass composition for producing glazings for use, e.g., as automobile sunroofs. The colored glass according to the invention is a soda-lime-silica glass comprising, as coloring agents, 1.4 to 4% iron oxide expressed as Fe2O3 and 0 to 0.05 % cobalt oxide, with the cobalt oxide exceeding about 0.02% when the Fe2O3 is below about 2% and, optionally, selenium and chromium oxide, whereby the sum of the CoO+Se+Cr2O3 is preferably less than about 0.24% by weight. The glass of the invention has a total light transmission factor under illuminant A equal to or below approximately 20% and a total energy transmission factor equal to or below approximately 12% for a thickness of 3.85 mm.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: February 18, 2003
    Assignee: Saint-Gobain Vitrage
    Inventors: Pierre Combes, Jean-Jacques Massol, Pedro Casariego Alvarez