Organic Compound Including Carbon-metal Bond Patents (Class 502/152)
  • Patent number: 8507398
    Abstract: Catalysts for metathesis reactions, in particular for the metathesis of nitrile rubber, are provided.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: August 13, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Ludek Meca, Lubica Triscikova, Heinz Berke, Kirsten Langfeld, Martin Schneider, Oskar Nuyken, Werner Obrecht
  • Patent number: 8507706
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and the substituent in the 2-position of the other indenyl ligand can be any C4-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers. The activity/productivity levels of catalysts including the metallocenes of the present invention are exceptionally high.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: August 13, 2013
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Anita Dimeska, Ralph-Dieter Maier, Nicola Stephanie Paczkowski, Matthew Grant Thorn, Andreas Winter, Joerg Schulte, Thorsten Sell
  • Patent number: 8501885
    Abstract: This disclosure relates to olefin polymerization catalysts and compositions, their manufacture, and the production of polyolefins using specific catalyst compositions, including the use of chain shuttling agents in the olefin polymerization process. Specifically, this disclosure provides for dual headed and multi-headed chain shuttling agents (CSAs or MSAs) and for their use in preparing blocky copolymers. By controlling the ratio of dual-headed and multi-headed CSA sites to mono-headed CSA sites, a blocky copolymer can be provided having properties such as a narrow molecular weight distribution and/or improved melt properties.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: August 6, 2013
    Assignee: Dow Global Technologies, LLC
    Inventors: Daniel J. Arriola, Thomas P. Clark, Kevin A. Frazier, Sara B. Klamo, Francis J. Timmers
  • Patent number: 8501654
    Abstract: The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: August 6, 2013
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Rex E. Murray, William B. Beaulieu, Qing Yang, Errun Ding, Gary L. Glass, Alan L. Solenberger, Steven J. Secora
  • Patent number: 8501651
    Abstract: A catalyst system comprising a half-sandwich chromium complex, an activator support and an optional cocatalyst. A compound of formula Cp?Cr(Cl)2(Ln), where Cp? is ?5—C5H4CH2CH2CH?CH2 and Ln is pyridine, THF or diethylether. A compound of formula Cp?Cr(Cl)2(Ln), where Cp? is ?5—C5H4C(Me)2CH2CH2CH?CH2 and Ln is pyridine, THF or diethylether.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: August 6, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Albert P. Masino, Joel L. Martin, Youlu Yu
  • Patent number: 8501655
    Abstract: Compositions useful for activating catalysts for olefin polymerization are provided. The compositions are derived from at least carrier having at least two hydrogen bonded hydroxyl groups, organoaluminum compound, Lewis base, and Bronsted acid, wherein the Lewis base and the Bronsted acid form at least one ionic Bronsted acid.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: August 6, 2013
    Assignee: Albemarle Corporation
    Inventors: Lubin Luo, Steven P. Diefenbach
  • Patent number: 8501656
    Abstract: A catalyst composition is provided, which may be used for ring closing metathesis. In the composition, a catalyst is immobilized on a siliceous mesocellular foam support. A suitable catalyst for use in the composition is a Grubbs-type catalyst or a Hoveyda-Grubbs-type catalyst.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: August 6, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Jackie Y. Ying, Jaehong Lim, Su Seong Lee, Siti Nurhanna Binte Riduan
  • Patent number: 8497400
    Abstract: Provide that a useful catalyst for homogeneous hydrogenation, particularly a catalyst for homogeneous asymmetric hydrogenation for hydrogenation, particularly asymmetric hydrogenation, which is obtainable with comparative ease and is excellent in economically and workability, and a process for producing a hydrogenated compound of an unsaturated compound, particularly an optically active compound using said catalyst with a high yield and optical purity.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: July 30, 2013
    Assignee: Takasago International Corporation
    Inventors: Hideo Shimizu, Daisuke Igarashi, Wataru Kuriyama, Yukinori Yusa
  • Patent number: 8492573
    Abstract: Borohydride metallocene complex of lanthanide, preparation process, catalytic system incorporating borohydride metallocene complex, process for copolymerization of olefins employing catalytic system. The complex corresponds to one or other of formulae A and B: where, in A, two ligands Cp1, Cp2, each composed of a cyclopentadienyl group, are connected to the lanthanide Ln, such as Nd, and where, in B, a ligand molecule, composed of two cyclopentadienyl groups Cp1, Cp2 connected to one another via a bridge P of formula MR1R2, M is an element from group IVa, and R1 and R2, which are identical or different, represent an alkyl group comprising from 1 to 20 carbon atoms, is connected to the lanthanide Ln, L is alkali metal, N is molecule of a complexing solvent, x is integral or non-integral number?0, p is integer?than 1 and y is integer?0.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: July 23, 2013
    Assignees: Michelin Recherche et Technique S.A., Total Petrochemicals France, Centre National de la Recherche Scientifique Ecole Superieure de Chimie-Physique-Electronique
    Inventors: Julien Thuilliez, Christophe Boisson, Roger Spitz
  • Publication number: 20130178359
    Abstract: The present invention provides a polymerization process utilizing a dual ansa-metallocene catalyst system. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, a non-bimodal molecular weight distribution, a ratio of Mw/Mn from about 3 to about 8, and a ratio of Mz/Mw from about 3 to about 6.
    Type: Application
    Filed: January 24, 2013
    Publication date: July 11, 2013
    Applicant: Chevron Phillips Chemical Company LP
    Inventor: Chevron Phillips Chemical Company LP
  • Patent number: 8481791
    Abstract: Provide that a useful catalyst for homogeneous hydrogenation, particularly a catalyst for homogeneous asymmetric hydrogenation for hydrogenation, particularly asymmetric hydrogenation, which is obtainable with comparative ease and is excellent in economically and workability, and a process for producing a hydrogenated compound of an unsaturated compound, particularly an optically active compound using said catalyst with a high yield and optical purity.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: July 9, 2013
    Assignee: Takasago International Corporation
    Inventors: Hideo Shimizu, Daisuke Igarashi, Wataru Kuriyama, Yukinori Yusa
  • Patent number: 8476395
    Abstract: The present invention relates to a polypropylene composition comprising a propylene homopolymer or a propylene random copolymer having at least one comonomer selected from alpha-olefins with 2 or 4-8 carbon atoms and a comonomer content of not more than 8.0 wt %, wherein the propylene homo- or copolymer is polymerized in the presence of a Ziegler-Natta catalyst, and the polypropylene composition has a MWD of 2.0 to 6.0 and an MFR (2.16 kg/230° C.) of 4.0 g/10 min to 20.0 g/10 min, characterized in that the polypropylene composition has not been subjected to a vis-breaking step, the use of the inventive polypropylene composition for the production of a film and/or injection molded articles, a process for preparing a film wherein the inventive polypropylene composition is formed into a film, and wherein the polypropylene composition has not been subjected to a vis-breaking step and a film comprising the inventive polypropylene composition.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: July 2, 2013
    Assignee: Borealis AG
    Inventors: Christelle Grein, Tonja Schedenig
  • Patent number: 8471050
    Abstract: The present invention relates to non-symmetrical organometallic transition metal compounds of the compound of the formula (I) where R8 and R9 are identical or different and each an substituted or unsubstituted organic radical having from 1 to 40 carbon atoms, catalyst systems comprising at least one of the organometallic transition metal compounds of the present invention and a process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of one of the catalyst systems of the present invention.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: June 25, 2013
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Ilya Nifant'ev, Shahram Mihan
  • Publication number: 20130158274
    Abstract: The invention relates to a method for preparing carbene by means of deprotonation of a precursor salt using a strong base. A purpose of the invention is to enhance the synthesis of carbenes, i.e. to simplify same, to make said synthesis more economical and to obtain a liquid or solid, stable and pure form consitituting a catalytic system that is easy to store and use and that has a higher efficiency, higher yield and higher selectivity than carbene catalysts of the prior art. In order to do so, the method comprises deprotonation in a solvent including an alcohol. The invention also relates to an alcohol-containing solution and carbene, and to a solid that can be obtained from the solution, e.g. by means of sublimation.
    Type: Application
    Filed: January 7, 2011
    Publication date: June 20, 2013
    Applicant: BLUESTAR SILICONES FRANCE SAS
    Inventors: Christian Maliverney, Laurent Saint-Jalmes, Sophie Gojon, Tsuyoshi Kato, Antoine J. Baceiredo
  • Patent number: 8461365
    Abstract: A metallocene complex by which high uptake efficiency of ethylene and/or ?-olefin can be obtained compared with the conventional metallocene catalyst, and robber component having high molecular weight can be polymerized, and polymerization method of olefin. Metallocene complex (metallocene complex having furyl or thienyl group in which substituent exists at 5-position of indenyl ring, and substituent may exist at 2-position of indenyl ring, and the like) represented by the general formula [II], the catalyst for olefin polymerization characterized by comprising said metallocene complex, and polymerization method of olefin characterized that polymerization or copolymerization of olefin is carried out using said polymerization catalyst for olefin, and the like.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: June 11, 2013
    Assignee: Japan Polypropylene Corporation
    Inventors: Masato Nakano, Hideshi Uchino, Naoshi Iwama, Masami Kashimoto, Tomohiro Kato
  • Patent number: 8461276
    Abstract: Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: June 11, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Tim Coffy, Kenneth Blackmon, Joseph Thorman, David Rauscher, Jun Tian, William Gauthier, Nathan Williams
  • Patent number: 8461290
    Abstract: This invention relates to the synthesis of polycarbonates prepared from carbonate monomers derived from the biomass in the presence of a system comprising an organometallic transfer agent and alcohol. It also relates to the polymers resulting from these cyclic compounds.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: June 11, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Jean-François Carpentier, Sophie Guillaume, Marion Helou, Yann Sarazin, Olivier Miserque
  • Publication number: 20130144016
    Abstract: A process for preparing a supported catalyst system comprising the following steps: a. titanating a silica-containing catalyst support having a specific surface area of from 150 m2/g to 800 m2/g, preferably 280 to 600 m2/g, with at least one vapourised titanium compound of the general formula selected from RnTi(OR?)m and (RO)nTi(OR?)m, wherein R and R? are the same or different and are selected from hydrocarbyl groups containing from 1 to 12 carbon and halogens, and wherein n is 0 to 4, m is 0 to 4 and m+n equals 4, to form a titanated silica-containing catalyst support having at least 0.1 wt % of Ti based on the weight of the titanated silica-containing catalyst support, b. treating the support with a catalyst activating agent, preferably an alumoxane. c. treating the titanated support with at least one metallocene during or after step (b).
    Type: Application
    Filed: March 3, 2011
    Publication date: June 6, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Christopher Willocq, Martine Slawinski, Aurélien Vantomme
  • Publication number: 20130144102
    Abstract: Organometallic compounds of the general formula (I), in which M=Mo, W, are claimed.
    Type: Application
    Filed: March 31, 2011
    Publication date: June 6, 2013
    Applicant: STUDIENGESELLSCHAFT KOHLE MBH
    Inventors: Alois Fuerstner, Johannes Heppekausen, Volker Hickmann, Robert Stade
  • Publication number: 20130144018
    Abstract: The present invention generally relates to a process that copolymerizes two or more polymerizable olefins, and to cataclyst comprising a metal-ligand complex (precatalyst). The present invention also generally relates to ligands useful for preparing the metal-ligand complex.
    Type: Application
    Filed: August 24, 2011
    Publication date: June 6, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Jerzy Klosin, Pulikkottil J. Thomas, Carl N. Iverson, Nermeen W. Aboelella, Kevin A. Frazier
  • Patent number: 8455597
    Abstract: This invention relates to a homogenous process for making a vinyl terminated propylene polymer, wherein the process comprises: contacting, propylene, under polymerization conditions, with a catalyst system comprising an activator and at least one metallocene compound, where the metallocene compound is represented by the formula: where: M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system); each R1 is, independently, a C1 to C10 alkyl group; each R2 is, independently, a C1 to C10 alkyl group; each R3 is, independently, hydrogen; each R4, R5, and R6, is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; T is a bridging group; each R7 is, independently, hydrogen, halog
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: June 4, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Patrick Brant, Carlos U. De Gracia, Jacqueline A. Lovell
  • Patent number: 8450436
    Abstract: The present invention provides dual catalyst systems and polymerization processes employing these dual catalyst systems. The disclosed polymerization processes can produce olefin polymers at higher production rates, and these olefin polymers may have a higher molecular weight and/or a lower melt index.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: May 28, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Albert P. Masino, Rex E. Murray, Qing Yang, Steve J. Secora, Kumudini C. Jayaratne, William B. Beaulieu, Errun Ding, Gary L. Glass, Alan L. Solenberger, Ted H. Cymbaluk
  • Publication number: 20130131296
    Abstract: The invention relates to a catalyst system for the polymerization of olefins comprising a metal complex of formula CyLMD and an activating cocatalyst, wherein M is titanium, Cy is a cyclopentadienyl-type ligand, D is a diene, L is an amidinate-containing ligand of formula (1), wherein the amidinate-containing ligand is covalently bonded to the titanium via the imine nitrogen atom, Sub1 is a substituent, which comprises a group 14 atom through which Sub1 is bonded to the imine carbon atom, Sub2 is a substituent, which comprises a nitrogen atom, through which Sub2 is bonded to the imine carbon atom, and Cy is a mono- or polysubstituted cyclopentadienyl-type ligand, wherein the one or more substituents of Cy are selected from the group consisting of halogen, hydrocarbyl, silyl and germyl residues, optionally substituted with one or more halogen, amido, phosphido, alkoxy, or aryloxy residues.
    Type: Application
    Filed: December 21, 2010
    Publication date: May 23, 2013
    Applicant: LANXESS ELASTOMERS B.V.
    Inventors: Gerardus Henricus Josephus Doremaele, Van, Martin Alexander Zuideveld, Phllip Mountford, Alex Heath, Richard T.W. Scott
  • Publication number: 20130131366
    Abstract: A catalyst contains a metal complex compound represented by the following general formula (I). In the formula (I), M is a metal ion such as ruthenium, L1 is a cyclic or acyclic, neutral or minus 1-valent unsaturated hydrocarbon group of 1 to 30 carbon atoms which may have a substituent, L2 and L3 are each independently chlorine or the like, and L4 is a compound bonded to M through phosphorus or arsenic and represented by the following general formula (IIa) or (IIb). In the formulas (IIa) and (IIb), E is phosphorus or arsenic, Y1 is oxygen or sulfur, Y2, Y3 and Y4 are each independently a hydrogen atom, an aryl group or the like, and H is a hydrogen atom.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 23, 2013
    Applicant: NATIONAL UNIVERSITY CORPORATION OKAYAMA UNIVERSITY
    Inventors: Toshiyuki Oshiki, Makoto Muranaka
  • Publication number: 20130130891
    Abstract: The present invention relates to a process for preparing catalyst slurry in a catalyst slurry preparation system and supplying catalyst slurry to an ethylene polymerization loop reactor wherein an accurate control of the pressure within said catalyst slurry preparation system is provided.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 23, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Alain Brusselle, Daan Dewachter, Louis Fouarge
  • Patent number: 8445609
    Abstract: An object of the present invention is to provide a method for producing an olefin polymer, with which an olefin polymer having good particle properties can be produced in high activity, fouling inside the polymerization vessel, such as a vessel wall or an impeller, can be effectively prevented, and a long-term stable operation is achieved. A method for producing an olefin polymer according to the present invention is characterized by including (co)polymerizing at least one olefin selected from the group consisting of ethylene and ?-olefins having 3 to 20 carbon atoms in a polymerization vessel in the presence of (A) a solid catalyst component for olefin polymerization, (B) an aliphatic amide, and (C) an organoaluminum compound.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: May 21, 2013
    Assignees: Mitsui Chemicals, Inc., Prime Polymer Co., Ltd.
    Inventors: Yasushi Tohi, Ken Yoshitsugu, Naoya Akiyama, Toshio Fujita, Masatoshi Chinaka
  • Publication number: 20130123097
    Abstract: A method of converting at least one first alkane to a mixture of at least one low molecular weight alkane (optionally also including additional lower and/or higher molecular weight alkanes) and at least one high molecular weight alkane, comprises: reacting a first alkane in the presence of dual catalyst system comprising a first catalyst (i.e., a hydrogen transfer catalyst) and a second catalyst (i.e., a metathesis catalyst) to produce a mixture of low and high molecular weight alkanes.
    Type: Application
    Filed: December 20, 2012
    Publication date: May 16, 2013
    Applicant: The University of North Carolina at Chapel Hill
    Inventor: The University of North Carolina at Chapel Hill
  • Publication number: 20130116113
    Abstract: Provided are a catalyst composition comprising a main catalyst (A) and a promoter (B), wherein the main catalyst (A) is a complex represented by Formula (1): MLnK1xK2yK3z ??(1) (wherein M is one transition metal selected from groups 8 to 10 elements; L is a cyclopentadienyl base ligand containing; K1 to K3 are anionic or neutral ligands which are different from each other; n is an integer of 0 to 2; x, y and z each are an integer including 0, and a sum thereof is 1 to 7); and the promoter (B) is a compound (a) reacted with the main catalyst (A) to form a cationic compound, used for a high molecular weight addition copolymer of a norbornene compound having a polar group, a process for producing the copolymer using the above catalyst composition, and a film of the above copolymer.
    Type: Application
    Filed: July 25, 2011
    Publication date: May 9, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Shojiro Kaita, Olivier Tardif
  • Publication number: 20130116394
    Abstract: Solid, particulate catalysts comprising bridged his indenyl n-ligands are disclosed, together with methods for the preparation and use thereat for example, in olefin polymerization.
    Type: Application
    Filed: April 27, 2011
    Publication date: May 9, 2013
    Applicant: Borealis AG
    Inventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen
  • Patent number: 8436133
    Abstract: The present invention relates to the use of group 3 post-metallocene complexes based on sterically encumbered bis(naphthoxy)pyridine and bis(naphthoxy)thiophene ligands in the ring-opening polymerisation of polar monomers such as, for examples, lactones, lactides, cyclic carbonates.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: May 7, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Jean-François Carpentier, Evgueni Kirillov, Abbas Razavi
  • Patent number: 8436114
    Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: May 7, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, David M. Fiscus
  • Patent number: 8435911
    Abstract: The present invention relates to a new hybrid catalyst system for the polymerization of olefins and to a polymerization process carried out in the presence of said catalyst. The new hybrid catalyst system comprises a tridendate iron compound and a zirconocene having a bridge of at least three carbon atoms connecting two indenyl ligands.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 7, 2013
    Assignee: Basell Polyolefine GmbH
    Inventors: Harald Schmitz, Shahram Mihan
  • Patent number: 8435914
    Abstract: A polymerization catalyst system and polymerization processes using the catalyst systems are disclosed. The polymerization catalyst systems may include a) a first catalyst compound, and b) a second catalyst compound, wherein the first catalyst compound includes an oxadiazole-containing compound. In some embodiments, the oxadiazole-containing compound has essentially no hydrogen response, thus allowing better and/or tailored control of product properties when producing polymers using the catalyst system.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: May 7, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Sun-Chueh Kao, Francis C. Rix, Dongming Li, C. Jeff Harlan, Parul A. Khokhani
  • Patent number: 8431661
    Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 6 to 25 mole %, prior to use as an activator, where the mole % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the unknown species is the peak is identified in the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: April 30, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, David M. Fiscus
  • Patent number: 8431659
    Abstract: A method of producing a prepolymerized catalyst for olefin polymerization comprising a fine powder removal step of removing fine particles from olefin-prepolymerized catalyst particles for olefin polymerization. The prepolymerized catalyst having a low fine particle content is applicable suitably to the field of continuous polymerization of olefins.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: April 30, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tomoaki Goto, Yoshimitsu Onodera
  • Patent number: 8431729
    Abstract: The present invention discloses catalyst compositions employing silicon-bridged metallocene compounds with bulky substituents. Methods for making these silicon-bridged metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: April 30, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel L. Martin, Qing Yang, Max P. McDaniel, Jim B. Askew
  • Publication number: 20130102743
    Abstract: Embodiments of the invention generally include multi-component catalyst systems, polymerization processes and heterophasic copolymers formed by the processes. The multi-component catalyst system generally includes a first catalyst component selected from Ziegler-Natta catalyst systems including a diether internal electron donor and a metallocene catalyst represented by the general formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4.
    Type: Application
    Filed: July 12, 2011
    Publication date: April 25, 2013
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Tim J. Coffy, Michel Daumerie, Kenneth P. Blackmon, William Gauthier, Jun Tian, Joseph Thorman
  • Patent number: 8426535
    Abstract: A process is disclosed for the preparation of zinc alkyl chain growth products via a catalyzed chain growth reaction of an alpha-olefin on a zinc alkyl, wherein the chain growth catalyst system employs a group 3-10 transition metal, or a group 3 main group metal, or a lanthanide or actinide complex, and optionally a suitable activator. The products can be further converted into alpha-olefins by olefin displacement of the grown alkyls as alpha-olefins from the zinc alkyl chain growth product, or into primary alcohols, by oxidation of the resulting zinc alkyl chain growth product to form alkoxide compounds, followed by hydrolysis of the alkoxides.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 23, 2013
    Assignee: Ineos Europe Limited
    Inventors: George Johan Peter Britovsek, Steven A. Cohen, Vernon Charles Gibson
  • Patent number: 8426536
    Abstract: The present invention provides polymerization catalyst compositions employing novel heterodinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins are also provided.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: April 23, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin, Gary L. Glass
  • Patent number: 8420563
    Abstract: Multinuclear catalyst complex comprising two or more active metal centers and at least one phenoxyimine derivative and at least one substituted cyclopentadienyl, indenyl or fluorenyl derivative, each phenoxyimine derivative being bonded to a cyclopentadienyl, indenyl or fluorenyl derivative forming a ligand framework, the cyclopentadienyl, indenyl or fluorenyl derivative being coordinated with one of the metal centers and the phenoxyimine derivative being coordinated with an active metal center other than the metal center the cyclopentadienyl, indenyl or fluorenyl derivative is coordinated with, and wherein the phenoxyimine derivative is derived from a phenoxyimine compound of the formula wherein R1 is hydrogen, alkyl, cycloalkyl, aryl or aralkyl; R2 is hydrogen, halogen, alkyl, cycloalkyl, aryl, O-alkyl or aralkyl; and R3 is alkyl, cycloalkyl, aryl or aralkyl, process for preparing a multinuclear catalyst composition comprising the steps of bonding the substituted phenoxyimine compound to a substitute
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: April 16, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Syriac Palackal, Atieh Aburaqabah, Helmut G. Alt, Christian Goerl
  • Patent number: 8420733
    Abstract: A continuity additive according to one general approach includes a substance having an ability to reduce, prevent, or mitigate at least one of fouling, sheeting, and static level of a material present in a polymerization reactor system when added to the reactor system in an effective amount, with the proviso that the substance is not a polysulfone polymer, a polymeric polyamine, or an oil-soluble sulfonic acid; and a scavenger contacted with the substance, optionally, the scavenger neutralizing water coming in contact therewith. Additional continuity additives, methods of making continuity additives, and use of continuity additives are also presented.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: April 16, 2013
    Assignee: Univation Technologies, LLC
    Inventors: F. Gregory Stakem, Agapios K. Agapiou, F. David Hussein
  • Patent number: 8420562
    Abstract: Improved process for the preparation of an unsupported, heterogeneous olefin polymerization catalyst system, comprising an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC) or of an actinide or lanthanide in the form of solid particles comprising the steps of a) preparing a solution of catalyst components, including an aluminoxane, a compound being effective to form stable, liquid clathrates with aluminoxane and an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, in a hydrocarbon solvent, yielding a two phase system with an upper solvent layer, which is separated, b) preparing a liquid/liquid emulsion system comprising a continuous phase in which said solution of the catalyst components forms a dispersed phase in the form of droplets, c) solidifying said dispersed phase to convert said droplets to solid particles and optionally recovering said particles to obtain said catalyst system, t
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: April 16, 2013
    Assignee: Borealis AG
    Inventors: Pertti Elo, John Severn, Peter Denifl, Soile Rautio, Marja Mustonen, Anu-Leena Hongell
  • Publication number: 20130090492
    Abstract: This invention is directed to a general catalyst of high activity and selectivity for the production of a variety of esters, particularly acrylate and methacrylate-based esters, by a transesterification reaction. This objective is achieved by reaction of an ester of a carboxylic or a carbonic acid, in particular of a saturated or unsaturated, typically, a 3 to 4 carbon atom carboxylic acid; with an alcohol in the presence of a catalyst comprising the combination of a metal 1,3-dicarbonyl complex (pref. Zn or Fe acetylacetonate) and a salt, in particular an inorganic salt, pref. ZnCl2, LiCI, NaCI, NH4CI or Lil. These catalysts are prepared from readily available starting materials within the reaction medium without the need for isolation (in-situ preparation).
    Type: Application
    Filed: June 10, 2011
    Publication date: April 11, 2013
    Applicant: ECOSYNTH BVBA
    Inventors: Thomas Peter Anne Goossens, Freek Annie Camiel Vrielynck, Noel Gabriel Cornelius Hosten, Koen Jeanne Alfons Van Aken
  • Patent number: 8415492
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and substituent in the 2-position of the other indenyl ligand can be any C5-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position and that the ?-carbon atom is a quarternary carbon atom and part of a non-cyclic hydrocarbon system. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: April 9, 2013
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Thorsten Sell, Andreas Winter, Matthew Grant Thorn, Anita Dimeska, Franz Langhauser
  • Publication number: 20130085060
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Application
    Filed: October 3, 2012
    Publication date: April 4, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventor: CHEVRON PHILLIPS CHEMICAL COMPANY LP
  • Publication number: 20130085245
    Abstract: Catalysts and methods for making and using the same are provided. The method for fabricating a catalyst may includes contacting a supported catalyst with a monomer under conditions that reduce an overall charge of the catalyst to less than about 75% of an initial charge of the catalyst. A method for polymerization may include introducing a pre-polymerized catalyst and one or more olefins into a gas phase fluidized bed reactor, operating the reactor at conditions sufficient to produce a polyolefin, wherein the polymerization is carried out in the substantial absence of any continuity additives.
    Type: Application
    Filed: December 7, 2010
    Publication date: April 4, 2013
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Maria A. Apecetche, Maria Pollard, Robert O. Hagerty, Michael D. Awe, Kevin J. Cann, Jose F. Cevallos-Candau, F. David Hussein
  • Patent number: 8410231
    Abstract: The present invention provides a highly active process for producing an olefin polymer, comprising: the step (I) of preliminarily polymerizing an olefin at 65° C.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: April 2, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasutoyo Kawashima, Tomoaki Goto
  • Publication number: 20130079478
    Abstract: The invention relates to a new catalyst component for the polymerization of olefins comprising a compound of formula CyLMZp, wherein M is a Group 4-6 metal, Z is an anionic ligand, p is the number of anionic ligands, Cy is a mono- or poly-substituted cyclopentadienyl-type ligand and L is a guanidinate ligand of the formula wherein: each A is independently selected from nitrogen or phosphorus and R, R1, R2 and R3 are independently selected from the group consisting of hydrogen, hydrocarbyl, silyl and germyl residues, substituted or not with one or more halogen, amido, phosphido, alkoxy, or aryloxy radicals. The invention also relates to a catalyst system for the polymerization of olefins and a process for the polymerization of at least one olefin having 2 to 20 carbon atoms.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 28, 2013
    Inventors: Gerardus Henricus Josephus Van Doremaele, Martin Alexander Zuideveld, Victor Fidel Quiroga Norambuena, Alexandra LeBlanc
  • Patent number: 8404880
    Abstract: Disclosed are: a solid polymethylaluminoxane composition which does not utilize silica or the like, has the form of relatively fine particles, has more uniform particle sizes, and exhibits a high polymerization activity when used in the preparation of an olefin polymer; a process for producing the solid polymethylaluminoxane composition; a polymerization catalyst; and a process for producing an olefin polymer.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: March 26, 2013
    Assignee: Tosoh Finechem Corporation
    Inventors: Eiichi Kaji, Etsuo Yoshioka
  • Patent number: 8404612
    Abstract: Catalyst compositions for the polymerization of olefins having improved flowability properties are provided.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: March 26, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, Jeevan S. Abichandani