Hydroxycarbonate Patents (Class 502/176)
-
Patent number: 9023753Abstract: A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons.Type: GrantFiled: May 13, 2013Date of Patent: May 5, 2015Assignees: Lummus Technology Inc., BASF CorporationInventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Shane Kleindienst, Wolfgang Ruettinger, Saeed Alerasool
-
Publication number: 20140336041Abstract: [RhxMgyAlw(OH)2](3x+2y+3w?2)+(A2?)(3x+2y+3w?2)/2,k H2) (I) Hydrotalcite-like compound of the formula (I): catalyst synthesis process involving such a compound, and the use of this catalyst for hydrocarbons reforming and for ethanol reforming.Type: ApplicationFiled: November 14, 2012Publication date: November 13, 2014Inventors: Francesco Basile, Angelo Vaccari, Giuseppe Fornasari, Irene Bersani, Pascal Del-Gallo, Daniel Gary
-
Publication number: 20140309102Abstract: A hydrotalcite-type compound of the formula (I): [CuxZnyAlw(OH)2](2x+2y+3w?2)+(A2?)(2x+2y+3w?2)/n,kH2O??(I) wherein (A2?) represents either a carbonate anion or a silicate anion, x>0, y>0, w>0, (x+y)=(1?w), 1<[(x+y)/w]<5, and 1/99?x/y?1/1; a synthesis process for its preparation; a catalyst obtained by its calcination and the subsequent reduction of the calcined product.Type: ApplicationFiled: November 14, 2012Publication date: October 16, 2014Inventors: Francesco Basile, Guiseppe Brenna, Raphael Faure, Guiseppe Fornasari, Daniel Gary, Angelo Vaccari
-
Publication number: 20140221193Abstract: The present invention relates to an aqueous gas-converting catalyst composition comprising: an active component; a support; an inorganic binder; at least one accelerator selected from the group consisting of cobalt oxide, molybdenum oxide, nickel oxide, calcium oxide, barium oxide, strontium oxide, magnesium oxide, zirconium oxide, manganese oxide and barium titania; and at least one stabilizer selected from the group consisting of magnesium oxide, zirconium oxide, stabilized zirconia, and hydrotalcite. The catalyst according to the present invention can effectively capture and separate carbon dioxide due to the excellent physical properties thereof such as packing density and abrasion resistance, and high CO conversion. Also, according to the present invention, mass production is facilitated by applying a spraying technique, and overall costs are lowered because of high yield.Type: ApplicationFiled: June 11, 2012Publication date: August 7, 2014Applicant: KOREA ELECTRIC POWER CORPORATIONInventors: Joong Beom Lee, Chong Kul Ryu, Tae Hyoung Eom, Dong Hyeok Choi, Jeom In Baek, Seong Jeagarl, Seok Ran Yang
-
Publication number: 20140186226Abstract: A catalyst for NOx storage and reduction may include a carrier that contains alkali metal and Al, or alkali earth metal and Al, a NOx storage element of alkali metal, alkali earth metal or rare earth element, and one or more noble metals that are selected from the group consisting of Pt, Pd, Ru, Ag, Au and Rh. The catalyst for NOx storage and reduction shows excellent NOx storage and reduction capability, maintains excellent storage and reduction capability especially before and after deterioration and sulfation, and shows excellent catalytic activity under low temperature environment, while maintaining unusually high hydrophobicity.Type: ApplicationFiled: March 6, 2014Publication date: July 3, 2014Applicants: Kia Motors Corporation, Hyundai Motor CompanyInventors: In-Sik NAM, Sang Jun PARK, Jin Ha LEE, Youngkee YOUN
-
Patent number: 8759241Abstract: A method for making a catalyst composition suitable for various purposes, such as the reduction of nitrogen oxides, is provided. The method includes combining dawsonite or a dawsonite derivative with a catalytic active element.Type: GrantFiled: February 25, 2011Date of Patent: June 24, 2014Assignee: General Electric CompanyInventor: Venkat Subramaniam Venkataramani
-
Publication number: 20140171693Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises metal coated hydrotalcite and method of making same.Type: ApplicationFiled: December 19, 2012Publication date: June 19, 2014Applicant: CELANESE INTERNATIONAL CORPORATIONInventors: Cheng Zhang, Mason Borlik, Heiko Weiner
-
Publication number: 20140107381Abstract: Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.Type: ApplicationFiled: October 7, 2013Publication date: April 17, 2014Applicant: Alliance for Sustainable Energy, LLCInventors: Gregg T. BECKHAM, Mary J. BIDDY, Stephen C. CHMELY, Matthew STURGEON
-
Patent number: 8652994Abstract: A process for preparing supported noble metal catalyst in situ is provided by mixing and crystallizing hexamethylenetetramine, soluble divalent metal salts solution, Al2O3 carriers and soluble noble metal salts solution wherein the hexamethylenetetramine is used as a precipitating agent for preparing hydrotalcite and a reducing agent of noble metal precursor. During the growth process of hydrotalcite, Al3+ on the Al2O3 carrier's surface is directly used as the trivalent metal ions in the laminate structure and the hydrotalcite is obtained on the surface of the Al2O3 carriers by in-situ growth. A supported catalyst Me-LDHs-Al2O3 containing an elementary noble metal is produced wherein the noble metal element particle in the catalyst has a particle size of 10 to 60 nm, and is evenly and stably dispersed on or between slabs of the hydrotalcite.Type: GrantFiled: May 27, 2010Date of Patent: February 18, 2014Assignee: Beijing University of Chemical TechnologyInventors: Dianqing Li, Junting Feng, Xiaoyan Ma
-
Patent number: 8563460Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.Type: GrantFiled: August 24, 2009Date of Patent: October 22, 2013Assignee: Johnson Matthey PLCInventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
-
Patent number: 8557728Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has one or more holes extending therethrough, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst or catalyst unit preferably has one or more flutes miming along its length. The catalyst may be used particularly in steam reforming reactors.Type: GrantFiled: August 24, 2009Date of Patent: October 15, 2013Assignee: Johnson Matthey PLCInventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
-
Patent number: 8557729Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has two or more flutes running along its length, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst may be used particularly in reactions where hydrogen is a reactant such as hydroprocessing, hydrogenation, water-gas shift reactions, methanation, hydrocarbon synthesis by the Fischer-Tropsch reaction, methanol synthesis and ammonia synthesis.Type: GrantFiled: August 24, 2009Date of Patent: October 15, 2013Assignee: Johnson Matthey PLCInventors: Daniel Lee Cairns, Mileta Babovic, Terence James Fitzpatrick, Elizabeth Margaret Holt, Colin William Park, William Maurice Sengelow, Edmund Hugh Stitt
-
Publication number: 20130261355Abstract: Aspects of the invention relate to a catalyst system for the conversion of biomass material. In an exemplary embodiment, the catalyst system has a specific combined mesoporous and macroporous surface area in the range of from about 1 m2/g to about 100 m2/g. The catalyst system can be used in a two-stage reactor assembly unit for the catalytic thermoconversion of biomass material wherein the thermolysis process and the catalytic conversion process are optimally conducted separately.Type: ApplicationFiled: March 7, 2013Publication date: October 3, 2013Applicant: KIOR, INC.Inventor: Dennis Stamires
-
Publication number: 20130252804Abstract: A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons.Type: ApplicationFiled: May 13, 2013Publication date: September 26, 2013Applicants: BASF CORPORATION, LUMMUS TECHNOLOGY INC.Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Shane Kleindienst, Wolfgang Ruettinger, Saeed Alerasool
-
Publication number: 20130245328Abstract: Catalyst compositions for production of higher alcohols comprise a hydrotalcite or hydrotalcite-like support impregnated with molybdenum and an alkali metal. When the compositions are used to convert syngas, selectivity to higher (C2+) alcohols is increased in comparison to conversions accomplished over many other catalyst systems.Type: ApplicationFiled: December 1, 2011Publication date: September 19, 2013Applicant: Georgia Tech Research CorporationInventors: Christopher W. Jones, Pradeep K. Agrawal, Tien Thao Nguyen
-
Publication number: 20130232861Abstract: Systems, catalysts, and methods are provided for transforming carbon based material into synthetic mixed alcohol fuel.Type: ApplicationFiled: April 19, 2013Publication date: September 12, 2013Applicant: Pioneer Energy, Inc.Inventors: Emily Bostwick White, Cherie Wilson, Mark Berggren, Robert M. Zubrin
-
Publication number: 20130172642Abstract: The present invention relates to hydrotalcite-like compounds, wherein Pd2+ occupies at least part of the octahedral sites in the brucite-like layers. According to another aspect, the invention is concerned with methods of converting these hydrotalcite-like compounds into materials comprising particles, in particular nanoparticles, of an ordered intermetallic compound of palladium and at least one constituent metal of the palladium-modified hydrotalcites. Moreover, the invention pertains to the material obtainable by the conversion method, the use of the material as a catalyst, and a process for the selective hydrogenation of alkyne(s) to the corresponding alkene(s) using the material as a hydrogenation catalyst.Type: ApplicationFiled: February 23, 2011Publication date: July 4, 2013Applicant: Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V.Inventors: Malte Behrens, Antje Ota, Robert Schlögl, Marc Armbruster, Juri Grin
-
Publication number: 20130143731Abstract: A supported noble metal catalyst and a process for preparing the same in situ are provided. Hexamethylenetetramine, a soluble divalent metal salt solution, a Al2O3 carrier and a soluble noble metal salt solution, are mixed and crystallized, in which the hexamethylenetetramine acts as both a precipitating agent for producing hydrotalcite and a reducing agent for the noble metal precursor, and a supported catalyst Me-LDHs-Al2O3 containing an elementary substance of a noble metal is prepared by a one-step reaction. During the growth of the hydrotalcite, Al3+ on the surface layer of the Al2O3 carrier is directly used as the trivalent metal ion to form the slab structure of the hydrotalcite, and the hydrotalcite is grown in situ on the surface of the alumina carrier. The noble metal element particle in the catalyst has a particle size of 10 to 60 nm, and has an even and stable dispersion on or between slabs of the hydrotalcite.Type: ApplicationFiled: May 27, 2010Publication date: June 6, 2013Applicant: BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGYInventors: Dianqing Li, Junting Feng, Xiaoyan Ma
-
Patent number: 8398894Abstract: The present invention relates to a catalyst for preparing a carbon nanotube having desired apparent density by controlling the adding amount of co-precipitating agent in the process of preparing a catalyst in order to obtain a catalyst having a minimized particle size. More specifically, this invention relates to a catalyst for preparing carbon nanotube having desired apparent density based upon the reverse-correlation between the amount of co-precipitating agent added in the process of preparing catalyst and the apparent density of catalyst. The carbon nanotube prepared by the catalyst having low apparent density shows excellent electrical conductivity and highly uniformed dispersion in the polymer/carbon nanotube composite.Type: GrantFiled: December 18, 2009Date of Patent: March 19, 2013Assignee: Korea Kumho Petrochemical Co., Ltd.Inventors: Namsun Choi, Hyun-Kyung Sung, Dong Hwan Kim, Sang-Hyo Ryu, Wan Sung Lee, Youngchan Jang
-
Publication number: 20120220447Abstract: A method for making a catalyst composition suitable for various purposes, such as the reduction of nitrogen oxides, is provided. The method includes combining dawsonite or a dawsonite derivative with a catalytic active element.Type: ApplicationFiled: February 25, 2011Publication date: August 30, 2012Applicant: GENERAL ELECTRIC COMPANYInventor: Venkat Subramaniam Venkataramani
-
Patent number: 8236262Abstract: A particulate desulfurization material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulfurization material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulfurization material may be used to desulfurize hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.Type: GrantFiled: February 25, 2009Date of Patent: August 7, 2012Assignee: Johnson Matthey PLCInventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Publication number: 20120168347Abstract: This invention provides processes for forming solution compositions, which processes comprises bringing together, in an aqueous medium, i) at least one phosphorus compound; ii) at least one Group VI metal compound; and iii) at least one Group VIII metal compound, such that a solution having a Group VI metal concentration of more than about 5.6 mol/L is formed. Also provided are compositions formed by such processes, processes for forming catalyst compositions from these compositions, and catalyst compositions formed by these processes.Type: ApplicationFiled: August 24, 2010Publication date: July 5, 2012Applicant: ALBEMARLE EUROPE SPRLInventors: Sona Eijsbouts-Spickova, Marcel Adriaan Jansen
-
Publication number: 20120172571Abstract: The invention provides a polycondensation catalyst for producing polyester by an esterification reaction or a transesterification reaction between a dicarboxylic acid or an ester-forming derivative thereof and a glycol, the polycondensation catalyst being obtained by hydrolyzing a water soluble titanium compound in the absence of a water soluble alkali in an aqueous slurry in which particles of a solid base are dispersed thereby to form on the surface of the particles of the solid base a coat layer of titanic acid in a content of from 0.1 to 50 parts by weight in terms of TiO2 per 100 parts by weight of the solid base. The invention further provides a method for producing such a polycondensation catalyst, and polyester obtained using such a polycondensation catalyst.Type: ApplicationFiled: September 10, 2010Publication date: July 5, 2012Inventors: Keiichi Tabata, Akihiro Kamon, Jun Naito, Keiichi Ikegawa
-
Publication number: 20120142520Abstract: A catalyst system is disclosed for catalytic pyrolysis of a solid biomass material. The system comprises an oxide, silicate or carbonate of a metal or a metalloid. The specific combined meso and macro surface area of the system is in the range of from 1 m2/g to 100 m2/g. When used in a catalytic process the system provides a high oil yield and a low coke yield. The liquid has a relatively low oxygen content.Type: ApplicationFiled: April 22, 2010Publication date: June 7, 2012Applicant: KIOR INC.Inventors: Robert Bartek, Michael Brady, Dennis Stamires
-
Publication number: 20120136133Abstract: The invention provides a method for producing a catalyst for producing polyester by an esterification reaction or a transesterification reaction between a dicarboxylic acid or an ester-forming derivative thereof and a glycol, the method comprising hydrolyzing an organic titanium compound in an organic solvent in which particles of a solid base are dispersed thereby to form a coat layer of titanic acid on the surface of the particles of a solid base.Type: ApplicationFiled: December 23, 2011Publication date: May 31, 2012Inventors: Hiromitsu SHIMIZU, Keiichi Tabata, Akihiro Kamon
-
Publication number: 20120046160Abstract: A mixed oxide catalyst is prepared by precipitating a Ni/Al layered double hydroxide having a general formula [NixAly(OH)2](CO3)y/2. mH2O where x+y=1 and m=about 0.5. The Ni/Al layered double hydroxide is aged and then isolated and heat treated under reducing atmosphere to produce the mixed oxide catalyst.Type: ApplicationFiled: August 19, 2010Publication date: February 23, 2012Inventors: Mark Crocker, Tonya Morgan
-
Publication number: 20110294969Abstract: Process for supportation of a catalyst system comprising at least two different active catalyst components on a support wherein in an earlier supportation step a first active catalyst component is applied to the support at a first predetermined temperature and in a later supportation step a second active catalyst component is applied to the support at a temperature which is at least 20° C. lower than the first predetermined temperature.Type: ApplicationFiled: December 12, 2009Publication date: December 1, 2011Applicant: Basell Polyolefine GmbHInventors: Harald Schmitz, Fabiana Fantinel, Jürgen Hilz, Shahram Mihan
-
Publication number: 20110212009Abstract: A procedure for obtaining mixed multimetallic oxides derived from hydrotalcite type compounds, characterized in that the laminar metallic hydroxides obtained are constituted by three or four metallic cations, forming part of the sheets of the hydrotalcite type material represented by the formula: [M(II)1?x?y?zM(II)?xM(III)yM(III)?z(OH)2](An?y+z/n).mH2O. by a process comprising: (1) preparing an aqueous or organic solution containing three or more cations; (2) preparing an alkaline solution; (3) slowly combining solutions (1) and (2) to cause the co-precipitation of the cations in the form of hydroxides; (4) washing the precipitate containing the hydrotalcites with water, until removal of the non-precipitated ions; (5) drying; and (6) calcining the hydrotalcites.Type: ApplicationFiled: May 12, 2011Publication date: September 1, 2011Applicant: INSTITUTO MEXICANO DEL PETROLEOInventors: Jaime Sánchez Valente, Esteban López Salinas, Manuel Sánchez Cantú, Francisco Beltrán Hernández
-
Publication number: 20110172086Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.Type: ApplicationFiled: August 24, 2009Publication date: July 14, 2011Applicant: JOHNSON MATTHEY PLCInventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
-
Publication number: 20110166013Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has two or more flutes running along its length, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst may be used particularly in reactions where hydrogen is a reactant such as hydroprocessing, hydrogenation, water-gas shift reactions, methanation, hydrocarbon synthesis by the Fischer-Tropsch reaction, methanol synthesis and ammonia synthesis.Type: ApplicationFiled: August 24, 2009Publication date: July 7, 2011Applicant: JOHNSON MATTHEY PLCInventors: Daniel Lee Cairns, Mileta Babovic, Terence James Fitzpatrick, Elizabeth Margaret Holt, Colin William Park, William Maurice Sengelow, Edmund Hugh Stitt
-
Publication number: 20110104029Abstract: An embodiment relates to a photocatalytic composite material comprising (a) a first component that generates a photoexcited electron and has at least a certain minimum bandgap to absorb visible light and a structure that substantially prevents the recombination of the photoexcited electron and a hole; (b) a second component that adsorbs/absorbs an oxide of carbon; and (c) a third component that splits the oxide of carbon into carbon and oxygen using the photoexcited electron.Type: ApplicationFiled: December 15, 2009Publication date: May 5, 2011Inventor: Thevasahayam AROCKIADOSS
-
Publication number: 20110105305Abstract: An architecture made of a ceramic or a metallic foam has at least one continuous and/or discontinuous, axial and/or radial porosity gradient ranging from 10 to 90% associated to a pore size range from 2 to 60 ppi, at least one continuous and/or discontinuous, axial and/or radial concentration gradient of catalytic active(s) phase(s) from 0.01 wt % to 100 wt % preferentially from 0.1 wt % to 20 wt %, and a microstructure with a specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.Type: ApplicationFiled: June 16, 2009Publication date: May 5, 2011Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges ClaudeInventors: Pascal Del-Gallo, Daniel Gary, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Fabrice Rossingnol
-
Publication number: 20110105818Abstract: A catalyst comprising a dehydrogenation catalyst and a water gas shift co-catalyst can be used for the dehydrogenation of alkylaromatic hydrocarbons to alkenylaromatic hydrocarbons. For instance, the catalyst can be used for the dehydrogenation of ethylbenzene to styrene. The catalyst can include an iron compound, a potassium compound, and a cerium compound.Type: ApplicationFiled: October 31, 2009Publication date: May 5, 2011Applicant: Fina Technology, Inc.Inventors: Joseph E. Pelati, Hollie Craig, James R. Butler
-
Publication number: 20110105304Abstract: Architecture comprising ceramic or metallic foam, characterized in that the foam has a constant axial and radial porosity between 10 to 90% with a pore size between 2 to 60 ppi, and at least one continuous and/or discontinuous, axial and/or radial concentration of catalytic active(s) phase(s) from 0.01 wt % to 100 wt %, preferentially from 0.1 to 20 wt. %, and in that the architecture has a microstructure comprising specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.Type: ApplicationFiled: June 15, 2009Publication date: May 5, 2011Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Ex ploitation Des Procedes Georges ClaudeInventors: Pascal Del-Gallo, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Daniel Gary, Fabrice Rossignol
-
Publication number: 20110042271Abstract: Compositions and methods suitable for removing poisonous metals from hydrocarbons are provided. The compositions comprise hydrotalcite having one or more trapping metals dispersed on the outer surface thereof.Type: ApplicationFiled: November 1, 2010Publication date: February 24, 2011Applicant: ALBEMARLE NETHERLANDS B.V.Inventors: Julie Ann FRANCIS, Charles Vadovic
-
Publication number: 20110014103Abstract: A process for the preparation of a desulphurisation material includes: forming a zinc/aluminium hydrotalcite composition, and (ii) calcining the composition to form a zinc oxide/alumina material, in which one or more nickel compounds are included in the hydrotalcite formation step, and/or are impregnated onto the hydrotalcite composition and/or the calcined zinc oxide/alumina material, and the resulting composition dried and recovered.Type: ApplicationFiled: February 25, 2009Publication date: January 20, 2011Applicant: JOHNSON MATTHEY PLCInventors: Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Publication number: 20110014105Abstract: A particulate desulphurisation material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulphurisation material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulphurisation material may be used to desulphurise hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.Type: ApplicationFiled: February 25, 2009Publication date: January 20, 2011Applicant: JOHNSON MATTHEY PLCInventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Publication number: 20100248945Abstract: The invention relates to a process for preparing bulk metal oxide particles comprising the steps of combining in a reaction mixture (i) dispersible nanoparticles having a dimension of less than about 1 ?m upon being dispersed in a liquid, (ii) at least one Group VIII non-noble metal compound, (iii) at least one Group VIB metal compound, and (iv) a protic liquid; and reacting the at least one Group VIII non-noble metal compound and the at least one Group VIB metal in the presence of the nanoparticles. It also relates to bulk metal hydroprocessing catalysts obtainable by such method.Type: ApplicationFiled: December 4, 2008Publication date: September 30, 2010Applicant: ALBEMARLE NETHERLANDS B.V.Inventors: Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Paul Joseph Maria Lebens, Frans Lodewijk Plantenga, Bob Gerardus Oogjen, Henk Jan Tromp, Stuart Leon Soled, Sabato Miseo
-
Publication number: 20100191030Abstract: A metathesis catalyst which is a combination including a catalyst 1 comprising a compound that contains at least one metal element selected from tungsten, molybdenum and rhenium and a catalyst 2 comprising at least one selected from magnesium oxide and calcined hydrotalcite is easily and effectively reactivated from a degraded state due to long-term repetitive cycles of reaction and regeneration at high temperature for burning off poisonous substances or cokes, to like-new condition or a desired level. An olefin production process by a metathesis reaction includes a step of performing the reactivation. A degraded metathesis catalyst is easily and effectively reactivated by being contacted with water at not more than 50° C. or water vapor at not more than 170° C.Type: ApplicationFiled: June 23, 2008Publication date: July 29, 2010Inventor: Hirokazu Ikenaga
-
Publication number: 20100160692Abstract: The present invention relates to novel catalyst compositions and their use in a process for the catalytic conversion of ethanol to a reaction product comprising 1-butanol. The catalysts comprise Group II metal salts selected from the group consisting of oxides, carbonates, bicarbonates, hydroxides, and mixtures thereof, supported on a lanthanum-promoted oxide containing alumina.Type: ApplicationFiled: December 21, 2009Publication date: June 24, 2010Applicant: E. I. DU PONT DE NEMOURS AND COMPANYInventors: Kostantinos KOURTAKIS, Ronnie Ozer
-
Publication number: 20100130758Abstract: Disclosed are a catalyst including a hydrotalcite and, immobilized on a surface thereof, particles of at least one metal selected from the group consisting of Cu, Ag, and Au; a method for producing a carbonyl compound through dehydrogenation of an alcohol in the presence of the catalyst; and a method for producing a carbonyl compound through dehydrogenation of an alcohol in the presence of a catalyst including a hydrotalcite and, immobilized on a surface thereof, particles of a metal, in which dehydrogenation is performed in the absence of oxygen.Type: ApplicationFiled: March 9, 2007Publication date: May 27, 2010Inventors: Kiyotomi Kaneda, Noritsugu Yamasaki
-
Publication number: 20100087694Abstract: A high cerium-containing dehydrogenation catalyst of alkyl aromatic compounds used in industrial scale, including iron oxide and potassium oxide, having improved physical strength of catalyst pellets, and a method for producing the catalyst, and the dehydrogenation method using the catalyst are disclosed. In producing high cerium-containing pellets by using a dehydrogenation catalyst including iron oxide and potassium oxide, cerium carbonate hydroxide or a mixture of cerium carbonate hydroxide and other cerium compounds is used as a cerium source to produce catalytic pellets having improved physical strength.Type: ApplicationFiled: January 25, 2008Publication date: April 8, 2010Applicant: SUED-CHEMME CATALYST JAPAN, INCInventor: Yuji Mishima
-
Publication number: 20100041913Abstract: The invention provides a polycondensation catalyst for producing polyester by an esterification reaction or a transesterification reaction between a dicarboxylic acid or ester-forming derivative thereof and a glycol, wherein the polycondensation catalyst comprises particles of a solid base having on their surfaces either a coat layer of titanic acid in an amount of from 0.1 to 50 parts by weight in terms of TiO2 per 100 parts by weight of the solid base, or an inner coat layer of an oxide of at least one element selected from silicon, aluminum and zirconium or a composite oxide of at least two elements selected from silicon, aluminum and zirconium in an amount of from 1 to 20 parts by weight per 100 parts by weight of the solid base and an outer coat layer of titanic acid in an amount of from 0.Type: ApplicationFiled: June 28, 2006Publication date: February 18, 2010Inventors: Toshikatsu Umaba, Hiromitsu Shimizu, Kenji Mori, Keiichi Tabata
-
Patent number: 7655593Abstract: A method of manufacturing a cobalt catalyst is described, which comprises the steps of forming an aqueous solution of a cobalt amine complex, oxidising said solution such that the concentration of Co(III) in the oxidised solution is greater than the concentration of Co(III) in the un-oxidized solution, and then decomposing the cobalt amine complex by heating the solution to a temperature between 80 and 110° C. for sufficient time to allow an insoluble cobalt compound to precipitate out of the solution. A catalyst intermediate is also described which comprises a cobalt compound, comprising a Co(II)/Co(III) hydrotalcite phase and a CO3O4 cobalt spine) phase, wherein the ratio of cobalt hydrotalcite phase: cobalt spine) phase is less than 0.6:1, said cobalt hydrotalcite phase and said cobalt spine) phase being measured by X-ray diffractometry.Type: GrantFiled: May 10, 2005Date of Patent: February 2, 2010Assignee: Johnson Matthey PLCInventors: Cornelis Martinus Lok, Jill Turner
-
Publication number: 20090269266Abstract: Oxidic composition consisting essentially of oxidic forms of a first metal, a second metal, and optionally a third metal, the first metal being either Ca or Ba and being present in the composition in an amount of from about 5 to about 80 wt %, the second metal being Al and being present in the composition in an amount of from about 5 to about 80 wt %, the third metal being selected from the group consisting of La, Ti, and Zr, and being present in an amount of from 0 to about 17 wt %—all weight percentages calculated as oxides and based on the weight of the oxidic composition, the oxidic composition being obtainable by (a) preparing a physical mixture comprising solid compounds of the first, the second, and the optional third metal, (b) optionally aging the physical mixture, without anionic clay being formed, and (c) calcining the mixture. This composition is suitable for use in FCC processes for the passivation of metals with only minimal influence on the zeolite's hydrothermal stability.Type: ApplicationFiled: June 2, 2006Publication date: October 29, 2009Applicant: ALBEMARLE NETHERLANDS B.V.Inventors: Dennis Stamires, Paul O'connor, William Jones, Erik Jeroen Laheij
-
Publication number: 20090069603Abstract: The invention relates to a process for hydrogenating oligonitriles which have at least two nitrile groups in the presence of a catalyst which, before commencement of the hydrogenation, is pretreated by contacting with a compound A which is selected from alkali metal carbonates, alkaline earth metal carbonates, ammonium carbonate, alkali metal hydrogencarbonates, alkaline earth metal hydrogencarbonates, ammonium hydrogencarbonate, alkaline earth metal oxocarbonates, alkali metal carboxylates, alkaline earth metal carboxylates, ammonium carboxylates, alkali metal dihydrogenphosphates, alkaline earth metal dihydrogenphosphates, alkali metal hydrogenphosphates, alkaline earth metal hydrogenphosphates, alkali metal phosphates, alkaline earth metal phosphates and ammonium phosphate, alkali metal acetates, alkaline earth metal acetates, ammonium acetate, alkali metal formiates, alkaline earth metal formiates, ammonium formiate, alkali metal oxalates, alkaline earth metal oxalates and ammonium oxalate.Type: ApplicationFiled: September 11, 2006Publication date: March 12, 2009Applicant: BASF SEInventors: Thilo Hahn, Martin Ernst, Johann-Peter Melder
-
Publication number: 20090060808Abstract: Scrubber media for reactive gases, that can include but are not necessarily limited to hydrogen chloride (HCl), hydrogen sulfide (H2S), hydrogen fluoride (HF), and ammonia (NH3), can include reactive particles, potentially as small as nano-scale, that can optionally be suspended on macro-scale carrier particles. Reactive gases can be converted to non-volatile compounds by being passed through a bed of such scrubber media. Such scrubber media can be used to remove reactive gases from gas mixtures. Potential applications include differential absorption spectroscopy, air pollutant emission controls, and the like. Methods of preparing scrubber media are also described.Type: ApplicationFiled: August 29, 2008Publication date: March 5, 2009Inventors: Marc M. Baum, John Moss, Alfred Feitisch, Xin Zhou, Xiang Liu, Alex Kwan
-
Publication number: 20080139381Abstract: A method of manufacturing a cobalt catalyst is described, which comprises the steps of forming an aqueous solution of a cobalt amine complex, oxidising said solution such that the concentration of Co(III) in the oxidised solution is greater than the concentration of Co(III) in the un-oxidized solution, and then decomposing the cobalt amine complex by heating the solution to a temperature between 80 and 110° C. for sufficient time to allow an insoluble cobalt compound to precipitate out of the solution. A catalyst intermediate is also described which comprises a cobalt compound, comprising a Co(II)/Co(III) hydrotalcite phase and a CO3O4 cobalt spine) phase, wherein the ratio of cobalt hydrotalcite phase: cobalt spine) phase is less than 0.6:1, said cobalt hydrotalcite phase and said cobalt spine) phase being measured by X-ray diffractometry.Type: ApplicationFiled: May 10, 2005Publication date: June 12, 2008Applicant: JOHNSON MATTHEY PLCInventors: Cornelis Martinus Lok, Jill Turner
-
Publication number: 20040225104Abstract: The invention pertains to new catalyst systems for polycondensation reactions, for example for producing polyethylene terephthalate. In accordance with the invention, complex compounds with hydrotalcite-analogous structures of general formula [M(II)1−xM(III)x(OH)2]x+(An−x/n).mH2O are used, wherein M(II) represents divalent metals, preferably Mg or Zn or NI or Cu or Fe(II) or Co, and M(III) represents trivalent metals, for example Al or Fe(III), and A represents anions, preferably carbonates or borates. These catalysts can be calcinated and can be used in combination with phosphorus compounds that contain at least one hydrolyzable phosphorus-oxygen bond.Type: ApplicationFiled: June 7, 2004Publication date: November 11, 2004Inventors: Jene Peter Wiegner, Volkmar Voerckel, Rolf Eckert, Gunter Feix, Marion Sela, Sarat Munjal
-
Patent number: 6586566Abstract: This invention relates to novel double metal cyanide (DMC) catalysts for the production of polyether polyols by polyaddition of alkylene oxides onto starter compounds having active hydrogen atoms, wherein the catalyst contains a) double metal cyanide compounds, b) organic complex ligands other than c) and c) ionic surface- or interface-active compounds. The catalysts according to the invention have greatly increased activity in the production of polyether polyols.Type: GrantFiled: August 8, 2001Date of Patent: July 1, 2003Assignee: Bayer AktiengesellschaftInventors: Jörg Hofmann, Pieter Ooms, Pramod Gupta, Walter Schäfer, John Lohrenz