And Group Viii Metal Containing (i.e., Iron Or Platinum Group) Patents (Class 502/207)
  • Patent number: 9475829
    Abstract: The invention concerns a method of hydrosilylation between a siloxane compound (A) comprising at least one hydrogen atom bonded to a silicon atom and an unsaturated compound (B) comprising at least one alkene function and/or at least one alkyne function, the method being characterized in that it is catalyzed by a photocatalyst selected from among the polyoxometalates.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: October 25, 2016
    Assignee: BLUESTAR SILICONES FRANCE SAS
    Inventors: Emmanuel Pouget, Jean-Marc Frances
  • Patent number: 9333491
    Abstract: This invention relates to a catalyst for oxygenate synthesis to use for synthesizing an oxygenate from mixed gas containing hydrogen and carbon monoxide, the catalyst comprising, an (A) component: rhodium, a (B) component: manganese, a (C) component: an alkali metal, and a (Z) component: magnesium oxide.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: May 10, 2016
    Assignees: SEKISUI CHEMICAL CO., LTD., COLORADO SCHOOL OF MINES
    Inventors: Kazuyoshi Iwane, Ryan Richards, Christopher Cadigan
  • Patent number: 9259715
    Abstract: A hydrogenation catalyst comprising nickel, rhenium, and cadmium is disclosed. Process of using hydrogenation catalyst for producing propylene glycol from polyol feedstock are also disclosed. The present invention relates generally to catalysts and more particularly, to catalysts having an enhanced ability to produce propylene glycol from sugar alcohols while reducing the production of by-products.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: February 16, 2016
    Assignee: Archer Daniels Midland Company
    Inventors: Kevin Martin, Josh Terrian, Leandra Vircks
  • Patent number: 9018126
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: April 28, 2015
    Assignee: Shell Oil Company
    Inventor: Marek Matusz
  • Publication number: 20150096900
    Abstract: Disclosed is an alloy of the formula: Fe3?xAl1+xMyTzTat wherein M represents at least one catalytic specie selected from the group consisting of Ru, Ir, Pd, Pt, Rh, Os, Re and Ag; T represents at least one element selected from the group consisting of Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, CI, Na and Ti; and Ta represents tantalum. Such an alloy can be used as an electrode material for the synthesis of sodium chlorate. It can also be used as a coating for protection against corrosion.
    Type: Application
    Filed: April 26, 2013
    Publication date: April 9, 2015
    Inventors: Robert Schulz, Sylvio Savoie
  • Patent number: 8962514
    Abstract: A hydrotreating catalyst that exhibits excellent levels of both desulfurization activity and denitrification activity. The hydrotreating catalyst is prepared by supporting molybdenum, cobalt and nickel on a carrier comprising aluminum, silicon, phosphorus and boron, and then performing a presulfiding treatment, and has an average stacking number for molybdenum sulfide slab that is greater than 1.0 but not more than 1.9. Also, a process for producing a hydrotreating catalyst that enables a hydrotreating catalyst having excellent levels of both desulfurization activity and denitrification activity to be produced with comparative ease. The process includes a first step of mixing an acidic aluminum salt aqueous solution and a basic aluminum salt aqueous solution in the presence of phosphate ions and silicate ions to achieve a pH of 6.5 to 9.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: February 24, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Hiroyuki Seki, Yoshiaki Fukui, Masanori Yoshida
  • Patent number: 8946113
    Abstract: The present invention relates to an Fe-modified perovskite-type catalyst, a method for preparing same and a method for preparing a synthesis gas by a combined reforming reaction using same. More particularly, it relates to a catalyst for a combined natural gas/steam/carbon dioxide reforming reaction having a perovskite structure with La and Sr introduced at the A site and Ni and Fe introduced at the B site with specific molar ratios and a method for producing a synthesis gas for Fischer-Tropsch synthesis or methanol synthesis using the catalyst by the combined reforming reaction. The catalyst of the present invention exhibits higher carbon dioxide conversion rate, significantly reduced catalyst deactivation caused by carbon deposition and improved long-term catalyst stability and activity, as compared to the existing catalyst for reforming reaction prepared by the impregnation method.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: February 3, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Eun Hyeok Yang, Jin Hee Lee, Hyun Jin Kim, Byoung Sung Ahn, Sang Woo Kim, Jae Sun Jung
  • Publication number: 20150024928
    Abstract: Acetic acid is hydrogenation in the presence of a catalyst comprising one or more active metals on a silica support, wherein the catalyst has a radial crush strength of at least 4 N/mm. The one or more active metals may include cobalt, copper, gold, iron, nickel, palladium, platinum, iridium, osmium, rhenium, rhodium, ruthenium, tin, zinc, lanthanum, cerium, manganese, chromium, vanadium, molybdenum and mixtures thereof. Radial crush strength may be improved by steam treating the catalyst support prior to the loading of the one or more active metals.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 22, 2015
    Inventors: Zhenhua Zhou, Emily Duff, Dheeraj Kumar, Heiko Weiner
  • Patent number: 8921631
    Abstract: The invention relates to a process for selectively hydrogenating an alkyne to the corresponding alkene comprising a step of contacting a gaseous feed comprising hydrogen and 0.1 to 20 mass % of alkyne with a catalyst comprising at least one Group 10 element on a boron-modified support. The process shows high conversion and good selectivity, and can be stably operated also if the feed comprises more than 2 mass % of alkyne.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: December 30, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Aggadin Kh. Mamedov, Saeed Mohammed Al-Wahabi
  • Patent number: 8912111
    Abstract: A process for slurry hydrocracking catalyst recovery is described. In one embodiment, the process includes separating effluent from a slurry hydrocracking zone into a first portion comprising solvent and clarified pitch and a second portion comprising pitch and catalyst. The second portion is contacted with an acid to leach the catalyst out of the pitch forming an aqueous solution and pitch residue. The aqueous solution is contacted with an anion to form an insoluble salt which is the catalyst.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Rajeswar R. Gattupalli, Grant H. Yokomizo, Bart Dziabala
  • Patent number: 8889865
    Abstract: The present invention provides novel ruthenium based catalysts, and a process for preparing amines, by reacting a primary alcohol and ammonia in the presence of such catalysts, to generate the amine and water. According to the process of the invention, primary alcohols react directly with ammonia to produce primary amines and water in high yields and high turnover numbers. This reaction is catalyzed by novel ruthenium complexes, which are preferably composed of quinolinyl or acridinyl based pincer ligands.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: November 18, 2014
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: David Milstein, Chidambaram Gunanathan
  • Publication number: 20140308177
    Abstract: A hydrogen separation membrane including: a metal layer including the at least one Group 5 element; and a transition metal catalyst layer on the metal layer, the transition metal catalyst layer including at least one transition metal and at least one of phosphorus (P) or boron (B).
    Type: Application
    Filed: February 11, 2014
    Publication date: October 16, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keun woo Cho, Hyeon Cheol PARK, Kyoung-Seok MOON, Kwang Hee KIM, Jae-Ho LEE, Eun Seog CHO
  • Publication number: 20140275584
    Abstract: Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a NinSnm alloy and a crystalline alumina support.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Virent, Inc.
    Inventors: Taylor Beck, Brian Blank, Casey Jones, Elizabeth Woods, Randy Cortright
  • Publication number: 20140274671
    Abstract: Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Siluria Technologies, Inc.
    Inventors: Wayne P. Schammel, Anja Rumplecker, Joel M. Cizeron, Erik C. Scher, Fabio R. Zurcher, Greg Nyce, Jarod McCormick, Marian Alcid, Joel Gamoras, Daniel Rosenberg, Erik-Jan Ras
  • Publication number: 20140243191
    Abstract: Provided are an exhaust gas purification catalyst including a carrier containing substituted aluminum borate in which 2.5 to 11.5 at. % of aluminum atoms contained therein are substituted by Fe, Co, Ga, or Ni, and Pd supported on the carrier; and an exhaust gas purification catalyst product including a catalyst support made of a ceramic or metallic material, and a layer of the aforementioned exhaust gas purification catalyst and which is supported on the catalyst support.
    Type: Application
    Filed: September 10, 2012
    Publication date: August 28, 2014
    Inventors: Takahiro Sato, Yunosuke Nakahara, Masato Machida
  • Patent number: 8772196
    Abstract: Disclosed is a composition useful in the saturation of aromatics contained in a hydrocarbon feedstock. The composition includes a support composition having a high macroporosity of greater than 51 percent. The support composition comprises an amorphous silica-alumina having unique properties.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: July 8, 2014
    Assignee: Shell Oil Company
    Inventors: Russell Craig Ackerman, Christian Gabriel Michel, John Anthony Smegal, Johannes Anthonius Robert Van Veen
  • Publication number: 20140171299
    Abstract: A hydroprocessing co-catalyst composition may comprise in an embodiment a first component comprising co-catalyst particles and a liquid carrier, and a second component comprising a dispersant and a dispersant diluent. The co-catalyst particles may be in the micron size range, and the dispersant may promote dispersion of the co-catalyst particles in materials such as the liquid carrier, the dispersant diluent, and combinations thereof. Methods of introducing a hydroprocessing co-catalyst composition into a hydroprocessing system are also disclosed.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Inventors: Julie Chabot, Bo Kou, Alexander Kuperman
  • Publication number: 20140171298
    Abstract: A hydroprocessing co-catalyst composition may comprise in an embodiment a first component comprising co-catalyst particles and a liquid carrier, and a second component comprising a dispersant and a dispersant diluent. The co-catalyst particles may be in the micron size range, and the dispersant may promote dispersion of the co-catalyst particles in materials such as the liquid carrier, the dispersant diluent, and combinations thereof. Methods of introducing a hydroprocessing co-catalyst composition into a hydroprocessing system are also disclosed.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Inventors: Julie Chabot, Bo Kou, Alexander Kuperman
  • Patent number: 8633128
    Abstract: The invention describes a heteropolycompound constituted by a nickel salt of a lacunary Keggin type heteropolyanion comprising tungsten in its structure, with formula: Nix+y/2AW11-yO39-5/2y, zH2O wherein Ni is nickel, A is selected from phosphorus, silicon and boron, W is tungsten, O is oxygen, y=0 or 2, x=3.5 if A is phosphorus, x=4 if A is silicon, x=4.5 if A is boron, and x=m/2+2 for the rest, and z is a number in the range 0 to 36, in which said heteropolycompound has no nickel atom in substitution for a tungsten atom in its structure, said nickel atoms being placed in the counter-ion position in the structure of said compound.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: January 21, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Audrey Bonduelle, Fabrice Bertoncini, Karima Ben Tayeb, Carole Lamonier, Michel Fournier, Edmond Payen
  • Publication number: 20130330263
    Abstract: A catalyst according to the present invention exhibits a catalytic action to a methanol decomposition reaction or a hydrocarbon steam-reforming reaction in a short time. The present invention provides a catalyst for producing hydrogen gas, using an Ni3Si-based intermetallic compound.
    Type: Application
    Filed: March 8, 2012
    Publication date: December 12, 2013
    Applicant: OSAKA PREFECTURE UNIVERSITY PUBLIC CORPORATION
    Inventors: Yasuyuki Kaneno, Takayuki Takasugi
  • Publication number: 20130302241
    Abstract: The invention provides a catalyst for the production of hydrogen by steam reforming. The catalyst is a porous catalyst which is based on at least aluminium oxide and preferably magnesium oxide, and further comprises boron and nickel. The porous catalyst comprises pores having an average pore size in the range of 0.1-50 nm. The activity of the catalyst may be further enhanced by addition of a noble metal such as Rh, Ru, Pd, Ir or Pt. The catalyst can be broadly used in hydrogen production processes, and is especially suitable for reforming using a membrane which is selective for a predetermined reaction product. Such process can be operated at relatively low temperatures of about 450-700° C.
    Type: Application
    Filed: November 15, 2011
    Publication date: November 14, 2013
    Inventor: Johannis Alouisius Zacharias Pieterse
  • Publication number: 20130288884
    Abstract: The present invention relates to a catalyst for producing chlorine by oxidation of hydrogen chloride and a method for preparing the same. The catalyst comprises a support and active ingredients that comprise 1-20 wt % of copper, 0.01-5 wt % of boron, 0.1-10 wt % of alkali metal element(s), 0.1-15 wt % of one or more rare earth elements, and 0-10 wt % of one or more elements selected from magnesium, calcium, barium, manganese, iron, nickel, cobalt, zinc, ruthenium or titanium based on the total weight of the catalyst. The catalyst is prepared by a two-step impregnation method. Comparing with the available catalysts of the same type, the catalyst according to the present invention has greatly improved conversion and stability.
    Type: Application
    Filed: June 3, 2011
    Publication date: October 31, 2013
    Applicants: NINGBO WANHUA POLYURETHANES CO., LTD., WANHUA CHEMICAL GROUP CO., LTD.
    Inventors: Guangquan Yi, Yinchuan Lou, Yi Wan, Xunkun Wu, Weiqi Hua, Jiansheng Ding
  • Publication number: 20130281554
    Abstract: This invention relates to a catalyst for oxygenate synthesis to use for synthesizing an oxygenate from mixed gas containing hydrogen and carbon monoxide, the catalyst comprising, an (A) component: rhodium, a (B) component: manganese, a (C) component: an alkali metal, and a (Z) component: magnesium oxide.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 24, 2013
    Inventors: SEKISUI CHEMICAL CO., LTD., COLORADO SCHOOL OF MINES
  • Patent number: 8562926
    Abstract: A method and device for catchment of platinum group metals (PGM) in a gaseous steam, where the method comprises using a catalyst comprising a porous ceramic body in which at least a part of the surface area is covered by one or more PGM-catching metal(s)/alloy(s), and where the device comprises the porous ceramic body in which at least a part of the surface area is covered by one or more PGM-catching metal(s)/alloy(s). In a further aspect, the invention also relates to a method for producing the inventive device.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 22, 2013
    Assignee: Yara International ASA
    Inventors: David Waller, David M. Brackenbury, Ketil Evjedal
  • Publication number: 20130245332
    Abstract: The present invention relates to a process for the formation of an alcohol from an alkanoic acid, the steps of the process comprising: contacting a feed stream containing the alkanoic acid and hydrogen at an elevated temperature with a hydrogenating catalyst comprising from 3 to 25 wt. % of active metals comprising tin and cobalt and a metal promoter selected from the group consisting of noble metals or first metal, the first metal selected from the group of barium, cesium and potassium.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou, Radmila Jevtic, Victor J. Johnston
  • Publication number: 20130225878
    Abstract: The present invention relates to a process for the formation of alcohols from alkanoic acids, the steps of the process comprising: contacting a feed stream containing the alkanoic acid and hydrogen at an elevated temperature with a hydrogenating catalyst comprising from 3 to 25 wt. % of active metals on a support, wherein the active metals comprise cobalt and tin.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou, Radmila Jevtic, Victor J. Johnston
  • Publication number: 20130225876
    Abstract: A process for producing a catalyst that results in improved yields and productivity to ethanol. The process involves the steps of preparing a solution comprising one or more precursors to an active metal and impregnating a first portion of the solution on a support to form a first impregnated support. The first impregnated support is calcined to form a first calcined support and a second portion of the solution is impregnated on the first calcined support. The catalyst is useful for hydrogenating alkanoic acids to ethanol.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: Celanese International Corporation
    Inventors: Heiko Weiner, Zhenhua Zhou
  • Publication number: 20130219774
    Abstract: The present invention relates to a process for the hydrotreatment of a vegetal biomass. Specifically, the present invention relates to a process for the hydrotreatment of a vegetal biomass comprising: a) subjecting said vegetal biomass to a hydrotreatment in a first reactor, said hydrotreatment comprises contacting said vegetal biomass in an aqueous medium and a metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprising at least 35% by weight of metal oxide, mixed metal oxide, or metal-metalloid oxide relative to the total weight of the catalyst, with hydrogen at a pressure in the range of 10 to 400 bar and at a temperature in the range of 50° C. to 300° C. until a predetermined level of the hydrotreatment of said biomass is obtained and wherein the metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprises nickel. Further, the present invention relates to a metal oxide, mixed metal oxide or metal-metalloid oxide catalyst.
    Type: Application
    Filed: August 30, 2011
    Publication date: August 29, 2013
    Applicant: BTG BIOMASS TECHNOLOGY GROUP B.V.
    Inventors: Robertus Hendrikus Venderbosch, Agnes Retno Ardiyanti, Hero Jan Heeres, Vadim Yakovlev, Dmitry Ermakov, Sofia Khromova, Valentin Parmon
  • Patent number: 8492592
    Abstract: The invention provides a method of transaminating a reactant with a catalyst composition comprising support and catalyst portions. The support includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion. The method provides high activity and selectivity for reactant transamination to a desired product while minimizing the formation of unwanted cyclic products.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 23, 2013
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 8461072
    Abstract: This invention relates to a series of novel late transition metal catalysts for olefin oligomerization, the catalysts demonstrating high activity and selectivity for linear ?-olefins. The catalysts contain a Group-8, -9, or -10 transition metal, M, excluding palladium; an ancillary ligand comprising: a terminal amine comprising two independently selected hydrocarbyl radicals, R1 and R2; a terminal phosphine comprising two independently selected hydrocarbyl radicals, R3 and R4; and a hydrocarbyl bridge, Y, comprising a backbone wherein the hydrocarbyl bridge connects between the terminal amine and the terminal phosphine and wherein the backbone comprises a chain that is four or more carbon atoms long; and an abstractable ligand, X. For example this invention relates to a composition of matter with the following formula: wherein M, R1, R2, R3, and R4, Y, and X are as defined above.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: June 11, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Smita Kacker, Jo Ann Marie Canich
  • Publication number: 20130131399
    Abstract: A process for producing a catalyst, the process comprising the steps of: impregnating a first metal from a first metal precursor on a support to form a first impregnated support; calcining the first impregnated support; impregnating a second metal from a second metal precursor on the first impregnated support to form a second impregnated support; calcining the second impregnated support to form the catalyst, wherein the catalyst has a total metal loading of at least 2 wt. % based on the total weight of the catalyst. A method for hydrogenating alkanoic acids in the presence of the catalyst is also disclosed.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Ana Rita Almeida, Graham Ormsby
  • Publication number: 20130116115
    Abstract: Disclosed is a carrier for an exhaust gas purifying catalyst, the carrier containing aluminum borate represented by 9Al2O32B2O3 and modified with La2O3 in an amount of 0.3 to 2 mass % on the basis of the mass of the aluminum borate; an exhaust gas purifying catalyst containing the carrier, and Pd or Pd+Ba supported on the carrier; an exhaust gas purifying catalyst product containing a catalyst support made of a ceramic or metallic material, and a layer of the exhaust gas purifying catalyst supported on the catalyst support, which catalyst product may also contain an Rh catalyst layer supported on the layer of the exhaust gas purifying catalyst; and a method for producing the exhaust gas purifying catalyst.
    Type: Application
    Filed: July 11, 2011
    Publication date: May 9, 2013
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Takahiro Sato, Yunosuke Nakahara, Masato Machida
  • Publication number: 20130085088
    Abstract: A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Ali Erdemir, Osman Levent Eryilmaz, Mustafa Urgen, Kursat Kazmanli
  • Publication number: 20130053237
    Abstract: The present invention relates unique pore structures in nickel supported on alumina with the negligible formation of macropores. Incorporation of additional elements stabilizes the pore structure of the nickel supported on alumina. Additional element(s) were then further added into the nickel-supported materials. These additional element(s) further stabilize the pore structures under heating conditions. The improvements of pore structure stability under heating conditions and negligible presence of macropores limit the sintering of nickel metal to a mechanism of impeded diffusion. The negligible presence of macropores also limits the deposition of alkali metal hydroxide(s)/carbonate(s) to the outer shell of the catalyst pellet. Both of the negligible presence of macropores and improvement in pore structure stability allow for prolonging the catalyst life of these nickel supported on alumina catalysts of the present invention for reforming hydrocarbons.
    Type: Application
    Filed: January 13, 2010
    Publication date: February 28, 2013
    Inventors: Wen-Qing Xu, David Beijia Xu
  • Publication number: 20130040807
    Abstract: A metal fiber based on one or several elements from the group of platinum, palladium, rhodium, ruthenium, and iridium with 0 to 30% by weight of one or several additional alloy elements from the group of nickel, cobalt, gold, rhenium, molybdenum, and tungsten, contains 1 to 500 ppm by weight of boron or phosphorus. A non-woven material or netting, in particular for the production of nitrogen oxide or for the production of hydrocyanic acid, is made of such fibers. For the production of fibers based on noble metals having up to 30% by weight of additional alloy metals by drawing the fibers from a melt, the melting point of the metal is reduced by at least 400° C., before drawing of the fibers, by additionally alloying with boron or phosphorus, and the boron or the phosphorus is removed again from the fibers.
    Type: Application
    Filed: October 4, 2012
    Publication date: February 14, 2013
    Applicant: Heraeus Materials Technology GmbH & Co. KG
    Inventor: Heraeus Materials Technology GmbH & Co. KG
  • Publication number: 20130018161
    Abstract: A catalyst for glycerin dehydration of the present invention comprises boron phosphate or a rare-earth metal phosphate, wherein a molar ratio P/B of phosphorus (P) to boron (B) or a molar ratio P/R of phosphorus (P) to a rare-earth metal (R) is more than 1.0 and 2.0 or less. An another catalyst for glycerin dehydration of the present invention comprises a combination of boron phosphate and a metal element or a combination of a rare-earth metal phosphate and a metal element other than a rare-earth metal, wherein a molar ratio M/(P+B) of a metal element (M) to phosphorus (P) and boron (B) or a molar ratio M/(P+R) of a metal element (M) to phosphorus (P) and a rare-earth metal (R) is more than 0.00005 and 0.5 or less.
    Type: Application
    Filed: March 28, 2011
    Publication date: January 17, 2013
    Inventors: Takayuki Ezawa, Masaki Okada, Yoshitaka Arita
  • Patent number: 8288306
    Abstract: The present invention provides a preparation process of complex oxides catalyst containing Mo, Bi, Fe and Co, which comprising steps as following: dissolving precursor compounds of the components for catalyst and complexing agent in water to obtain a solution, and then drying, molding and calcining the solution to obtain catalyst. The catalyst is used for gas phase oxidation of light alkenes to unsaturated aldehydes. The catalyst has high activity, selectivity and stability. The reaction condition is mild. The preparation process of the catalyst is easy to operate and can be used for mass production.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: October 16, 2012
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Ge Luo, Xin Wen, Xiaoqi Zhao, Xuemei Li, Yan Zhuang, Jianxue Ma, Jingming Shao
  • Publication number: 20120164047
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 28, 2012
    Inventor: Steven M. Augustine
  • Patent number: 8187997
    Abstract: The invention provides a catalyst composition composed of a support portion and a catalyst portion. The support portion includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage that is less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: May 29, 2012
    Assignee: Union Carbide Chemicals & Technology LLC
    Inventors: Stephen W. King, Stefan K Mierau
  • Publication number: 20120122660
    Abstract: An oxidation catalyst comprises an extruded solid body comprising: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% by weight optionally stabilised ceria, which catalyst comprising at least one precious metal and optionally at least one non-precious metal, wherein: (i) a majority of the at least one precious metal is located at a surface of the extruded solid body; (ii) the at least one precious metal is carried in one or more coating layer(s) on a surface; (iii) at least one metal is present throughout the extruded solid body and in a higher concentration at a surface; (iv) at least one metal is present throughout the extruded solid body and in a coating layer(s) on a surface; or (v) a combination of (ii) and (iii).
    Type: Application
    Filed: February 1, 2011
    Publication date: May 17, 2012
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Paul Joseph Andersen, Todd Ballinger, David Bergeal, Hsiao-Lan Chang, Hai-Ying Chen, Julian Cox, Ralf Dotzel, Rainer Leppelt, Jörg Werner Münch, Hubert Schedel, Duncan John William Winterborn
  • Publication number: 20120115713
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an active catalyst component comprising a surface, and a metal oxide film coated on the surface of the active catalyst component. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as improved resistance to catalytic deactivation due to sulfur and nitrogen compounds present in the hydrocarbon feedstreams.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, William G. Borghard, Cody R. Cole
  • Publication number: 20120111768
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprising a surface, with a metal oxide integrally synthesized and providing a coating on the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur and nitrogen reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: Heather A. Elsen
  • Publication number: 20120027666
    Abstract: Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.
    Type: Application
    Filed: March 17, 2010
    Publication date: February 2, 2012
    Applicant: EMORY UNIVERSITY
    Inventors: Craig L Hill, Yurii V Gueletii, Djamaladdin G. Musaev, Qiushi Yin, Bogdan Botar
  • Publication number: 20120029096
    Abstract: The present invention relates to a hydrocarbon synthesis catalyst comprising in its unreduced form a) Fe as catalytically active metal, b) an alkali metal and/or alkaline-earth metal in an alkali metal- and/or alkaline-earth metal-containing promoter, the alkali metal, c) and a further promoter comprising, or consisting of, one or more element(s) selected from the group of boron, germanium, nitrogen, phosphorus, arsenic, antimony, sulphur, selenium and tellurium, to a process for the synthesis of a hydrocarbon synthesis catalyst, to a hydrocarbon synthesis process which is operated in the present of such a catalyst and to the use of such a catalyst in a hydrocarbon synthesis process.
    Type: Application
    Filed: December 4, 2009
    Publication date: February 2, 2012
    Applicants: SASOL WAX GMBH, SASOL TECHNOLOGY (PTY.) LIMITED
    Inventors: Reinier Crous, Tracy Carolyn Bromfield, Sharon Booyens
  • Publication number: 20120016143
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 19, 2012
    Applicant: SHELL OIL COMPANY
    Inventor: Marek MATUSZ
  • Publication number: 20110318656
    Abstract: An air cathode for a metal-air battery is disclosed which contains a catalyst chosen to make the metal air battery more easily rechargeable. This catalyst is based on cobalt phosphate, cobalt borate mixed metal cobalt phosphates, mixed metal cobalt borates, or mixed metal cobalt phosphate borates.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 29, 2011
    Inventors: Wilson Hago, Ivan Marc Lorkovic
  • Publication number: 20110318662
    Abstract: The present disclosure relates to a catalyst including platinum phosphide having a cubic structure, a method of making the catalyst, and a fuel cell utilizing the catalyst. The present disclosure also relates to method of making electrical power utilizing a PEMFC incorporating the catalyst. Also disclosed herein is a catalyst including a platinum complex wherein platinum is complexed with a nonmetal or metalloid. The catalyst with the platinum complex can exhibit good electro-chemically active properties.
    Type: Application
    Filed: March 12, 2010
    Publication date: December 29, 2011
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Natalia Kremliakova, Scott McDermid, Stephen Campbell
  • Publication number: 20110313220
    Abstract: The invention relates to a process for selectively hydrogenating an alkyne to the corresponding alkene comprising a step of contacting a gaseous feed comprising hydrogen and 0.1 to 20 mass % of alkyne with a catalyst comprising at least one Group 10 element on a boron-modified support. The process shows high conversion and good selectivity, and can be stably operated also if the feed comprises more than 2 mass % of alkyne.
    Type: Application
    Filed: December 15, 2009
    Publication date: December 22, 2011
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Aggadin Kh Mamedov, Saeed Mohammed Al-Wahabi
  • Patent number: 8012902
    Abstract: Disclosed are partially deactivated metal catalysts useful for modifying structures of nanomaterials. The present invention is also directed to a method for preparing the partially deactivated metal catalysts, which comprises patterning a substrate with micelles containing iron nanoparticles, removing the micelles from the patterned substrate to deposit the iron nanoparticles thereon, nitriding the iron nanoparticles using a nitrogen plasma, and exposing the nitrided iron nanoparticles to a mixture of ethanol and nitric acid to remove iron from the surface of the nitrided nanoparticles. The iron nitride metal catalyst with a nano-size according to the present invention comprises a core that includes deactivated iron nitride and an active shell surrounding the core. Thus, when preparing a carbon nanotube, the metal catalyst can be effectively used to control the number of walls formed in the carbon nanotube.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: September 6, 2011
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung Ku Kang, Kyung Min Choi, Jung Hoon Choi, Saji Augustine, Weon Ho Shin, Seong Ho Yang
  • Patent number: RE46145
    Abstract: Provided are: a uniformly, highly dispersed metal catalyst including a catalyst carrier and a catalyst metal being loaded thereon dispersed throughout the carrier, the uniformly, highly dispersed metal catalyst having excellent performances with respect to catalytic activity, selectivity, life, etc.; and a method of producing the same. The uniformly, highly dispersed metal catalyst includes a catalyst carrier made of a metal oxide and a catalyst metal having catalytic activity, the catalyst metal being loaded on the catalyst carrier, in which the catalyst carrier is a sulfur-containing catalyst carrier having sulfur or a sulfur compound almost evenly distributed throughout the carrier and the catalyst metal is loaded on the sulfur-containing catalyst carrier in a substantially evenly dispersed manner over the entire carrier substantially according to the distribution of the sulfur or the sulfur compound.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: September 13, 2016
    Assignee: CHIYODA CORPORATION
    Inventors: Yoshimi Okada, Toshiji Makabe, Masashi Saito, Hiroaki Nishijima