Of Group Iv (i.e., Ti, Zr, Hf, Ge, Sn Or Pb) Patents (Class 502/242)
  • Publication number: 20140073758
    Abstract: The invention provides a polycondensation catalyst for producing polyester by an esterification reaction or a transesterification reaction between a dicarboxylic acid or an ester-forming derivative thereof and a glycol, wherein the polycondensation catalyst comprises particles of a solid base having on the surfaces an inner coating layer of titanic acid in an amount of from 0.1 to 50 parts by weight in terms of TiO2 per 100 parts by weight of the solid base, and an outer coating layer either of an oxide of at least one element selected from aluminum, zirconium and silicon, or of a composite oxide of at least two elements selected from aluminum, zirconium and silicon on the surface of the inner coating layer in an amount of from 1 to 50 parts by weight per 100 parts by weight of the solid base.
    Type: Application
    Filed: July 31, 2013
    Publication date: March 13, 2014
    Applicant: SAKAI CHEMICAL INDUSTRY CO., LTD.
    Inventors: Keiichi TABATA, Akihiro KAMON, Keiichi IKEGAWA, Jun NAITO
  • Publication number: 20140072493
    Abstract: The purpose of the present invention is to provide a catalyst for exhaust gas purification, which is capable of effectively processing an exhaust gas, particularly carbon monoxide (CO) and hydrocarbon (HC) in the exhaust gas at a low temperature, and a method for producing the catalyst for exhaust gas purification. The purpose is achieved by a catalyst for exhaust gas purification, which is obtained by having a carrier that contains Al2O3 and one or more metal oxides selected from the group consisting of zirconium oxide (ZrO2), cerium oxide (CeO2), yttrium oxide (Y2O3), neodymium oxide (Nd2O3), silicon oxide (SiO2) and titanium oxide (TiO2) support one or more catalyst components selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru) and osmium (Os). The metal oxides have particle diameters of less than 10 nm.
    Type: Application
    Filed: February 29, 2012
    Publication date: March 13, 2014
    Applicants: UMICORE SHOKUBAI USA INC., UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Naohiro Kato, Yuta Akasaka, Yuji Ogino, Yosuke Goto
  • Publication number: 20140065044
    Abstract: Ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O and leakage of ammonia. The ammonia oxidation catalyst (AMOX) removes surplus ammonia, in selectively reducing nitrogen oxides by adding urea or ammonia and using a selective catalytic reduction (SCR) catalyst, into exhaust gas, wherein the ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal element on a composite oxide (A) having titania and silica as main components, and a catalyst layer (upper layer) including a composite oxide (C) consisting of tungsten oxide, ceria, and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Application
    Filed: November 17, 2011
    Publication date: March 6, 2014
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoaki Ito, Toshinori Okajima, Makoto Nagata
  • Publication number: 20140066663
    Abstract: A catalyst composition comprises (i) a support; (ii) a dehydrogenation component comprising at least one metal or compound thereof selected from Groups 6 to 10 of the Periodic Table of Elements; and (iii) tin or a tin compound, wherein the tin is present in an amount of 0.01 wt % to about 0.25 wt %, the wt % based upon the total weight of the catalyst composition.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 6, 2014
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Terry E. Helton, Keith H. Kuechier, Jenna L. Waliace
  • Patent number: 8664146
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: March 4, 2014
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Publication number: 20140056793
    Abstract: Catalyst support materials, catalysts, methods of making such and uses thereof are described. Methods of making catalyst support material include combining anatase titania slurry with i) a low molecular weight form of silica; and ii) a source of Mo to form a TiO2—MoO3—SiO2 mixture. Catalyst support material include from about 86% to about 94% weight anatase titanium dioxide; from about 0.1% to about 10% weight MoO3; and from about 0.1% to about 10% weight SiO2. Low molecular weight forms of silica include forms of silica having a volume weighted median size of less than 4 nm and average molecular weight of less than 44,000, either individually or in a combination of two or more thereof. Catalyst include such catalyst support material with from about 0.1 to about 3% weight of V2O5 and optionally from about 0.01% to about 2.5% weight P.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 27, 2014
    Applicant: CRISTAL USA INC.
    Inventors: Steve M. Augustine, David M. Chapman, Dennis F. Clark
  • Publication number: 20140048494
    Abstract: The present invention describes an apparatus and method for creating dense nano-multi molecular packing of gaseous molecules concentrated in liquid solutions and the ionization of the resultant dense gaseous nano-multi-molecular molecules forming a concentration of free-radicals saturating liquid solutions without cavitation of nuclei and without bubbles for the dissolution, destruction, disinfection and remediation of biological, chemical and electrochemical threats and contaminants.
    Type: Application
    Filed: May 24, 2013
    Publication date: February 20, 2014
    Inventor: Frederick Lee Simmons, JR.
  • Publication number: 20140051894
    Abstract: The present invention relates to a catalyst. The catalyst is used for converting acetic acid to ethanol. The catalyst comprises one or more active metals on an alkali metal silicate support or on an alkaline earth metal silicate support, wherein the support further comprises a silica enhancer and a support modifier.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 20, 2014
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Radmila Wollrab, Zhenhua Zhou
  • Publication number: 20140044635
    Abstract: An ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O or NOx. The ammonia oxidation catalyst is made by coating at least two catalyst layers haying a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) haying at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Application
    Filed: February 24, 2012
    Publication date: February 13, 2014
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoaki Ito, Toshinori Okajima, Takashi Hihara, Makoto Nagata
  • Publication number: 20140044628
    Abstract: The composition according to the invention is based on zirconium oxide, cerium oxide and at least one oxide of a rare earth other than cerium, in a proportion, by weight, of zirconium oxide of at least 5% and of cerium oxide of at most 90%, and it is characterized in that it additionally comprises silicon oxide in an amount, by weight, of between 0.1% and 2%. This composition may be used in catalysis, in particular in systems for treating the exhaust gases of internal combustion engines.
    Type: Application
    Filed: April 4, 2012
    Publication date: February 13, 2014
    Applicant: RHODIA OPERATIONS
    Inventor: Simon Ifrah
  • Publication number: 20140045953
    Abstract: A method for the preparation of a modified catalyst support comprising: (a) treating a catalyst support material with an aqueous solution or dispersion comprising one or more zirconium metal sources, chromium metal sources, manganese metal sources and aluminium metal sources, and one or more polar organic compounds; and (b) drying the treated support, and (c) optionally calcining the treated support. Also provided are catalyst support materials obtainable by the methods, and catalysts prepared from such supports.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 13, 2014
    Applicant: Oxford Catalysts Limited
    Inventors: Frank Daly, Laura Richard
  • Patent number: 8642006
    Abstract: The present invention provides a process for making regular shaped particles of solid foam. A first mixture, comprising water, an acid, a surfactant and a hydrophobic material, is combined with a hydrolysable silicon species to form a second mixture. The second mixture is maintained under conditions and for a sufficient time to form regular shaped precursor particles. The second mixture is then aged at a temperature and for a time effective to produce the regular shaped particles of solid foam.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: February 4, 2014
    Assignee: Agency for Science, Technology and Research
    Inventors: Jackie Y. Ying, Su Seong Lee, Yu Han, Sukandar Hidinoto
  • Publication number: 20140027346
    Abstract: An inorganic material is described, constituted by at least two elementary spherical particles, each of said spherical particles comprising metallic nanoparticles having at least one band with a wave number in the range 750 to 1050 cm?1 in Raman spectroscopy and containing one or more metals selected from vanadium, niobium, tantalum, molybdenum and tungsten, said metallic nanoparticles being trapped in a mesostructured matrix based on an oxide of an element Y selected from silicon, aluminium, titanium, tungsten, zirconium, gallium, germanium, tin, antimony, lead, vanadium, iron, manganese, hafnium, niobium, tantalum, yttrium, cerium, gadolinium, europium and neodymium. Said matrix has pores with a diameter in the range 1.5 to 50 nm and amorphous walls with a thickness in the range 1 to 30 nm. Said elementary spherical particles have a maximum diameter of 200 microns and said metallic nanoparticles have a maximum dimension strictly less than 1 nm.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 30, 2014
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, IFP ENERGIES NOUVELLES, UNIVERSITE PIERRE ET MARIE CURIE
    Inventors: Alexandra Chaumonnot, Clement Sanchez, Cedric Boissiere, Frederic Colbeau-Justin, Audrey Bonduelle
  • Patent number: 8637425
    Abstract: A process is described for preparing a catalyst comprising at least one porous support and at least one metallic phase containing nickel and tin in a proportion such that the Sn/Ni molar ratio is in the range 0.01 to 0.2, said process comprising at least the following steps in succession: a) depositing nickel on at least said support in order to obtain a supported nickel-based monometallic catalyst; b) reducing said monometallic catalyst in the presence of at least one reducing gas; c) depositing, in the gas phase and in the presence of at least one reducing gas, at least one organometallic tin compound onto said reduced monometallic catalyst; and d) activating the solid derived from said step c) in the presence of at least one reducing gas.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: January 28, 2014
    Assignee: IFP Energies nouvelles
    Inventors: Lars Fischer, Anne-Claire Dubreuil, Cecile Thomazeau, Layane Deghedi, Jean-Pierre Candy, Jean-Marie Basset, Fabienne Le Peltier
  • Publication number: 20140018454
    Abstract: A Fischer-Tropsch synthesis reaction catalyst includes a catalyst support containing a silica and zirconium oxide in an amount of 0.5 to 14% by mass based on the mass of the catalyst support, and cobalt metal and a cobalt oxide supported on the catalyst support in an amount equivalent to 10 to 40% by mass of tricobalt tetroxide based on the mass of the catalyst, wherein the degree of reduction of the cobalt atoms is within a range from 75 to 93%, and the amount of hydrogen gas adsorption per unit mass of the catalyst at 100° C. is within a range from 0.40 to 1.0 ml/g.
    Type: Application
    Filed: March 14, 2012
    Publication date: January 16, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yoshiyuki Nagayasu, Hideki Ono, Kazuaki Hayasaka, Mayumi Yokoi
  • Publication number: 20140018234
    Abstract: A catalyst especially for oxidation of exhaust gas constituents, for example nitrogen oxide, preferably nitrogen monoxide, consists of a particulate support material composed of titanium-containing nanoparticles, preferably titanium oxide nanoparticles, especially titanium dioxide nanoparticles coated with platinum, especially platinum particles. A process for producing such a catalyst.
    Type: Application
    Filed: July 5, 2013
    Publication date: January 16, 2014
    Applicant: MAN Truck & Bus AG
    Inventor: Andreas DOERING
  • Patent number: 8623778
    Abstract: Catalyst compositions include finely divided nanoscale particles of at least one supported oxide selected from among zirconium oxide, titanium oxide or a mixed zirconium/titanium oxide deposited onto an alumina-based or aluminum-oxyhydroxide-based support, wherein, after calcination for 4 hours at 900° C., the at least one support oxide is in the form of nanoscale particles deposited onto the support, the size of said particles being at most 10 nm when the at least one supported oxide is based is zirconium oxide and being at most 15 nm when the at least one supported oxide is titanium oxide or a mixed zirconium/titanium oxide; such catalyst compositions are especially useful for the selective reduction of NOx.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: January 7, 2014
    Assignee: Rhodia Operations
    Inventors: Stephan Verdier, Guillaume Criniere, Simon Ifrah, Rui Jorge Coelho Marques
  • Patent number: 8609121
    Abstract: Provided is a photocatalytic composition comprising zinc (Zn) doped titanium dioxide (TiO2) nanoparticles, wherein the ratio of titanium dioxide nanoparticles to zinc is from about 5 to about 150. The photocatalytic composition absorbs electromagnetic radiation in a wavelength range from about 200 nm to about 500 nm, and the absorbance of light of wavelengths longer than about 450 nm is less than 50% the absorbance of light of wavelengths shorter than about 350 nm. Further provided is a method for treating or preventing microbial diseases and infestations in a plant and a method for increasing crop yield of a plant by applying the photocatalytic compositions taught herein to the surface of a plant. Also provided is a method for treating microbial diseases on a surface by applying the photocatalytic compositions taught herein to a surface illuminated by artificial light.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: December 17, 2013
    Inventors: Stewart B. Averett, Devron R. Averett
  • Publication number: 20130331259
    Abstract: The invention is directed to compositions and processes for the production of silica-stabilized ultrafine anatase titanias and which may further comprise tungsten and vanadia. The surface stabilization may be by treatment of the TiO2 particles with a low molecular weight and/or small nanoparticle form of silica such as, in preferred embodiments, a tetra(alkyl)ammonium silicate or silicic acid, which serves to efficiently maintain the anatase phase and prevent crystal growth under severe thermal and hydrothermal conditions, even in the presence of vanadia. The vanadia catalysts produced from the novel titanias have equal or improved catalytic activity for selective catalytic reduction of NOx compared to conventional vanadia supported silica-titania based catalysts. The invention is further directed to diesel emission catalytic devices comprising the novel titania-based catalyst compositions.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicant: CRISTAL USA INC.
    Inventor: David M. Chapman
  • Patent number: 8604248
    Abstract: The present invention provides catalyst compositions useful for transamination reactions. The catalyst compositions have a catalyst support that includes transitional alumina, use a low metal loading (for example, less than 25 wt. %), and do not require the presence of rhenium. The catalyst compositions are able to advantageously promote transamination of a reactant product (such as the transamination of EDA to DETA) with excellent activity and selectivity, and similar to transaminations promoted using a precious metal-containing catalyst.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: December 10, 2013
    Assignee: Union Carbide Chemicals & Plastics Technolgy LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Publication number: 20130310247
    Abstract: A ceramic body based on an aluminum titanate system has the following composition: i) approximately >95% by weight Al2O3.TiO2; ii) approximately 0.1-approximately 5.0% by weight SiO2; iii) approximately 0.1-approximately 5.0% by weight MgO; iv) approximately 0-approximately 2.0% by weight Fe2O3; v) approximately 0-approximately 1.0% by weight BeO, BaO or CaO; vi) approximately 0-approximately 1.0% by weight Li2O, Na2O or K2O; vii) approximately 0-approximately 2% by weight impurities. The ceramic body has a mass ratio TiO2:Al2O3 that is in a range between approximately 0.75 and approximately 0.95.
    Type: Application
    Filed: July 25, 2013
    Publication date: November 21, 2013
    Applicant: MANN+HUMMEL GMBH
    Inventors: Jochen Linhart, Frank Ehlen
  • Publication number: 20130303812
    Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.
    Type: Application
    Filed: July 18, 2013
    Publication date: November 14, 2013
    Inventors: Peter BIRKE, Reinhard GEYER, Jurgen HUNOLD, Peter KRAAK, Rainer SCHOEDEL
  • Publication number: 20130296164
    Abstract: Catalysts and processes for forming catalysts for use in hydrogenating acetic acid to form ethanol. In one embodiment, the catalyst comprises a first metal, a silicaceous support, and at least one metasilicate support modifier. Preferably, the first metal is selected from the group consisting of copper, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, titanium, zinc, chromium, rhenium, molybdenum, and tungsten. In addition the catalyst may comprise a second metal preferably selected from the group consisting of copper, molybdenum, tin, chromium, iron, cobalt, vanadium, tungsten, palladium, platinum, lanthanum, cerium, manganese, ruthenium, rhenium, gold, and nickel.
    Type: Application
    Filed: June 12, 2013
    Publication date: November 7, 2013
    Inventors: Victor J. Johnston, Barbara F. Kimmich, John L. Potts, Heiko Weiner, Radmila Wollrab, James H. Zink, Josefina T. Chapman, Laiyuan Chen
  • Patent number: 8563462
    Abstract: Catalyst compositions include finely divided nanoscale particles of at least one supported oxide, based on a zirconium oxide, a titanium oxide or a mixed zirconium/titanium oxide deposited onto a silica based support, wherein, after calcination for 4 hours at 900° C., the supported oxide is in the form of nanoscale particles deposited onto the support, the size of the particles being at most 5 nm when the at least one supported oxide is based on a zirconium oxide, being at most 10 nm when the at least one supported oxide is based on a titanium oxide and being at most 8 nm when the at least one supported oxide is based on a mixed zirconium/titanium oxide; such catalyst compositions are especially useful for the selective reduction of NOx.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 22, 2013
    Assignee: Rhodia Operations
    Inventors: Stephan Verdier, Guillaume Criniere, Simon Ifrah, Rui Jorge Coelho Marques
  • Patent number: 8563461
    Abstract: A process to activate a titanium silicalite catalyst for the oxidation of benzene to phenol is provided. The catalyst is activated in the reactor for the oxidation by feeding to a reactor containing the titanium silicalite catalyst, during a time of from 2 to 6 hours, at a temperature ranging from 20 to 120° C., an aqueous solution of ammonium acid fluoride in a concentration ranging from 0.1% to 1% by weight; and hydrogen peroxide in a concentration ranging from 3% to 10% by weight; feeding water to the reactor at the end of the reaction; and drying or calcining the catalyst contained in the reactor to obtain the activated catalyst. The catalyst is represented by the formula: xTiO2.(1?x)SiO2 wherein x is from 0.0001 to 0.04.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: October 22, 2013
    Assignee: Polimeri Europa S.p.A.
    Inventors: Daniele Bianchi, Rossella Bortolo, Chiara Busto, Carla Lazzari
  • Publication number: 20130261349
    Abstract: A catalyst composition comprising tin and optionally a second metal for use in the production of alcohols such as ethanol from carboxylic acids such as acetic acid. An acidic solution such as nitric acid is utilized in the preparation of the catalyst according to one embodiment of the present invention to better solubilize an organometallic tin precursor resulting in the formation of catalysts having particularly high selectivity to ethanol.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou
  • Publication number: 20130261350
    Abstract: A catalyst including: a support, the support including a mixture of SiO2 and ZrO2; an active ingredient including copper; a first additive including a metal, an oxide thereof, or a combination thereof; and a second additive including Li, Na, K, or a combination thereof. The metal is Mg, Ca, Ba, Mn, Fe, Co, Zn, Mo, La, or Ce. Based on the total weight of the catalyst, the weight percentages of the different components are as follows: SiO2=50-90 wt. %; ZrO2=0.1-10 wt. %; copper=10-50 wt. %; the first additive=0.1-10 wt. %; and the second additive=0.1-5 wt. %.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 3, 2013
    Applicant: TIANJIN UNIVERSITY
    Inventors: Xinbin MA, Jing LV, Yujun ZHAO, Shengping WANG, Jinlong GONG, Baowei WANG, Zhenhua LI, Yan XU
  • Patent number: 8545796
    Abstract: The invention is directed to compositions and processes for the production of silica-stabilized ultrafine anatase titanias and which may further comprise tungsten and vanadia. The surface stabilization may be by treatment of the TiO2 particles with a low molecular weight and/or small nanoparticle form of silica such as, in preferred embodiments, a tetra(alkyl)ammonium silicate or silicic acid, which serves to efficiently maintain the anatase phase and prevent crystal growth under severe thermal and hydrothermal conditions, even in the presence of vanadia. The vanadia catalysts produced from the novel titanias have equal or improved catalytic activity for selective catalytic reduction of NOx compared to conventional vanadia supported silica-titania based catalysts. The invention is further directed to diesel emission catalytic devices comprising the novel titania-based catalyst compositions.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: October 1, 2013
    Assignee: Cristal USA Inc.
    Inventor: David M. Chapman
  • Publication number: 20130252807
    Abstract: A catalyst support material and a catalyst system incorporating said support material along with a method of making the same is provided for use in applications in which the support material is exposed to sulfur-containing impurities. The catalyst support material generally comprises an inorganic oxide base material having a surface and pores of predetermined size; and a zirconium layer adapted to interact with the surface and sized to be received by the pores of the base material. The catalyst support material being prepared by applying a layer of a zirconium compound to the surface and pores of an inorganic oxide base material followed by calcination in order to convert the zirconium compound to a metal, a metal oxide, or a mixture thereof.
    Type: Application
    Filed: October 4, 2011
    Publication date: September 26, 2013
    Applicant: Pacific Industrial Development Corporation
    Inventors: Wei Wu, Li Yunkui, Jeffery Lachapelle, Christopher Sketch, Evan Leonard, William Germond
  • Publication number: 20130253208
    Abstract: The present invention provides a catalyst and the preparation process thereof and a process of epoxidising olefin using the catalyst. The catalyst contains a binder and a titanium silicate, the binder being an amorphous silica, the titanium silicate having a MFI structure, and the crystal grain of the titanium silicate having a hollow structure, with a radial length of 5-300 nm for the cavity portion of the hollow structure, wherein the adsorption capacity of benzene measured for the titanium silicate under the conditions of 25 degrees C., P/P0=0.
    Type: Application
    Filed: October 11, 2011
    Publication date: September 26, 2013
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinope Sinopec, Hunan Changling Pertrochemical Science and Technology Development Co. Ltd.
    Inventors: Min Lin, Hua Li, Wei Wang, Chijian He, Xiaoju Wu, Jizao Gao, Xichun She, Jun Long, Qingling Chen
  • Publication number: 20130245338
    Abstract: The present invention relates to hydrogenation catalysts prepared from polyoxometalate precursors. The polyoxometalate precursors introduce a support modifier to the catalyst. The catalysts are used for hydrogenating alkanoic acids and/or esters thereof to alcohols, preferably with conversion of the ester coproduct. The catalyst may also comprise one or more active metals.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou
  • Publication number: 20130245335
    Abstract: The present invention relates to a process for hydrogenating feedstock comprising acetic acid in the presence of hydrogen to product comprising ethanol in a reaction zone under hydrogenation conditions over a catalyst composition promoted with cobalt, rhodium, cesium or a combination thereof on a previously calcined composition comprising at least one Group VIII metal and tin on a support material.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Victor J. Johnston, Heiko Weiner
  • Publication number: 20130245336
    Abstract: The present invention relates to processes for producing ethanol using a catalyst comprising rhodium and tin on a support. The rhodium and tin may be present in a molar ratio of 20:80 to 80:20.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Victor J. Johnston, Heiko Weiner
  • Publication number: 20130245333
    Abstract: Acetic acid is hydrogenation in the presence of a catalyst comprising one or more active metals on a silica support, wherein the catalyst has a radial crush strength of at least 4 N/mm. The one or more active metals may include cobalt, copper, gold, iron, nickel, palladium, platinum, iridium, osmium, rhenium, rhodium, ruthenium, tin, zinc, lanthanum, cerium, manganese, chromium, vanadium, molybdenum and mixtures thereof. Radial crush strength may be improved by steam treating the catalyst support prior to the loading of the one or more active metals.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: Celanese International Corporation
    Inventors: Zhenhua Zhou, Emily Duff, Dheeraj Kumar, Heiko Weiner
  • Publication number: 20130225878
    Abstract: The present invention relates to a process for the formation of alcohols from alkanoic acids, the steps of the process comprising: contacting a feed stream containing the alkanoic acid and hydrogen at an elevated temperature with a hydrogenating catalyst comprising from 3 to 25 wt. % of active metals on a support, wherein the active metals comprise cobalt and tin.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou, Radmila Jevtic, Victor J. Johnston
  • Publication number: 20130225876
    Abstract: A process for producing a catalyst that results in improved yields and productivity to ethanol. The process involves the steps of preparing a solution comprising one or more precursors to an active metal and impregnating a first portion of the solution on a support to form a first impregnated support. The first impregnated support is calcined to form a first calcined support and a second portion of the solution is impregnated on the first calcined support. The catalyst is useful for hydrogenating alkanoic acids to ethanol.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: Celanese International Corporation
    Inventors: Heiko Weiner, Zhenhua Zhou
  • Publication number: 20130224096
    Abstract: A photocatalyst coated body includes a base and a photocatalyst layer provided on the base. The photocatalyst coated body is characterized in that photocatalyst layer contains 1-20 (inclusive) parts by mass of photocatalyst particles, 30-98 (inclusive) parts by mass of silica particles and 1-50 (inclusive) parts by mass of zirconia particles, so that the total all of these particles is 100 parts by mass. The photocatalyst coated body is also characterized in that the zirconia particles are at least one kind of particles selected from the group consisting of crystalline zirconia particles having an average crystallite diameter of 10 nm or less and amorphous zirconia particles. Such photocatalyst coated body has excellent photocatalytic degradation function and excellent weather resistance; and also it is capable of suppressing the formation of intermediate products such as NO2, while increasing the amount of NOx removed during removal of NOx in the air.
    Type: Application
    Filed: July 26, 2011
    Publication date: August 29, 2013
    Applicant: TOTO LTD.
    Inventors: Hiroyuki Fujii, Junji Kameshima, Koji Omoshiki, Satoru Kitazaki, Susumu Adachi
  • Publication number: 20130225877
    Abstract: The present invention relates to a catalyst composition having a support that contains tin. The catalyst is used for converting acetic acid to ethanol. The catalyst may also comprise one or more active metals and a support modifier.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou, Radmila Jevtic, Victor J. Johnston
  • Publication number: 20130219774
    Abstract: The present invention relates to a process for the hydrotreatment of a vegetal biomass. Specifically, the present invention relates to a process for the hydrotreatment of a vegetal biomass comprising: a) subjecting said vegetal biomass to a hydrotreatment in a first reactor, said hydrotreatment comprises contacting said vegetal biomass in an aqueous medium and a metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprising at least 35% by weight of metal oxide, mixed metal oxide, or metal-metalloid oxide relative to the total weight of the catalyst, with hydrogen at a pressure in the range of 10 to 400 bar and at a temperature in the range of 50° C. to 300° C. until a predetermined level of the hydrotreatment of said biomass is obtained and wherein the metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprises nickel. Further, the present invention relates to a metal oxide, mixed metal oxide or metal-metalloid oxide catalyst.
    Type: Application
    Filed: August 30, 2011
    Publication date: August 29, 2013
    Applicant: BTG BIOMASS TECHNOLOGY GROUP B.V.
    Inventors: Robertus Hendrikus Venderbosch, Agnes Retno Ardiyanti, Hero Jan Heeres, Vadim Yakovlev, Dmitry Ermakov, Sofia Khromova, Valentin Parmon
  • Patent number: 8518849
    Abstract: A method of supporting a hydrocarbon synthesis catalyst material comprising a catalytically active metal and a carrier material on a metallic substrate in which the catalyst material is applied to the substrate and is heated to form a catalyst material layer fixed to the substrate with cracks having sub-millimeter widths formed in the layer creating domains with the range of the relative sizes of the domains being approximately 1:5.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: August 27, 2013
    Assignee: Shell Oil Company
    Inventors: Abderrahmane Chettouf, Gerardus Petrus Lambertus Niesen, Marinus Johannes Reynhout, David Schaddenhorst
  • Patent number: 8518850
    Abstract: Stable high strength porous metal oxide articles suitable, for example, for use as catalyst supports, are prepared by predisposing fine metal oxide particles in water followed by fine dispersion under high shear, and subjecting the dispersion to a change in pH to coagulate the metal oxide particles and form a moldable viscoelastic composition. The moldings are substantially free of impurity atoms.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: August 27, 2013
    Assignee: Wacker Chemie AG
    Inventor: Holger Szillat
  • Patent number: 8518851
    Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: August 27, 2013
    Assignee: Shell Oil Company
    Inventors: Peter Birke, Reinhard Geyer, Jürgen Hunold, Peter Kraak, Rainer Schoedel
  • Patent number: 8518852
    Abstract: The present invention provides a catalyst base material and a catalyst which have high strength, high porosity or high activity and methods of producing the catalyst base material and catalyst. The present invention relates to a method of producing a catalyst base material, the method comprising dispersing or dissolving a hydrophilic polymer coagulant as a first component, a water-soluble thickener as a second component, a colloidal inorganic binder as a third component and an inorganic fiber as a fourth component in water to form a catalytic slurry or paste, supporting the catalytic slurry or paste on a net-like substrate such that the meshes of the net-like substrate are filled up with the slurry or paste, by drying and/or calcinating the substrate.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: August 27, 2013
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Naomi Imada
  • Publication number: 20130216458
    Abstract: Disclosed is an inorganic material that can exhibit an excellent photocatalytic gas decomposition function while maintaining an abrasion resistance on a level that is usually required of this type of inorganic materials. The inorganic material includes an inorganic material base and a photocatalyst layer that is formed by firing and is provided on the surface of the inorganic material base, the photocatalyst layer containing: photocatalyst particles; zirconia particles having a BET specific surface area of not less than 10 m2/g or crystalline zirconia particles having a mean crystallite diameter of less than 20 nm; and an alkali silicate. The inorganic material including the photocatalyst layer exhibits a high photocatalytic gas decomposition function while maintaining an abrasion resistance on a level that is usually required of this type of inorganic materials.
    Type: Application
    Filed: July 26, 2011
    Publication date: August 22, 2013
    Applicants: DAIICHI KIGENSO KAGAKU KOGYO CO., LTD., TOTO LTD.
    Inventors: Tatsushi Nagae, Yoshiyuki Nakanishi, Soshi Oyama, Hideki Kobayashi, Fumiyuki Takasaki
  • Patent number: 8513156
    Abstract: A catalyst for the manufacture of alkylene oxide, for example ethylene oxide, by the vapor-phase epoxidation of alkene containing impregnated silver and at least one efficiency-enhancing promoter on an inert, refractory solid support, said support incorporating a sufficient amount of zirconium component (present and remaining substantially as zirconium silicate) as to enhance at least one of catalyst activity, efficiency and stability as compared to a similar catalyst which does not contain the zirconium component.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: August 20, 2013
    Inventors: Juliana G. Serafin, Seyed R. Seyedmonir, Albert C. Liu, Hwaili Soo, Thomas Szymanski
  • Publication number: 20130209337
    Abstract: A NOx storage component comprises caesium silicate (Cs2SiO3) and at least one platinum group metal. The invention also includes a NOx absorber catalyst comprising a NOx storage component according to the invention disposed on a substrate monolith; a method of treating exhaust gas containing NOx from a lean burn internal combustion engine comprising the steps of contacting a NOx storage component comprising caesium silicate (Cs2SiO3) and at least one platinum group metal with lean exhaust gas containing NOx to adsorb NOx thereon; and periodically desorbing adsorbed NOx by contacting the NOx storage component vent with stoichiometric or rich exhaust gas; and a method of making a NOx storage component according to the invention comprising the steps of combining and reacting an aqueous salt of at least one platinum group metal, an aqueous caesium salt and a source of silica.
    Type: Application
    Filed: October 10, 2011
    Publication date: August 15, 2013
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Jonathan Ashley Cooper, Michael Anthony Howard
  • Publication number: 20130211150
    Abstract: A hydrogenation catalyst and process using the catalyst for converting a mixture comprising acetic acid and ethyl acetate to ethanol at a first temperature, and the catalyst desorbs ethyl acetate, in the absence of hydrogen, at a second temperature that is greater than the first temperature. The catalyst has a suitable chemisorption of ethyl acetate at the first temperature in the absence of hydrogen. In one embodiment, the first temperature ranges from 125° C. to 350° C. and the second temperature ranges from 300° C. to 600° C. The catalyst comprises one or more active metals or oxide thereof on a support that comprises tungsten or an oxide thereof. The one or more active metals are selected from the group consisting of cobalt, copper, gold, iron, nickel, palladium, platinum, iridium, osmium, rhenium, rhodium, ruthenium, tin, zinc, lanthanum, cerium, manganese, chromium, vanadium, and molybdenum.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner, Dheeraj Kumar, Xiaoyan Tu, Victor J. Johnston, Radmila Jevtic
  • Publication number: 20130210617
    Abstract: A composition based on cerium and niobium oxide in a proportion of niobium oxide of 2% to 20% is described. This composition can include zirconium oxide, optionally 50% of cerium oxide, 2% to 20% of niobium oxide, and at most 48% of zirconium oxide. Also described, is the use of the composition for treating exhaust gases.
    Type: Application
    Filed: July 5, 2011
    Publication date: August 15, 2013
    Applicant: Rhodia Operations
    Inventors: Julien Hernandez, Rui Jorge Coelho Marques, Emmanuel Rohart
  • Patent number: 8501132
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20130197258
    Abstract: The invention concerns a method for preparing acrolein from glycerol or glycerine, wherein dehydration of the glycerol or glycerine is achieved in the presence of a catalyst based on zirconium oxide and which active phase consists in at least a) a silicon oxide, a zirconium oxide and at least one metal M oxide, said metal being selected from tungsten, cerium, manganese, niobium, tantalum, vanadium and titanium, b) a titanium oxide, a zirconium oxide and at least one metal M oxide, said metal being selected from tungsten, cerium, manganese, niobium, tantalum, vanadium and silicon. This method can be used for making 3-(methylthio)propionic aldehyde MMP, 2-hydroxy-4-,methylthiobutyronitrile HMTBN, methionine and its analogs.
    Type: Application
    Filed: June 16, 2011
    Publication date: August 1, 2013
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, ADISSEO FRANCE S.A.S.
    Inventors: Pascaline Lauriol-Garbey, Virginie Belliere-Baca, Stéphane Loridant, Jean-Marc Millet