Of Copper Patents (Class 502/244)
  • Patent number: 8101539
    Abstract: A purifying catalyst includes catalyst powder composed of a transition metal oxide of which an average particle diameter is within 1 nm to 2 ?m and in which an electron binding energy of oxygen is shifted to an energy side lower than 531.3 eV. The purifying catalyst shows good purification performance even when noble metal is not contained as an essential component.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: January 24, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hirofumi Yasuda, Yasunari Hanaki, Toru Sekiba, Shigeru Chida, Junji Ito
  • Patent number: 8088883
    Abstract: A transition metal complex obtained by contacting a bipyridine compound represented by the formula (1): wherein R1, R2 and R3 represent a C1-C10 alkyl group which may be substituted, etc., and R4 and R5 represent a hydrogen atom etc., with a compound of a transition metal belonging to Group 9, 10 or 11, and a process for producing a conjugated aromatic compound comprising reacting an aromatic compound (A) wherein one or two leaving groups are bonded to an aromatic ring with an aromatic compound (A) having the same structure as that of the above-mentioned aromatic compound (A) or an aromatic compound (B) being structurally different from the above-mentioned aromatic compound (A) and having one or two leaving groups bonded to an aromatic ring, in the presence of said transition metal complex.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: January 3, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Taku Asaumi, Takashi Kamikawa
  • Publication number: 20110313188
    Abstract: The present invention relates to a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, wherein said catalyst comprises one or more elements selected from the group of the alkali metals, alkaline earth metals and rare earth metals. The invention further relates to processes for preparing the inventive catalyst and to the use of the inventive catalyst in a process for hydrogenating organic substances, especially for hydrogenating nitriles.
    Type: Application
    Filed: February 4, 2010
    Publication date: December 22, 2011
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Jochen Steiner, Martin Ernst, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder
  • Publication number: 20110301022
    Abstract: There is provided by the present invention a process for preparing a copper-based catalyst having good catalytic activity, markedly excellent durability and good reproducibility. The process for preparing a copper-based catalyst of the invention is a process for preparing a catalyst composed of metal oxides containing copper oxide as an essential component and is characterized by comprising the following steps: (1) a step of bringing an acidic metal salt solution containing copper and a precipitant solution into contact with each other to obtain a slurry solution containing a precipitate of a catalyst precursor, and (2) a step of continuously bringing the slurry solution and a wash liquid into contact with each other to wash the precipitate, with substantially keeping the suspended state.
    Type: Application
    Filed: February 15, 2010
    Publication date: December 8, 2011
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Masami Murakami, Ken Maeda, Yuya Goto
  • Patent number: 8071655
    Abstract: A catalyst applicable to the synthesis gas conversions especially E-T slurry processes, said catalyst comprising: a) a support containing at least a first aluminate element of mixed spinel structure of formula MxM?(1?x)Al2O4/Al2O3.SiO2, x ranging between and excluding 0 and 1, or of simple spinel structure of formula MAl2O4/Al2O3.SiO2, said support being calcined in an at least partly oxidizing atmosphere, at a temperature ranging between 850° C. and 900° C., and b) an active phase deposited on said support, which contains one or more group VIII metals, selected from among cobalt, nickel, ruthenium or iron. Said catalyst is used in a fixed bed or suspended in a three-phase reactor for hydrocarbon synthesis from a CO, H2 mixture.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: December 6, 2011
    Assignees: IFP Energies Nouvelles, ENI S.p.A.
    Inventors: Fabrice Diehl, François Hugues, Marie-Claire Marion, Denis Uzio
  • Publication number: 20110274602
    Abstract: Novel metal-containing silicates, in particular redox-active as well as crystalline silicates, a process for preparing metal-containing crystalline silicates, as well as use thereof as high-temperature oxidation catalyst or diesel oxidation catalyst. Further, a catalytic composition and a shaped catalyst body which contains the metal-containing crystalline silicates.
    Type: Application
    Filed: November 13, 2009
    Publication date: November 10, 2011
    Inventor: Klaus Wanninger
  • Publication number: 20110257443
    Abstract: A catalyst comprising a first metal, a silicaceous support, and at least one metasilicate support modifier, wherein at least 1 wt. % of the at least one metasilicate support modifier is crystalline in phase, as determined by x-ray diffraction. The invention also relates to processes for forming such catalysts, to supports used therein, and to processes for hydrogenating acetic acid in the presence of such catalysts.
    Type: Application
    Filed: February 1, 2011
    Publication date: October 20, 2011
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Victor J. Johnston
  • Publication number: 20110236302
    Abstract: According to one embodiment, there is provided a catalyst including a first structure including a metal oxide substrate having a pore, and a fine particle including Cu as a main component supported on an inner surface of the substrate facing the pore, and a second structure formed on the outer surface of the first structure and including Cu as a main component. The second structure is formed into a needle with a tip thereof oriented outward from the first structure.
    Type: Application
    Filed: September 23, 2010
    Publication date: September 29, 2011
    Inventors: Yoshio Hanakata, Takayuki Fukasawa, Naoki Shutoh
  • Publication number: 20110172085
    Abstract: A nanocrystalline supported or unsupported copper oxide with a residual carbon content of <10% and a BET surface area >95 m2/g. Further, a method for the production of a supported or unsupported nanocrystalline copper oxide as well as the use thereof in catalysis, in particular in the steam reforming of methanol or in the hydrogenation of esters.
    Type: Application
    Filed: May 29, 2009
    Publication date: July 14, 2011
    Applicant: Süd-Chemie AG
    Inventors: Hans-Jörg Wölk, Alfred Hagemeyer, Frank Großmann, Oliver Wegner
  • Publication number: 20110136658
    Abstract: A catalyst used in the reaction of oxidative bromination of methane is provided. The catalyst is prepared by the following procedures: mixing at least one of the precursors selected from the compounds of Rh, Ru, Cu, Zn, Ag, Ce, V, W, Cd, Mo, Mn, Cr and La which can dissolve in water with the Si precursor, hydrolyzing, drying and sintering. In the catalysis system, methane reacts with HBr, H2O and oxygen source (O2, air or oxygen-rich air), finally CH3Br and CH2Br2 are produced. Another catalyst used in the reaction of condensation of methane bromide to C3-C13 hydrocarbons is also provided. This catalyst is prepared by supporting compounds of Zn or Mg on molecular sieves such as HZSM-5, HY, Hb, 3A, 4A, 5A or 13X et al. With this catalyst, CH3Br and CH2Br2 produced in the former process can react further to give C3 to C13 hydrocarbons and HBr, and HBr can be recycled as a medium.
    Type: Application
    Filed: April 14, 2008
    Publication date: June 9, 2011
    Inventors: Zhen Liu, Hongmin Zhang, Wensheng Li, Yanqun Ren, Xiaoping Zhou
  • Patent number: 7943108
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: May 17, 2011
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Patent number: 7932205
    Abstract: The invention relates to a process for the preparation of a catalyst comprising: a) The preparation of a colloidal oxide suspension of a first metal M1 that consists in the neutralization of a basic solution by an acidic mineral solution that contains the precursor of the metal M1, b) Bringing into contact the precursor of the promoter M2, either directly in its crystallized form or after dissolution in aqueous phase, with the colloidal suspension that is obtained in stage a), c) Bringing into contact the colloidal suspension that is obtained in stage b) with the substrate, d) Drying at a temperature of between 30° C. and 200° C., under a flow of air. The invention also relates to a process for the treatment of an olefinic fraction that uses the catalyst prepared [by] said preparation process.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: April 26, 2011
    Assignee: IFP
    Inventors: Vincent Coupard, Denis Uzio, Carine Petit-Clair, Lars Fischer, Frederic Portejoie
  • Patent number: 7909986
    Abstract: Reduced emissions of gas phase reduced nitrogen species in the off gas of an FCC regenerator operated in a partial or incomplete mode of combustion is achieved by contacting the off gas with an oxidative catalyst/additive composition having the ability to reduce gas phase nitrogen species to molecular nitrogen and to oxidize CO under catalytic cracking conditions. The oxidative catalyst/additive composition is used in an amount less than the amount necessary to prevent afterburn. Fluidizable particles of the oxidative catalyst/additives are circulated throughout the partial or incomplete burn FCC unit along with the FCC catalyst inventory. The flue gas having a reduced content of gas phase reduced nitrogen species and NOx is passed to a downstream CO boiler, preferably a low NOx CO boiler. In the CO boiler, as CO is oxidized to CO2, a reduced amount of gas phase reduced nitrogen species is oxidized to NOx, thereby providing an increase in the overall reduction of NOx emitted into the environment.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: March 22, 2011
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 7906015
    Abstract: Reduced emissions of gas phase reduced nitrogen species in the off gas of an FCC regenerator operated in a partial or incomplete mode of combustion is achieved by contacting the off gas with an oxidative catalyst/additive composition having the ability to reduce gas phase nitrogen species to molecular nitrogen and to oxidize CO under catalytic cracking conditions. The oxidative catalyst/additive composition is used in an amount less than the amount necessary to prevent afterburn. Fluidizable particles of the oxidative catalyst/additives are circulated throughout the partial or incomplete burn FCC unit along with the FCC catalyst inventory. The flue gas having a reduced content of gas phase reduced nitrogen species and NOx is passed to a downstream CO boiler, preferably a low NOx CO boiler. In the CO boiler, as CO is oxidized to CO2, a reduced amount of gas phase reduced nitrogen species is oxidized to NOx, thereby providing an increase in the overall reduction of NOx emitted into the environment.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: March 15, 2011
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Publication number: 20110058999
    Abstract: According to one embodiment, described herein is an exhaust gas after-treatment system that is coupleable in exhaust gas stream receiving communication with an internal combustion engine. The exhaust gas after-treatment system includes a low temperature SCR catalyst configured to reduce NOx in exhaust gas having a temperature below a temperature threshold. The system also includes a normal-to-high temperature SCR catalyst configured to reduce NOx in exhaust gas having a temperature above the temperature threshold.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 10, 2011
    Applicant: CUMMINS IP, INC
    Inventors: Padmanabha Reddy Ettireddy, Matthew Henrichsen
  • Publication number: 20110060169
    Abstract: The invention relates to a hydrogenation catalyst which comprises a support material and at least one hydrogenation-active metal and in which the support material is based on titanium dioxide, zirconium dioxide, aluminium oxide, silicon oxide or mixed oxides thereof and the hydrogenation-active metal is at least one element from the group consisting of copper, cobalt, nickel, chromium, wherein the support material contains the element barium. The invention further relates to a process for preparing alcohols by hydrogenation of carbonyl compounds, in which the hydrogenation is carried out in the presence of such a hydrogenation catalyst.
    Type: Application
    Filed: July 7, 2008
    Publication date: March 10, 2011
    Applicant: Evonik Oxeno GmbH
    Inventors: Alfred Kaizik, Thomas Quandt, Hans-Gerd Lueken, Wilfried Bueschken
  • Patent number: 7902104
    Abstract: This invention relates to a solid divided composition comprising grains whose mean size is greater than 25 ?m and less than 2.5 mm, wherein each grain is provided with a solid porous core and a homogeneous continuous metal layer consisting of at least one type of transition non-oxidised metal and extending along a gangue coating the core in such a way that pores are inaccessible. A method for the production of said composition and for the use thereof in the form of a solid catalyst is also disclosed.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 8, 2011
    Assignees: Arkema France, Institut National Polytechnique de Toulouse
    Inventors: Philippe Kalck, Philippe Serp, Massimiliano Corrias
  • Publication number: 20110053020
    Abstract: Nanostructured catalysts and related methods are described. The nanostructured catalysts have a hierarchical structure that facilitates modification of the catalysts for use in particular reactions. Methods for generating hydrogen from a hydrogen-containing molecular species using a nanostructured catalyst are described. The hydrogen gas may be collected and stored, or the hydrogen gas may be collected and consumed for the generation of energy. Thus, the methods may be used as part of the operation of an energy-consuming device or system, e.g., an engine or a fuel cell. Methods for storing hydrogen by using a nanostructured catalyst to react a dehydrogenated molecular species with hydrogen gas to form a hydrogen-containing molecular species are also described.
    Type: Application
    Filed: November 7, 2008
    Publication date: March 3, 2011
    Applicants: WASHINGTON STATE UNIVERSITY RESEARCH FOUNDATION, IDAHO RESEARCH FOUNDATION, INC.
    Inventors: M. Grant Norton, David N. McIlroy
  • Publication number: 20100311575
    Abstract: An exhaust gas purifying catalyst includes: a composite oxide represented by: (Aa-w-xMwM?x) (Si6-yNy)O27-z. A is a cation of at least one of La and Pr; M is a cation of at least one of Ba, Ca, and Sr; M? is a cation of at least one of Nd, Y, Al, Pr, Ce, Sr, Li, and Ca; N is a cation of at least one of Fe, Cu, and Al. The following are satisfied: 6?a?10, 0<w<5, 0?x<5, 0<w+x?5, 0?y?3, 0?z?3, A?M?, and x?0 when A is a cation of La. A noble metal ingredient which forms a solid solution with the composite oxide or is supported on the composite oxide, and an exhaust gas purifying catalyst product formed of a carrier made of a ceramic or metallic material, and a layer of the exhaust gas purifying catalyst supported on the carrier.
    Type: Application
    Filed: May 12, 2010
    Publication date: December 9, 2010
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Takashi WAKABAYASHI, Yuunosuke NAKAHARA
  • Patent number: 7846867
    Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 7, 2010
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
  • Patent number: 7824656
    Abstract: The present invention relates to catalysts for the production of hydrogen using the water gas shift reaction and the carbon dioxide reforming of hydrocarbon-containing fuels. The catalysts nickel and/or copper on a ceria/zirconia support, where the support is prepared using a surfactant templating method. The invention also includes processes for producing hydrogen, reactors and hydrogen production systems utilizing these catalysts.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: November 2, 2010
    Assignee: University of Regina
    Inventors: Raphael Oyom Idem, Prashant Kumar, Yanping Sun
  • Patent number: 7772147
    Abstract: A solid catalyst carrier substrate coated with a surface area-enhancing washcoat composition including a catalytic component, a metal oxide and a refractory fibrous or whisker-like material having an aspect ratio of length to thickness in excess of 5:1.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 10, 2010
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul John Collier, Alison Mary Wagland
  • Publication number: 20100167053
    Abstract: The present invention relates to a catalyst composition for preparing carbon nanotube and a process for preparing carbon nanotube using the same. More particularly, this invention relates to a process for preparing carbon nanotube by the chemical vapor deposition method through the decomposition of lower saturated or unsaturated hydrocarbons using a multi-component metal catalyst composition containing active metal catalyst from Co, V, Al and inactive porous support. Further, the present invention affords the carbon nanotube having 5˜30 nm of diameter and 100˜10,000 of aspect ratio in a high catalytic yield.
    Type: Application
    Filed: May 26, 2009
    Publication date: July 1, 2010
    Inventors: Hyun-Kyung Sung, Wan Sung Lee, Namsun Choi, Dong Hwan Kim, Youngchan Jang
  • Patent number: 7743738
    Abstract: The present invention relates to an apparatus and method for delivering tungsten into a fuel combustion system or to the exhaust therefrom. By the present invention, tungsten from the lubricant or the fuel will interact with combustion products and, in particular, phosphorus, sulfur, and/or lead from the combustion products. In this manner, the tungsten scavenges or inactivates harmful materials which have migrated into the fuel or combustion products, and which can otherwise poison catalytic converters, sensors and/or automotive on-board diagnostic devices The present invention can also lead to improved durability of exhaust after treatment systems. A lubricant in accordance with the present invention is also disclosed.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: June 29, 2010
    Assignee: Afton Chemical Corporation
    Inventors: Dennis H. Rainear, Allen A. Aradi, Joseph W. Roos
  • Publication number: 20100113841
    Abstract: The present invention relates to a process for producing hydrogenolysis products of polyhydric alcohols with a good selectivity and a high yield, as well as hydrogenolysis catalysts used in the production process. The present invention provides (1) a process for producing a hydrogenolysis product of a polyhydric alcohol which includes the step of reacting the polyhydric alcohol with hydrogen in the presence of a catalyst containing a copper component, wherein the catalyst is a catalyst (A) containing the copper component, an iron component and an aluminum component, or a catalyst (B) containing the copper component and a silicon component; and (2) a hydrogenolysis catalyst for polyhydric alcohols which includes a copper component, an iron component and an aluminum component, and (3) a hydrogenolysis catalyst for polyhydric alcohols which includes a copper component and a silicon component.
    Type: Application
    Filed: April 4, 2008
    Publication date: May 6, 2010
    Applicant: KAO CORPORATION
    Inventors: Nobuyoshi Suzuki, Masazumi Tamura, Yohei Yoshikawa, Taku Mimura, Masakatsu Takahashi
  • Publication number: 20100111796
    Abstract: Catalysts, methods of preparing catalyst, and methods for treating exhaust gas streams are described. In one or more embodiments, a catalyst system includes an upstream zone effective to catalyze the conversion of a mixture of NOx and NH3 to N2, and a downstream zone effective for the conversion of ammonia to N2 in the presence or absence of NOx. In an embodiment, a method for preparing a catalyst system includes: first coating one end of a substrate along at least 5% of its length with an undercoat washcoat layer containing a material composition effective to catalyze the removal of ammonia; second coating with an overcoat layer containing a material composition effective to catalyze the conversion of a mixture of NOx and NH3 to N2.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 6, 2010
    Applicant: BASF Catalysts LLC
    Inventors: Matthew Tyler Caudle, Martin Dieterle, Scott E. Buzby
  • Publication number: 20100087312
    Abstract: Described is a method for the preparation of a chromium-free catalyst comprising Cu and at least one second metal in metallic or oxidic form, comprising the steps of a) preparing a final solution comprising ions of Cu and of at least one second metal, said final solution additionally comprising ions of a complexing agent and having a pH of above 5; b) contacting said final solution with inert carrier to form a final solution/carrier combination; c) optionally, drying the final solution/carrier combination; d) calcining the final solution/carrier combination obtained in step c) or d) to yield Cu and the at least one second metal in oxidic form; and e) reducing at least part of the thus obtained oxidic Cu on the carrier. Further, a catalyst obtainable by the said method as well as uses thereof are described.
    Type: Application
    Filed: December 7, 2009
    Publication date: April 8, 2010
    Applicants: AVANTIUM INTERNATIONAL B.V., UNIVERSITI MALAYA
    Inventors: André Harmen SIJPKES, Nelleke van der PUIL, Peter John van den BRINK, Sharifah Bee ABDUL HAMID, Adrianus Hendricus Joseph Franciscus de KEIJZER
  • Publication number: 20100016647
    Abstract: A catalyst for producing aromatic compounds from lower hydrocarbons while improving activity life stability of methane conversion rate; benzene formation rate; naphthalene formation rate; and total formation rate of benzene, toluene and xylene is formed by loading molybdenum and copper on metallo-silicate serving as a substrate and then calcining the metallo-silicate. When the catalyst is reacted with a reaction gas containing lower hydrocarbons and carbonic acid gas, aromatic compounds are produced. In order to obtain the catalyst, it is preferable that molybdenum and copper are loaded on zeolite formed of metallo-silicate after the zeolite is treated with a silane compound larger than a pore of the zeolite in diameter and having an amino group and a straight-chain hydrocarbon group, the amino group being able to selectively react with the zeolite at a Bronsted acid point of the zeolite. It is preferable that a loaded amount of molybdenum is within a range of from 2 to 12 wt.
    Type: Application
    Filed: February 13, 2008
    Publication date: January 21, 2010
    Applicant: MEIDENSHA CORPORATION
    Inventors: Shinichi Yamada, Tomohiro Yamada, Yuji Ogawa, Hirokazu Akiyama, Takuya Hatagishi
  • Publication number: 20100009843
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Application
    Filed: September 21, 2009
    Publication date: January 14, 2010
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Publication number: 20100009844
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Application
    Filed: September 21, 2009
    Publication date: January 14, 2010
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Publication number: 20090325790
    Abstract: A metal-substituted mesoporous oxide framework, such as Co-MCM-41, are disclosed which includes more than one ion species with different reduction kinetics. The reducibility correlates strongly with the pore radius of curvature, with the metal ions incorporated in smaller pores more resistant to complete reduction. The metal-ion substituted oxide framework improves catalytic processes by controlling the size of the catalytic particles forming in the pores. The metal-substituted mesoporous oxide framework can be employed in selective hydrogenation of organic chemicals, in ammonia synthesis, and in automotive catalytic exhaust systems.
    Type: Application
    Filed: June 17, 2005
    Publication date: December 31, 2009
    Applicant: Yale University
    Inventors: Gary L. Haller, Sangyun Lim, Dragos Ciuparu, Yuan Chen, Yanhui Yang, Lisa Pfefferle
  • Publication number: 20090325788
    Abstract: The present invention is related to single and/or multiple-wall carbon nanotubes which may contain interstitial metals obtainable by a preparation process, comprising a catalytic step using a catalytic system, said catalytic system comprising a catalyst and a support, said support comprising hydroxides and/or carbonates or mixtures thereof with or without metal oxides. The present invention is also related to carbon fibers obtainable by said preparation process. The present invention also pertains in particular to said catalytic system and to said preparation process. Another aspect concerns the use of the nanotubes and of the catalytic system according to the invention.
    Type: Application
    Filed: July 20, 2009
    Publication date: December 31, 2009
    Applicant: FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX
    Inventors: Janos B. Nagy, Narasimaiah Nagaraju, Isabelle Willems, Antonio Fonseca
  • Publication number: 20090298682
    Abstract: Oxychlorination catalyst compositions which include a catalytically effective amount of an oxychlorination catalyst and a diluent having certain chemical composition and/or physical properties are disclosed. Processes using such oxychlorination catalyst compositions are also described. Some oxychlorination catalyst compositions and processes disclosed herein can increase the optimal operating temperature, and thereby increase the production capacity of an existing reactor, such as a fluid-bed reactor, compared to other oxychlorination catalyst compositions.
    Type: Application
    Filed: August 10, 2009
    Publication date: December 3, 2009
    Applicant: Oxy Vinyls, LP
    Inventors: Keith S. Kramer, Joseph A. Cowfer
  • Publication number: 20090269269
    Abstract: The disclosed subject matter provides a copper oxide nanoparticle, a catalyst that includes the copper oxide nanoparticle, and methods of manufacturing and using the same. The catalyst can be used to catalyze a chemical reaction (e.g., oxidizing carbon monoxide (CO) to carbon dioxide (CO2)).
    Type: Application
    Filed: October 14, 2008
    Publication date: October 29, 2009
    Applicant: The Trustees of Columbia University in City of New York
    Inventors: Brian Edward White, Stephen O'Brien
  • Patent number: 7595276
    Abstract: The present invention provides a catalytic composition for oxychlorination excellent in the fluidity, the capability of suppressing lowering of the fluidity, and the attrition resistance as well as in the selectivity for EDC and the capability of suppressing combustion of ethylene. The catalytic composition for oxychlorination contains silica alumina particles in the range from 5 to 40 wt % when expressed as an oxide thereof, copper in the range from 5 to 20 wt % when expressed as an oxide thereof (CuO), and alumina as a carrier in the range from 40 to 90 wt % when expressed as that of Al2O3. The silica alumina particles are prepared by coating silica particles with alumina, and have the average particle diameter in the range from 3 to 100 nm. A content of alumina in the silica alumina particles is in the range from 0.1 to 10 wt %.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: September 29, 2009
    Assignee: JGC Catalysts and Chemicals Ltd.
    Inventors: Takashi Kodama, Tsuguo Koyanagi
  • Patent number: 7592290
    Abstract: The invention relates to supported catalysts and a process for the production of these catalysts. These supported catalysts may be used in various reactions such as reforming reactions (e.g. steam methane reforming (SMR) reactions and autothermal reforming (ATR) reactions). In one aspect of the invention, the supported catalyst comprises a transition metal oxide; optionally a rare-earth metal oxide; and a transition metal aluminate.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: September 22, 2009
    Assignee: Sulzer Metco(Canada) Inc.
    Inventors: Syed Tajammul Hussain, Eugene Stelmack
  • Patent number: 7585806
    Abstract: Oxychlorination catalyst compositions which include a catalytically effective amount of an oxychlorination catalyst and a diluent having certain chemical composition and/or physical properties are disclosed. Processes using such oxychlorination catalyst compositions are also described. Some oxychlorination catalyst compositions and processes disclosed herein can increase the optimal operating temperature, and thereby increase the production capacity of an existing reactor, such as a fluid-bed reactor, compared to other oxychlorination catalyst compositions.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: September 8, 2009
    Assignee: Oxy Vinyls, LP
    Inventors: Keith S. Kramer, Joseph A. Cowfer
  • Publication number: 20090196812
    Abstract: Catalysts comprising metal-loaded non-zeolitic molecular sieves having the CHA crystal structure, including Cu-SAPO-34, methods for preparing such catalysts, and systems and methods for treating exhaust gas incorporating such catalysts are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stability at high reaction temperatures.
    Type: Application
    Filed: January 29, 2009
    Publication date: August 6, 2009
    Applicant: BASF Catalysts LLC
    Inventors: Ivor Bull, Gerald S. Koermer, Ahmad Moini, Signe Unverricht
  • Patent number: 7566393
    Abstract: Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 28, 2009
    Assignee: NanoScale Corporation
    Inventors: Kenneth Klabunde, Bill R. Sanford, P. Jeevanandam
  • Publication number: 20090126300
    Abstract: After newly attaching an interior-finishing vinyl wall covering onto at least one of a wall, floor and ceiling of a building, or after completion of washing/renovation of the vinyl wall covering, a liquid or slurry coating material containing a titanium oxide, a layered silicate mineral, and a silver ion and/or a copper ion, is sprayed or applied onto a surface of the vinyl wall covering. Subsequently the coating material is naturally dried to form a thin transparent coating layer. In a process of renovating the vinyl wall covering, the coating layer is removed by washing with water or wiping with water to completely remove various stains. The present invention makes it possible to allow any worker, i.e., even an unskilled worker, to fully renovate an interior-finishing material, such as a vinyl wall covering, without difficulty and at low cost.
    Type: Application
    Filed: October 26, 2005
    Publication date: May 21, 2009
    Inventors: Misuo Fujiwara, Katsunori Kubota
  • Patent number: 7518023
    Abstract: The invention relates to highly active spherical metal support catalysts with a metal content of 10 to 70% by mass, and a process for their production with the use of a mixture of polysaccharides and at least one metal compound which is dropped into a metal salt solution.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: April 14, 2009
    Assignee: Shell Internationale Research Maatschappij, B.V.
    Inventors: Reinhard Geyer, Rainer Schödel, Peter Birke, Jürgen Hunold
  • Publication number: 20090092534
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Application
    Filed: September 11, 2008
    Publication date: April 9, 2009
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Publication number: 20090078157
    Abstract: The invention is directed to a synthetic inorganic material, comprising inorganic compounds based on elementary particles with a sheet (phyllosilicate) structure, the elementary particles consisting of a central layer of octahedrally coordinated divalent metal ions between two layers of tetrahedrally surrounded silicon ions, which particles are substantially free of aluminum, free silica and salts and hydroxides of the divalent metal ions, the material not containing any metal ions that can be reduced to the corresponding metals at temperatures of 700° C. or less.
    Type: Application
    Filed: May 1, 2006
    Publication date: March 26, 2009
    Applicant: Eurosupport B.V.
    Inventors: John Wihelm Geus, Jacobus Berend Dirksen
  • Patent number: 7491675
    Abstract: Nanocomposite copper-ceria catalysts are provided, which comprise copper oxide nanoparticles, copper nanoparticles, or a mixture thereof combined with ceria nanoparticles. Methods for making such catalysts are also provided, which involve the steps of (i) combining ceria nanoparticles in an aqueous suspension with copper 2,4-pentanedionate to form a slurry; (ii) heating the slurry formed in step (i) under an inert gas atmosphere or an oxygen-argon atmosphere, at a temperature and for a time sufficient to cause decomposition of the copper 2,4-pentanedionate to form copper nanoparticles and/or copper oxide nanoparticles that are combined with the ceria nanoparticles; and (iii) optionally, subjecting the product formed in step (ii) to a heat treatment process under conditions effective to convert at least some of the copper nanoparticles to copper oxide nanoparticles.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: February 17, 2009
    Assignee: Philip Morris USA Inc.
    Inventors: Sarojini Deevi, Sohini PalDey
  • Publication number: 20090036299
    Abstract: The present invention provides a catalytic composition for oxychlorination excellent in the fluidity, the capability of suppressing lowering of the fluidity, and the attrition resistance as well as in the selectivity for EDC and the capability of suppressing combustion of ethylene. The catalytic composition for oxychlorination contains silica alumina particles in the range from 5 to 40 wt % when expressed as an oxide thereof, copper in the range from 5 to 20 wt % when expressed as an oxide thereof (CuO), and alumina as a carrier in the range from 40 to 90 wt % when expressed as that of Al2O3. The silica alumina particles are prepared by coating silica particles with alumina, and have the average particle diameter in the range from 3 to 100 nm. A content of alumina in the silica alumina particles is in the range from 0.1 to 10 wt %.
    Type: Application
    Filed: July 29, 2008
    Publication date: February 5, 2009
    Applicant: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Takashi Kodama, Tsuguo Koyanagi
  • Patent number: 7476639
    Abstract: The invention relates to a method for the production of catalytically active layer silicates with one or more intermediate layers, especially Al and/or Ti-pillared clays, wherein a metal solution is added to the layer silicate and the mixture is dried, thereby producing metal atom columns supporting the corresponding intermediate layer. A metal salt is admixed dry to the resulting dry substance. The ensuing dry mixture is finally heated so that the metal atoms or the transition metal atoms become deposited in the intermediate layer.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: January 13, 2009
    Assignee: Iko Minerals GmbH
    Inventors: Dietrich Koch, Kisnaduth Kesore, Anthony Arthur Gustaf Tomlinson
  • Publication number: 20090011925
    Abstract: A catalytically active glass-ceramic and method for producing a catalytically active multi-phase glass-ceramic in which at least one catalyst precursor is mixed with a glass-ceramic precursor formulation to form a catalyst precursor/glass-ceramic precursor mixture. The catalyst precursor/glass-ceramic precursor mixture is then melted to form an amorphous glass material which, in turn, is devitrified to form a polycrystalline ceramic. The polycrystalline ceramic is then activated, forming a catalytically active multi-phase glass-ceramic.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 8, 2009
    Inventors: Larry Gordon Felix, David Morrissey Rue, Thomas Philip Seward, III, Logan Edwin Weast
  • Publication number: 20080318765
    Abstract: There is disclosed a composition comprising an alloy represented by the following generic formula Aa)n(Bb)n(Cc)n(Dd)n(ee)n( . . . )n; wherein A is an oxygen storage agent; B is an anti-sintering agent; C is an oxidation catalyst; D is a reduction catalyst; and E is a NOx absorbing agent; wherein each subscript letter represents compositional stoichiometry; wherein n is greater than or equal to zero; wherein the sum of the n's is equal to or greater than 2, and wherein the alloy comprises at least two different metals. There is also disclosed a washcoat composition; a catalyst support; methods of making the alloy, the washcoat composition, and the catalyst support.
    Type: Application
    Filed: June 19, 2007
    Publication date: December 25, 2008
    Inventors: Allen A. Aradi, C. S. Warren Huang
  • Publication number: 20080311291
    Abstract: Process for the production of doped metal oxide particles, wherein the doping component is present on the surface in the form of domains, wherein in a first reaction zone, an oxidizable and/or - hydrolysable metal compound as dopant together with an atomization gas is atomised into a flow of metal oxide particles in a carrier gas, wherein the mass flow of the metal oxide particles und - the mass flow of the dopant are selected such that the doped metal oxide particles contain 10 ppm to 10 wt.
    Type: Application
    Filed: October 10, 2006
    Publication date: December 18, 2008
    Applicant: EVONIK DEGUSSA Gmbh
    Inventors: Kai Schumacher, Rainer Golchert, Helmut Roth, Harald Alff, Matthias Rochnia
  • Patent number: 7462576
    Abstract: The present invention provides combustion catalysts that have high exhaust gas-purifying activity and are less expensive than conventional ones. The catalysts include: (1) A calcium salt, amorphous silica, and a copper compound, (2) Amorphous silica, and a copper compound, (3) (1) At least one of crystalline silica and amorphous silica, (2) a calcium salt, and (3) a copper oxide, and (4) (1) At least one of crystalline silica and amorphous silica, and (2) a copper oxide.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: December 9, 2008
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Japan Insulation Co., Ltd
    Inventors: Masao Ishida, Tadahisa Masatani, Miyako Koga, Kazuo Shibahara, Kenichi Tsuge