Of Zinc, Cadmium, Or Mercury Patents (Class 502/253)
-
Patent number: 10449520Abstract: A porous body with enhanced fluid transport properties and crush strength is provided. The porous body includes the porous body includes at least 80 percent alpha alumina and having a pore volume from 0.3 mL/g to 1.2 mL/g, a surface area from 0.3 m2/g to 3.0 m2/g, and a pore architecture that provides at least one of a tortuosity of 7 or less, a constriction of 4 or less and a permeability of 30 mdarcys or greater, wherein the porous body is a cylinder comprising at least two spaced apart holes that extend through an entire length of the cylinder. The porous body has a flat plate crush strength improved by more than 10% over a porous body cylinder having a same outer diameter and length, but having only a single hole.Type: GrantFiled: December 7, 2017Date of Patent: October 22, 2019Assignee: Scientific Design Company, Inc.Inventors: Wojciech L. Suchanek, Michael Di Mare, Jean Adam, Paul E. Ellis, Jr.
-
Patent number: 10040055Abstract: A method is provided for improving the performance of a silver-based epoxidation catalyst comprising a carrier. The carrier includes at least 80 percent alpha alumina and has a pore volume from 0.3 mL/g to 1.2 mL/g, a surface area from 0.3 m2/g to 3.0 m2/g, and a pore architecture that provides at least one of a tortuosity of 7 or less, a constriction of 4 or less and a permeability of 30 mdarcys or greater. A catalytic amount of silver and a promoting amount of one or more promoters is disposed on and/or in said carrier. The method further includes the steps of initiating an epoxidation reaction by reacting a feed gas composition containing ethylene and oxygen present in a ratio of from about 3.5:1 to about 12:1, in the presence of the silver-based epoxidation catalyst at a temperature of about 200° C. to about 230° C., and subsequently increasing the temperature either stepwise or continuously.Type: GrantFiled: June 2, 2016Date of Patent: August 7, 2018Assignee: Scientific Design Company, Inc.Inventors: Christelle Verrier, Wojciech L. Suchanek
-
Patent number: 9776169Abstract: A porous body is provided with enhanced fluid transport properties that is capable of performing or facilitating separations, or performing reactions and/or providing areas for such separations or reactions to take place. The porous body includes at least 80 percent alpha alumina and has a pore volume from 0.3 mL/g to 1.2 mL/g and a surface area from 0.3 m2/g to 3.0 m2/g. The porous body further includes a pore architecture that provides at least one of a tortuosity of 7.0 or less, a constriction of 4.0 or less and a permeability of 30 mdarcys or greater. The porous body can be used in a wide variety of applications such as, for example, as a filter, as a membrane or as a catalyst carrier.Type: GrantFiled: June 2, 2016Date of Patent: October 3, 2017Assignee: Scientific Design Company, Inc.Inventor: Wojciech L. Suchanek
-
Patent number: 8975208Abstract: The present invention provides an adsorbent for removing sulfur from cracking gasoline or diesel fuel. The adsorbent has excellent abrasion-resistance and desulfurization activity. The adsorbent comprises from about 5 to about 35 wt % of alumina, from about 3 to about 30 wt % of silica, from about 10 to about 80 wt % of at least one oxide of metal selected from Groups IIB and VB, from about 3 to about 30 wt % of at least one metal accelerant selected from Groups VIIB and VIII, and from about 0.5 to about 10 wt % of at least one oxide of metal selected from Groups IA and IIA, based on the total weight of the adsorbent.Type: GrantFiled: December 30, 2009Date of Patent: March 10, 2015Assignees: China Petroleum Chemical Corporation, Research Institute of Petroleum Processing, SinopecInventors: Jun Long, Huiping Tian, Wei Lin
-
Patent number: 8889078Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.Type: GrantFiled: March 15, 2011Date of Patent: November 18, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
-
Publication number: 20140296605Abstract: The invention relates to a catalyst composition suitable for the non-oxidative dehydrogenation of alkanes having 2-8 carbon atoms comprising silico-zinc aluminate, wherein the relative molar ratios of the elements comprised in said composition are represented by SixZn1-xAl2O4, wherein x stands for a number in the range from 0.003 to 0.76. The invention also relates to a process for the preparation of said catalyst composition, to a process for the non-oxidative dehydrogenation of alkanes, preferably isobutane using said catalyst and to the use of said catalyst in a process for the non-oxidative dehydrogenation of alkanes.Type: ApplicationFiled: September 27, 2013Publication date: October 2, 2014Applicant: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Subhash Chandra Laha, Antonisamy Selvanathan, Sandeep Negi
-
Patent number: 8841498Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.Type: GrantFiled: July 18, 2013Date of Patent: September 23, 2014Assignee: Shell Oil CompanyInventors: Peter Birke, Reinhard Geyer, Jurgen Hunold, Peter Kraak, Rainer Schoedel
-
Publication number: 20140275686Abstract: The present invention relates generally to catalysts and methods for use in olefin production. More particularly, the present invention relates to novel amorphously supported single-center, Lewis acid metal ions and use of the same as catalysts.Type: ApplicationFiled: March 14, 2013Publication date: September 18, 2014Inventor: Uchicago Argonne, LLC
-
Patent number: 8734743Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.Type: GrantFiled: June 9, 2011Date of Patent: May 27, 2014Assignee: BASF SEInventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
-
Patent number: 8709341Abstract: An air purifying system includes one or more air permeable photocatalytic elements defining a core cavity having a sealed top end and an open bottom end. A sealed air flow path ensures that air travels from an outside of the core cavity, through the one or more photocatalytic elements, into the core cavity, to be expelled through the open bottom end. A UV radiation source disposed within the core cavity irradiates air travelling along the sealed flow path and an interior of the one or more photocatalytic elements. Each photocatalytic element is manufactured using a substrate, that is conductive of and transparent to UV radiation, coated with a photocatalyst. A non-photocatalytically active material is initially coated on the substrate and is then converted to a photocatalyst by calcination.Type: GrantFiled: June 21, 2010Date of Patent: April 29, 2014Assignee: Morphic Envirotech Inc.Inventors: Edwin David Day, Bernard K Deschner
-
Publication number: 20140106260Abstract: Core-shell nanoparticulate compositions and methods for making the same are disclosed. In some embodiments core-shell nanoparticulate compositions comprise transition metal core encapsulated by metal oxide shell. Methods of catalysis comprising core-shell nanoparticulate compositions of the invention are disclosed. Compositions comprising core-shell nanoparticles displayed on a metal-oxide support and methods for preparing the same are also disclosed. In some embodiments compositions comprise core-shell nanoparticles displayed as a substantially single layer superposed on a metal oxide support. Methods of catalysis employing the supported core-shell nanoparticles are disclosed.Type: ApplicationFiled: October 3, 2013Publication date: April 17, 2014Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIAInventors: MATTEO CARGNELLO, RAYMOND J. GORTE, PAOLO FORNASIERO
-
Publication number: 20130310610Abstract: A heterogeneous catalyst that is a combination of rhodium, zinc, iron, a fourth metal and at least one metal selected from alkali metals and alkaline earth metals on a catalyst support (e.g. at least one of silica, alumina, titania, magnesia, zinc aluminate (ZnAl2O4), magnesium aluminate (MgAl2O4), magnesia-modified alumina, zinc oxide-modified alumina, zirconium oxide-modified alumina, and zinc oxide) and use of the catalyst in converting an alkylene to an oxygenate that has one more carbon atom than the alkylene.Type: ApplicationFiled: January 12, 2012Publication date: November 21, 2013Applicant: Dow Global Technologies LLCInventors: Palanichamy Manikandan, Sreenivasa Rao, Phani Kiran Bollapragada, David G. Barton, Richard M. Wehmeyer, William Tenn, Gerolamo Budroni
-
Publication number: 20130296164Abstract: Catalysts and processes for forming catalysts for use in hydrogenating acetic acid to form ethanol. In one embodiment, the catalyst comprises a first metal, a silicaceous support, and at least one metasilicate support modifier. Preferably, the first metal is selected from the group consisting of copper, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, titanium, zinc, chromium, rhenium, molybdenum, and tungsten. In addition the catalyst may comprise a second metal preferably selected from the group consisting of copper, molybdenum, tin, chromium, iron, cobalt, vanadium, tungsten, palladium, platinum, lanthanum, cerium, manganese, ruthenium, rhenium, gold, and nickel.Type: ApplicationFiled: June 12, 2013Publication date: November 7, 2013Inventors: Victor J. Johnston, Barbara F. Kimmich, John L. Potts, Heiko Weiner, Radmila Wollrab, James H. Zink, Josefina T. Chapman, Laiyuan Chen
-
Patent number: 8518851Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.Type: GrantFiled: October 17, 2008Date of Patent: August 27, 2013Assignee: Shell Oil CompanyInventors: Peter Birke, Reinhard Geyer, Jürgen Hunold, Peter Kraak, Rainer Schoedel
-
Publication number: 20130172599Abstract: A silica-based material comprising: silicon; aluminum; at least one fourth period element selected from the group consisting of iron, cobalt, nickel and zinc; and at least one basic element selected from the group consisting of alkali metal elements, alkali earth metal elements and rare earth elements, wherein the silica-based material comprises 42 to 90 mol % of the silicon, 3 to 38 mol % of the aluminum, 0.5 to 20 mol % of the fourth period element and 2 to 38 mol % of the basic element, based on a total mole of the silicon, the aluminum, the fourth period element and the basic element.Type: ApplicationFiled: September 16, 2010Publication date: July 4, 2013Applicant: ASAHI KASEI CHEMICALS CORPORATIONInventors: Ken Suzuki, Tatsuo Yamaguchi, Chihiro Iitsuka
-
Publication number: 20130172177Abstract: A catalyst comprising (i) a support, (ii) metal particles and (iii) a shell which is arranged between the metal particles, wherein the shell (iii) comprises silicon oxide.Type: ApplicationFiled: September 13, 2011Publication date: July 4, 2013Applicant: BASF SEInventors: Imme Domke, Wolfgang Rohde, Piotr Antoni Bazula, Norbert Mronga, Yong Liu, Martin Dieterle, Stanley Roth, Curtis Zimmermann, Xinyi Wei, Philipp Raff, Stephan Andreas Schunk, Olga Gerlach, Andreas Strasser, Michael Paul
-
Publication number: 20130158328Abstract: The invention provides a process for producing an unsaturated hydrocarbon by dehydrogenating a hydrocarbon into a corresponding unsaturated hydrocarbon with use of a nontoxic catalyst having a long catalytic life. The process for producing unsaturated hydrocarbons includes a step of dehydrogenating a hydrocarbon into a corresponding unsaturated hydrocarbon by contacting the hydrocarbon with a catalyst A that is obtained by supporting zinc and a Group VIIIA metal on a silicate obtained by removing at least part of the boron atoms from a borosilicate.Type: ApplicationFiled: August 9, 2011Publication date: June 20, 2013Inventors: Phala Heng, Shinichiro Ichikawa, Junichi Ishikawa, Hirokazu Ikenaga, Jun Kawahara, Yoshida Goa
-
Patent number: 8415267Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.Type: GrantFiled: June 4, 2012Date of Patent: April 9, 2013Assignee: Korea University Research and Business FoundationInventor: Kwangyeol Lee
-
Patent number: 8410014Abstract: Especially physically stable metal oxide catalyst supports are prepared by suspending a metal oxide in a continuous phase, activating by fine dispersion, coagulation to a viscoelastic mass, shaping, drying, and calcining. The catalyst support thus prepared may be treated with catalytic agents to produce supported catalysts for olefin oxidation.Type: GrantFiled: December 6, 2007Date of Patent: April 2, 2013Assignee: Wacker Chemie AGInventors: Roland Heidenreich, Hans-Jurgen Eberle, Johann Weis
-
Patent number: 8404204Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the color is maintained and the quality of the air is improved.Type: GrantFiled: March 31, 2008Date of Patent: March 26, 2013Assignee: Rockwood Italia SpAInventors: Marino Sergi, Christian Egger
-
Patent number: 8404614Abstract: A process for preparing a catalyst by selecting an active catalyst and contacting the active catalyst with one or more fluids containing an organic solvent or mixture of organic solvents. In one embodiment, each organic solvent has a dielectric constant within a range of about 5 to about 55 when measured at a temperature of 20° C. to 25° C. The catalyst thus prepared may be used in a process for preparing maleic anhydride.Type: GrantFiled: October 22, 2008Date of Patent: March 26, 2013Assignee: Huntsman Petrochemical LLCInventor: Zhiping Shan
-
Patent number: 8236262Abstract: A particulate desulfurization material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulfurization material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulfurization material may be used to desulfurize hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.Type: GrantFiled: February 25, 2009Date of Patent: August 7, 2012Assignee: Johnson Matthey PLCInventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Patent number: 8216961Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.Type: GrantFiled: August 27, 2008Date of Patent: July 10, 2012Assignee: Korea University Research and Business FoundationInventor: Kwangyeol Lee
-
Publication number: 20120149558Abstract: The invention relates to a method for producing hydrogen silanes of general formula RnCl3-nSiH by converting chlorosilanes of general formula RnCl4-nSi, where R, in both formulas simultaneously and independently of each other, is a hydrogen atom, an optionally substituted or unsubstituted hydrocarbon radical having 1 to 18 carbon atoms, and n can have the value of 1-3, and hydrogen gas in the presence of a catalytic quantity (K): zinc and/or an alloy comprising zinc on a metal oxide carrier.Type: ApplicationFiled: August 12, 2010Publication date: June 14, 2012Applicant: Wacker Chemie AGInventors: Alexander Zipp, Hans-Jürgen Eberle
-
Publication number: 20120142520Abstract: A catalyst system is disclosed for catalytic pyrolysis of a solid biomass material. The system comprises an oxide, silicate or carbonate of a metal or a metalloid. The specific combined meso and macro surface area of the system is in the range of from 1 m2/g to 100 m2/g. When used in a catalytic process the system provides a high oil yield and a low coke yield. The liquid has a relatively low oxygen content.Type: ApplicationFiled: April 22, 2010Publication date: June 7, 2012Applicant: KIOR INC.Inventors: Robert Bartek, Michael Brady, Dennis Stamires
-
Patent number: 8143187Abstract: A process for preparing supported catalyst in pellet or coated monolith form is disclosed the method includes the steps of: forming a mixed metal carbonate complex having at least two metals by subjecting a first metal carbonate containing compound to ion exchange with desired metal cations; heat treating the resulting mixed metal carbonate complex to form a mixed oxide which consists of active metal oxides supported on a catalyst support; forming the resulting supported catalysts into pellets or coating the resulting supported catalyst onto a monolithic support. The catalysts may be used for treating effluents containing organic material in the presence of an oxidising agent.Type: GrantFiled: October 3, 2002Date of Patent: March 27, 2012Assignee: Commonwealth Scientific and Industrial Research OrganisationInventors: Manh Hoang, Kingsley Opoku-Gyamfi
-
Publication number: 20120065056Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e ??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminium, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurisation and hydrodenitrification.Type: ApplicationFiled: November 17, 2011Publication date: March 15, 2012Applicant: SHELL OIL COMPANYInventors: Laszlo DOMOKOS, Hermanus JONGKIND, Johannes Anthonius Robert VAN VEEN
-
Publication number: 20120058884Abstract: Techniques for coating a fiber with metal oxide include forming silica in the fiber to fix the metal oxide to the fiber. The coated fiber can be used to facilitate photocatalysis.Type: ApplicationFiled: November 9, 2011Publication date: March 8, 2012Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATIONInventor: Kwangyeol Lee
-
Publication number: 20120021305Abstract: A desulfurizing agent for a hydrocarbon comprises: 10 to 30 percent by mass of a porous inorganic oxide based on the total mass of the desulfurizing agent; 3 to 40 percent by mass of zinc oxide; and 45 to 75 percent by mass of a nickel atom in terms of nickel oxide, wherein the reduction degree of the nickel atom is 50 to 80 percent, and wherein the amount of hydrogen adsorption per unit desulfurizing agent mass is 3.5 to 4.6 ml/g.Type: ApplicationFiled: March 31, 2010Publication date: January 26, 2012Applicant: JX Nippon Oil & Energy CorporationInventors: Yoshiyuki Nagayasu, Yoshie Miyai, Takaya Matsumoto, Kimika Ishizuki
-
Patent number: 8071655Abstract: A catalyst applicable to the synthesis gas conversions especially E-T slurry processes, said catalyst comprising: a) a support containing at least a first aluminate element of mixed spinel structure of formula MxM?(1?x)Al2O4/Al2O3.SiO2, x ranging between and excluding 0 and 1, or of simple spinel structure of formula MAl2O4/Al2O3.SiO2, said support being calcined in an at least partly oxidizing atmosphere, at a temperature ranging between 850° C. and 900° C., and b) an active phase deposited on said support, which contains one or more group VIII metals, selected from among cobalt, nickel, ruthenium or iron. Said catalyst is used in a fixed bed or suspended in a three-phase reactor for hydrocarbon synthesis from a CO, H2 mixture.Type: GrantFiled: November 17, 2005Date of Patent: December 6, 2011Assignees: IFP Energies Nouvelles, ENI S.p.A.Inventors: Fabrice Diehl, François Hugues, Marie-Claire Marion, Denis Uzio
-
Publication number: 20110257443Abstract: A catalyst comprising a first metal, a silicaceous support, and at least one metasilicate support modifier, wherein at least 1 wt. % of the at least one metasilicate support modifier is crystalline in phase, as determined by x-ray diffraction. The invention also relates to processes for forming such catalysts, to supports used therein, and to processes for hydrogenating acetic acid in the presence of such catalysts.Type: ApplicationFiled: February 1, 2011Publication date: October 20, 2011Applicant: CELANESE INTERNATIONAL CORPORATIONInventors: Heiko Weiner, Victor J. Johnston
-
Publication number: 20110172482Abstract: A catalyst that comprises at least one binder and at least one crystallized material with hierarchized and organized porosity in the fields of microporosity and mesoporosity is described, whereby said crystallized material consists of at least two elementary spherical particles, each of said particles comprising a mesostructured silicon-oxide-based matrix that has a mesopore diameter of between 1.5 and 30 nm and that has microporous and crystallized walls with a thickness of between 1 and 60 nm, whereby said elementary spherical particles have a maximum diameter of 200 microns. Said catalyst is used in a process for oligomerization of an olefinic feedstock that contains hydrocarbon molecules that have 2 to 12 carbon atoms per molecule.Type: ApplicationFiled: April 28, 2009Publication date: July 14, 2011Applicant: IFP ENERGIES NOUVELLESInventors: Amandine Cabiac, Alexandra Chaumonnot, Laurent Simon
-
Publication number: 20110136658Abstract: A catalyst used in the reaction of oxidative bromination of methane is provided. The catalyst is prepared by the following procedures: mixing at least one of the precursors selected from the compounds of Rh, Ru, Cu, Zn, Ag, Ce, V, W, Cd, Mo, Mn, Cr and La which can dissolve in water with the Si precursor, hydrolyzing, drying and sintering. In the catalysis system, methane reacts with HBr, H2O and oxygen source (O2, air or oxygen-rich air), finally CH3Br and CH2Br2 are produced. Another catalyst used in the reaction of condensation of methane bromide to C3-C13 hydrocarbons is also provided. This catalyst is prepared by supporting compounds of Zn or Mg on molecular sieves such as HZSM-5, HY, Hb, 3A, 4A, 5A or 13X et al. With this catalyst, CH3Br and CH2Br2 produced in the former process can react further to give C3 to C13 hydrocarbons and HBr, and HBr can be recycled as a medium.Type: ApplicationFiled: April 14, 2008Publication date: June 9, 2011Inventors: Zhen Liu, Hongmin Zhang, Wensheng Li, Yanqun Ren, Xiaoping Zhou
-
Publication number: 20110058999Abstract: According to one embodiment, described herein is an exhaust gas after-treatment system that is coupleable in exhaust gas stream receiving communication with an internal combustion engine. The exhaust gas after-treatment system includes a low temperature SCR catalyst configured to reduce NOx in exhaust gas having a temperature below a temperature threshold. The system also includes a normal-to-high temperature SCR catalyst configured to reduce NOx in exhaust gas having a temperature above the temperature threshold.Type: ApplicationFiled: September 10, 2010Publication date: March 10, 2011Applicant: CUMMINS IP, INCInventors: Padmanabha Reddy Ettireddy, Matthew Henrichsen
-
Publication number: 20110053020Abstract: Nanostructured catalysts and related methods are described. The nanostructured catalysts have a hierarchical structure that facilitates modification of the catalysts for use in particular reactions. Methods for generating hydrogen from a hydrogen-containing molecular species using a nanostructured catalyst are described. The hydrogen gas may be collected and stored, or the hydrogen gas may be collected and consumed for the generation of energy. Thus, the methods may be used as part of the operation of an energy-consuming device or system, e.g., an engine or a fuel cell. Methods for storing hydrogen by using a nanostructured catalyst to react a dehydrogenated molecular species with hydrogen gas to form a hydrogen-containing molecular species are also described.Type: ApplicationFiled: November 7, 2008Publication date: March 3, 2011Applicants: WASHINGTON STATE UNIVERSITY RESEARCH FOUNDATION, IDAHO RESEARCH FOUNDATION, INC.Inventors: M. Grant Norton, David N. McIlroy
-
Patent number: 7846867Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.Type: GrantFiled: August 30, 2007Date of Patent: December 7, 2010Assignee: China Petroleum & Chemical CorporationInventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
-
Patent number: 7846977Abstract: The present invention relates to a catalyst comprising a preferably oxidic, core material, a shell of zinc oxide around said core material, and a catalytically active material in or on the shell, based on one or more of the metals cobalt, iron, ruthenium and/or nickel, preferably a Fischer-Tropsch catalyst, to the preparation of such a catalyst and the use thereof in GTL processes.Type: GrantFiled: June 17, 2008Date of Patent: December 7, 2010Assignee: BASF CorporationInventors: Cornelis Roeland Baijense, Geoffrey Johnson, Ahmad Moini
-
Publication number: 20100190637Abstract: The invention relates to the use of nanoscale zinc oxide, prepared by a sol-gel process, as curing catalyst, in particular for liquid coatings.Type: ApplicationFiled: May 23, 2008Publication date: July 29, 2010Applicant: Merck Patent GesellschaftInventors: Matthias Koch, Sabine Renker, Gerhard Jonschker
-
Patent number: 7737078Abstract: The formation of H2S in a stoichiometric or reducing atmosphere is restrained without using Ni or Cu as an environmental load substance. An additional oxide composed of an oxide of at least one kind of metal selected from the group consisting of Bi, Sn and Zn was added to a three-way catalyst for purifying an exhaust gas emitted from an internal combustion engine of which the combustion is controlled in near a stoichiometric atmosphere in the amount of from 0.02 mol to 0.2 mol per liter of the catalyst. The additional oxide forms SO3 or SO4 from SO2 in an oxidizing atmosphere, and stores sulfur components as a sulfide in a reducing atmosphere so that emission of H2S can be restrained. And since no environmental load substance is contained, the catalyst can be used safely.Type: GrantFiled: December 1, 2005Date of Patent: June 15, 2010Assignee: Toyota Jidosha Kabushiki KaishaInventor: Hiromasa Suzuki
-
Patent number: 7666296Abstract: The invention relates to a process for converting heavy hydrocarbonaceous feedstocks carried out in a slurry reactor in the presence of hydrogen and in the presence of a catalytic composition obtained by: injecting a catalytic precursor of at least one metal of Group VIB and/or Group VIII in at least part of the feedstock to be treated in the absence of an oxide substrate, thermal treatment at a temperature of 400° C.Type: GrantFiled: December 20, 2007Date of Patent: February 23, 2010Assignee: Institut Francais du PetroleInventor: Magalie Roy-Auberger
-
Publication number: 20090240010Abstract: The present invention provides activator-supports containing alumina-silica compounds with high levels of alumina, and polymerization catalyst compositions employing these activator-supports. Methods for making these activator-supports based on alumina-silica and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.Type: ApplicationFiled: March 20, 2008Publication date: September 24, 2009Inventors: Max P. McDaniel, Qing Yang, Randy S. Muninger, Elizabeth A. Benham, Kathy S. Collins
-
Patent number: 7585812Abstract: A catalyst for use in the Fischer-Tropsch process, and a method to prepare the catalyst is disclosed. The catalyst of the present invention has a higher surface area, more uniform metal distribution, and smaller metal crystallite size than Fischer-Tropsch catalysts of the prior art.Type: GrantFiled: June 20, 2008Date of Patent: September 8, 2009Assignee: Sud-Chemie Inc.Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
-
Patent number: 7585353Abstract: A method for reducing heavy metals, in particular in mercury, present in flue gases, includes the step of bringing the flue gases into contact with a particular class of sorbent material in the dry state. A preferred class of dry sorbent materials can be provided from a mineral compound selected from among halloysites and phyllosilicates of the palygorskite subgroup and the sepiolite subgroup of the palygorskite-sepiolite group according to the Dana classification. Mineral compounds of this group have been shown to provide a reduction in heavy metals, in particular in mercury, present in flue gases.Type: GrantFiled: March 14, 2005Date of Patent: September 8, 2009Assignee: S.A. Lhoist Recherche et DeveloppmentInventors: Amandine Gambin, Alain Laudet
-
Patent number: 7582202Abstract: A Composition comprising one or more metal hydroxy salts and a matrix, binder or carrier material, wherein the metal hydroxy salt is a compound comprising (a) as metal either (i) one or more divalent metals, at least one of them being selected from the group consisting of Ni, Co, Ca, Zn, Mg, Fe, and Mn, or (ii) one or more trivalent metal(s), (b) framework hydroxide, and (c) a replaceable anion. This composition has various catalytic applications.Type: GrantFiled: February 10, 2004Date of Patent: September 1, 2009Assignees: Akzo Nobel N.V., Albemarle Netherlands B.V.Inventors: William Jones, Paul O'Connor, Dennis Stamires
-
Publication number: 20090209414Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminium, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurisation and hydrodenitrification.Type: ApplicationFiled: April 29, 2009Publication date: August 20, 2009Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Rober Van Veen
-
Patent number: 7572750Abstract: A hybrid homogeneous-heterogeneous catalyst containing catalytic groups, wherein the catalytic activity of the catalyst is largely provided as a result of the interaction of catalytic groups in a suitable proximity and disposition to other catalytic groups, the proximity and disposition resulting from statistical considerations, wherein an example of such catalyst is a polypyrrole-ferrocene monosulfate represented by Formula IV.Type: GrantFiled: February 11, 2003Date of Patent: August 11, 2009Assignee: University of WollongongInventors: Jun Chen, Gerhard F. Swiegers, Chee O. Too, Gordon G. Wallace
-
Patent number: 7544285Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminium, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurisation and hydrodenitrification.Type: GrantFiled: February 20, 2004Date of Patent: June 9, 2009Assignee: Shell Oil CompanyInventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
-
Patent number: 7534340Abstract: Process for the contemporaneous production of fuels and lubricating bases from synthetic paraffinic mixtures, which includes a hydrocracking step in the presence of a solid bi-functional catalyst comprising: (A) a support of an acidic nature consisting of a catalytically active porous solid, including silicon, aluminum, phosphorus and oxygen bonded to one another in such a way as to form a mixed amorphous solid characterized by an Si/Al atomic ratio of between 15 and 250, a P/Al ratio of at least 0.1, but lower than 5, a total pore volume ranging from 0.5 to 2.0 ml/g, with an average pore diameter ranging from 3 nm. to 40 nm, and a specific surface area ranging from 200 to 1000 M2/g; (B) at least one metal with a hydro-dehydrogenating activity selected from groups 6 to 10 of the periodic table of elements, dispersed on said support (A) in an amount of between 0.05 and 5% by weight with respect to the total weight of the catalyst.Type: GrantFiled: June 28, 2004Date of Patent: May 19, 2009Assignees: ENI S.p.A., Institute Francais du Petrole, Enitecnologie S.p.A.Inventors: Vincenzo Calemma, Cristina Flego, Luciano Cosimo Carluccio, Wallace Parker, Roberto Giardino, Giovanni Faraci
-
Patent number: 7518023Abstract: The invention relates to highly active spherical metal support catalysts with a metal content of 10 to 70% by mass, and a process for their production with the use of a mixture of polysaccharides and at least one metal compound which is dropped into a metal salt solution.Type: GrantFiled: December 14, 2006Date of Patent: April 14, 2009Assignee: Shell Internationale Research Maatschappij, B.V.Inventors: Reinhard Geyer, Rainer Schödel, Peter Birke, Jürgen Hunold
-
Publication number: 20090088317Abstract: A reduction catalyst having a first metal component comprising one of Co, Os, Fe, Re, Rh and Ru. The first metal component is present in the catalyst at from 0.5 percent to 20 percent, by weight. A second metal component differing from the first metal component present in the catalyst with the second metal component being selected from the group consisting of Fe, Mn, Ru, Os, Rh, Ir, Ni, Pd, Pt, Ag, Au, Zn, Co, Re, Cu, Pb, Cr, W, Mo, Sn, Nb, Cd, Te, V, Bi, Ga and Na. A hydrogenation catalyst comprising one or both of Ni and Co and one or more elements selected from the group consisting of Mn, Fe, Ag, Au, Mo and Rh.Type: ApplicationFiled: September 28, 2007Publication date: April 2, 2009Inventors: John G. Frye, JR., Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher