Of Iron Patents (Class 502/338)
-
Patent number: 11319854Abstract: A catalytic device that can increase the durability of a catalyst support with holes is provided. A flat plate and a corrugated plate have a plurality of holes, a joint area between the flat plate and the corrugated plate is provided in a first upstream area including one end of a catalyst support, and a joint area between the catalyst support and an outer cylinder is provided in a second upstream area that includes the first upstream area and is wider than the first upstream area in the direction of an axis.Type: GrantFiled: August 1, 2019Date of Patent: May 3, 2022Assignees: HONDA MOTOR CO., LTD., VITESCO TECHNOLOGIES GMBHInventors: Hiroyuki Horimura, Kosaku Ito, Francois Jayat, Daiji Kawaguchi, Kazuhisa Maeda, Sven Seifert, Michael Voit
-
Patent number: 11273409Abstract: Provided is a catalyst device that makes it possible to efficiently purify exhaust gas. A catalyst device that comprises: a carrier that is formed by stacking and rolling a metal-foil-shaped flat plate and a metal-foil-shaped corrugated plate and that carries a catalyst; and an outer cylinder that houses the carrier and supports the carrier such that one end part of the carrier is oriented toward an exhaust gas upstream side and another end part of the carrier is oriented toward an exhaust gas downstream side. The flat plate and the corrugated plate have a plurality of holes and are covered by a coating film that includes a catalyst substance. The coating film that covers the downstream side of the holes is thicker than the coating film that covers the upstream side of the holes.Type: GrantFiled: August 6, 2019Date of Patent: March 15, 2022Assignee: HONDA MOTOR CO., LTD.Inventors: Kazuhisa Maeda, Hiromitsu Takeda, Hiroyuki Horimura
-
Patent number: 11208932Abstract: Provided is a catalyst device that can equalize the strength of a carrier in the direction of the flow of exhaust gas. According to the present invention, a flat plate and a corrugated plate have a plurality of holes. When the flat plate and the corrugated plate are in a flat state before being made into a carrier, the plurality of holes form: a plurality of first rows that run along a first direction that is parallel to the axial direction of the carrier; and a plurality of second rows that run along a second direction that is orthogonal to the first direction. As seen from the second direction, the holes in one second row and the holes in the other second row of adjacent second rows have portions that overlap each other.Type: GrantFiled: August 6, 2019Date of Patent: December 28, 2021Assignee: HONDA MOTOR CO., LTD.Inventors: Kazuhisa Maeda, Hiroyuki Horimura, Toshiaki Kimura
-
Patent number: 11033877Abstract: Embodiments provided herein are compositions directed to porous iron oxides, which are suitable for removing hydrogen sulfide and other sulfur-containing organic contaminants from hydrocarbon streams, and in which the iron oxide component of the composition contains both maghemite and hematite phases, with maghemite forming the greater portion of these phases. In some embodiments, magnetite, aluminum oxide, alumina silicate, and a binder comprised of an organic substance are homogenized, followed by calcining which burns away the organic and converts magnetite to a mix of maghemite and hematite.Type: GrantFiled: September 12, 2017Date of Patent: June 15, 2021Assignee: Clariant international, LtdInventors: Valéria Perfeito Vicentini, Chandra Ratnasamy, Jeff Braden, Matthew R. Purcell, Marc Kemper Born, Marco Antonio Logli
-
Patent number: 10463734Abstract: Nanoparticles comprising a metal oxide and a platinum cluster having a height to base ratio greater than 1 and compositions containing the same are disclosed. Methods of using the nanoparticles in producing hydroxyl radicals and in photodynamic therapy, for example, in the treatment of hyperproliferative disease such cancer, are also disclosed.Type: GrantFiled: April 24, 2015Date of Patent: November 5, 2019Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventor: Howard R. Petty
-
Patent number: 10464814Abstract: The invention shows a production apparatus for producing carbon nanotubes by the gas-phase catalysis process, comprising: a first chamber having a growth region that is a region in which carbon nanotubes are formed; a first temperature adjustment device capable of adjusting a temperature of the growth region in the first chamber; a pressure adjustment device capable of adjusting a pressure in the first chamber; a first feed device capable of feeding a carbon source to the growth region in the first chamber; a second temperature adjustment device capable of adjusting a temperature of a solid-phase iron family element-containing material disposed in the production apparatus; and a second feed device capable of feeding a gas-phase halogen-containing substance into the production apparatus so that the iron family element-containing material of which the temperature is adjusted to a predetermined temperature by the second temperature adjustment device can react with the halogen-containing substance.Type: GrantFiled: December 11, 2017Date of Patent: November 5, 2019Assignees: NATIONAL UNIVERSITY CORPORATION SHIZUOKA UNIVERSITY, JNC CORPORATIONInventors: Yoku Inoue, Takayuki Nakano, Tauto Nakanishi
-
Patent number: 10166531Abstract: A catalyst for selectively oxidizing hydrogen sulfide to element sulfur, catalyst for burning tail-gas, and process for deeply catalytically oxidizing hydrogen sulfide to sulfur are disclosed. The catalyst for selectively oxidizing hydrogen sulfide to element sulfur is prepared by: 10-34% of iron trioxide and 60-84% of anatase titanium dioxide, and the balance being are auxiliary agents. Also a catalyst for burning tail-gas is prepared by: 48-78% of iron trioxide and 18-48% of anatase titanium dioxide, and the balance being auxiliary agents. The catalyst of the present invention has high selectivity and high sulfur recovery rate. An isothermal reactor and an adiabatic reactor of the present invention are connected in series and are filled with the above two catalysts for reactions, thus reducing total sulfur in the vented gas while having a high sulfur yield and conversion rate.Type: GrantFiled: November 4, 2015Date of Patent: January 1, 2019Inventor: Nan Yang
-
Patent number: 9899668Abstract: Disclosed is a method of preparing a positive active material for a rechargeable lithium battery that includes mixing an iron source including a carbon source, a lithium source, and a phosphoric acid source to form a positive active material precursor for a rechargeable lithium battery, the positive active material precursor including a lithium iron phosphate precursor and a carbon precursor; pulverizing the positive active material precursor for a rechargeable lithium battery; and heat-treating the pulverized positive active material precursor for a rechargeable lithium battery.Type: GrantFiled: July 31, 2013Date of Patent: February 20, 2018Assignee: Samsung SDI Co., Ltd.Inventor: Ji-Hyun Kim
-
Patent number: 9776175Abstract: The present invention relates to a method for preparing liquid or solid hydrocarbons from syngas via the Fischer-Tropsch synthesis in the presence of iron-based catalysts, the iron-based catalysts for the use thereof, and a method for preparing the iron-based catalysts; more specifically, in the Fischer-Tropsch reaction, liquid or solid hydrocarbons may be prepared specifically with superior productivity and selectivity for C5+ hydrocarbons using the iron-based catalysts comprising iron hydroxide, iron oxide, and iron carbide wherein the number of iron atoms contained in the iron hydroxide is 30% or higher, and the number of iron atoms contained in the iron carbide is 50% or lower, relative to 100% of the number of iron atoms contained in the iron-based catalysts.Type: GrantFiled: June 18, 2015Date of Patent: October 3, 2017Assignee: Korea Institute of Energy ResearchInventors: Dong Hyun Chun, Ji Chan Park, Heon Jung, Ho-Tae Lee, Jung-Il Yang, Sungjun Hong
-
Patent number: 9708219Abstract: A cement including: an alkali silicate; an organic silicate; a compound selected from a group consisting of Pozzolanic compounds and synthetic Pozzolanic substitutes; a metal oxide; an activator.Type: GrantFiled: March 24, 2014Date of Patent: July 18, 2017Inventor: Trevor Cyril Waters
-
Patent number: 9533292Abstract: This invention relates to a method of preparing an iron carbide/carbon nanocomposite catalyst containing potassium for high temperature Fischer-Tropsch (FT) synthesis reaction and the iron carbide/carbon nanocomposite catalyst prepared thereby, and a method of manufacturing a liquid hydrocarbon using the same and a liquid hydrocarbon manufactured thereby, wherein a porous carbon support is uniformly impregnated with an iron hydrate using melt infiltration, and potassium is also supported together via various addition processes, including a pre-addition process of a potassium salt which is ground upon impregnation with the iron hydrate, or a mid- or post-addition process of a potassium solution using incipient wetness impregnation after impregnation with the iron hydrate.Type: GrantFiled: December 6, 2013Date of Patent: January 3, 2017Assignee: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Ji Chan Park, Heon Jung, Ho Tae Lee, Jung Il Yang, Dong Hyun Chun, Sung Jun Hong
-
Publication number: 20150148220Abstract: Process for manufacturing ZPGM catalysts systems that may allow the prevention of formation or the conversion of corrosion causing compounds, such as hexavalent chromium compounds, within ZPGM catalyst systems is disclosed. In one embodiment, disclosed ZPGM catalysts systems, may include metallic substrate, which may include alloys of iron and chromium, a washcoat and an overcoat. Disclosed manufacturing process may include a thermal decomposition of hexavalent chromium compounds which may allow the decomposition of such compounds into trivalent chromium compounds, and may also produce metallic catalyst, such as silver. Such conversion may prevent corrosion formation, such as red color corrosion within ZPGM catalyst system. An embodiment of the disclosed process may include a reducing agent, which may be present in exhaust conditions, which may convert hexavalent chromium compounds into trivalent chromium compounds as well as produce metallic catalyst, such as silver.Type: ApplicationFiled: January 28, 2015Publication date: May 28, 2015Applicant: CDTiInventor: Zahra Nazarpoor
-
Patent number: 9040450Abstract: A process for producing a composite oxide catalyst which includes a step of preparing an aqueous slurry containing at least iron and antimony and composed of a liquid phase and a solid phase, a step of drying the aqueous slurry to obtain a dried material, and a step of calcining the obtained dried material, wherein of the precipitated particles having a particle size of not less than 1 ?m but less than 150 ?m contained within the aqueous slurry, the proportion of precipitated particles having a particle size of not less than 1 ?m but less than 10 ?m is within a range from 40 to 90% by volume, and the proportion of precipitated particles having a particle size of not less than 10 ?m but less than 150 ?m is within a range from 10 to 60% by volume.Type: GrantFiled: September 10, 2010Date of Patent: May 26, 2015Assignee: Dia-Nitrix Co., Ltd.Inventors: Kenichi Miyaki, Motoo Yanagita, Hirokazu Watanabe, Takashi Karasuda
-
Patent number: 9040446Abstract: A method for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In one embodiment, the process comprises: sulfiding at least a metal precursor solution with at least a sulfiding agent forming a sulfided Group VIB catalyst precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst composition. The slurry catalyst prepared therefrom has a BET total surface area of at least 100 m2/g, a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter.Type: GrantFiled: December 20, 2011Date of Patent: May 26, 2015Assignee: Chevron U.S.A. Inc.Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
-
Patent number: 9040447Abstract: A process for making an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, a metal precursor solution comprising at least a water-soluble molybdenum compound and a water-soluble metal zinc compound is mixed under high shear mixing conditions to generate an emulsion. The emulsion is subsequently sulfided with a sulfiding agent ex-situ, or in-situ in a heavy oil feedstock to form the slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.Type: GrantFiled: December 20, 2011Date of Patent: May 26, 2015Assignee: Chevron U.S.A. Inc.Inventors: Oleg Mironov, Alexander E. Kuperman
-
Publication number: 20150141238Abstract: Nanocatalysts and methods of using the same to obtain aromatic hydrocarbon compounds from a source of carbon atoms and a source of hydrogen atoms in a single reaction step is provided. The catalyst comprises an Fe/Fe3O4 nanocatalyst that may be supported on a non-reactive support material such as a zeolite or alumina CO2 and H2 are preferred sources of carbon and hydrogen atoms for the reaction. The aromatic hydrocarbon compounds produced are suitable for direct usage as fuel without need for further refining.Type: ApplicationFiled: January 23, 2015Publication date: May 21, 2015Inventors: Hongwang Wang, Stefan H. Bossmann, Donghai Wang, Deryl L. Troyer, Tej Shrestha
-
Patent number: 9029286Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.Type: GrantFiled: April 29, 2013Date of Patent: May 12, 2015Assignee: Massachusettes Institute of TechnologyInventors: Brian Neltner, Angela M. Belcher
-
Patent number: 9024090Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.Type: GrantFiled: December 19, 2012Date of Patent: May 5, 2015Assignee: Celanese International CorporationInventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
-
Publication number: 20150111725Abstract: Novel photocatalytic devices are disclosed, that utilize ultrathin titania based photocatalytic materials formed on optical elements with high transmissivity, high reflectivity or scattering characteristics, or on high surface area or high porosity open cell materials. The disclosure includes methods to fabricate such devices, including MOCVD and ALD. The disclosure also includes photocatalytic systems that are either standalone or combined with general illumination (lighting) utility, and which may incorporate passive fluid exchange, user configurable photocatalytic optical elements, photocatalytic illumination achieved either by the general illumination light source, dedicated blue or UV light sources, or combinations thereof, and operating methodologies for combined photocatalytic and lighting systems.Type: ApplicationFiled: October 21, 2014Publication date: April 23, 2015Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder
-
Patent number: 9012352Abstract: The present invention relates to a catalyst for Fischer-Tropsch synthesis which has excellent heat transfer capability. This catalyst contains (1) central core particle or particles made of a heat transfer material (HTM) selected from the group consisting of a metal, a metal oxide, a ceramic, and a mixture thereof; and (2) outer particle layer which surrounds the central core particles and is attached to the surfaces of the central core particles by a binder material layer. The outer particle layer has a support and catalyst particles in a powder form containing metal particles disposed on the support. The catalyst having such a dual particle structure shows excellent heat transfer capability and, thus, exhibits high selectivity to a target hydrocarbon. Therefore, the catalyst of the present invention is useful in a fixed-bed reactor for Fischer-Tropsch synthesis for producing hydrocarbons from synthetic gas.Type: GrantFiled: April 25, 2012Date of Patent: April 21, 2015Assignee: Korea Research Institute of Chemical TechnologyInventors: Kyoung Su Ha, Joo Young Cheon, Yun Jo Lee, Seung-Chan Baek, Geun Jae Kwak, Seon Ju Park, Ki Won Jun
-
Patent number: 9012351Abstract: A method for continuously preparing a metal oxides catalyst comprises the following steps: dissolving metal materials using nitric acid solution to produce a metal nitrate solution, and also to produce NOx and water vapor; hydrolyzing the metal nitrate solution by introducing pressurized superheated water vapor into the metal nitrate solution to obtain a slurry of the hydrates of metal oxides as well as acidic gas, the main components of the acidic gas are NO2, NO, O2 and water vapor; filtrating and drying the slurry to obtain the hydrates of metal oxides and/or metal oxides; and then utilizing the obtained hydrates of metal oxides and/or metal oxides as raw materials and preparing the metal oxides catalyst by the conventional method for preparing a catalyst. The NOx gas produced can be absorbed to produce nitric acid which can be reused.Type: GrantFiled: June 29, 2009Date of Patent: April 21, 2015Assignee: SynFuels China Technology Co., Ltd.Inventors: Yong Yang, Baoshan Wu, Jian Xu, Hongwei Xiang, Yongwang Li
-
Patent number: 9011785Abstract: A high-temperature-resistant component for an exhaust-gas treatment unit, an exhaust-gas treatment unit and a method for producing such a unit, include providing the component or the exhaust-gas treatment unit with a surface layer intended to prevent the formation of chromium carbide bridges during a brazing process for producing the exhaust-gas treatment unit.Type: GrantFiled: December 3, 2012Date of Patent: April 21, 2015Assignee: EMITEC Gesellschaft fuer Emissionstechnologies mbHInventor: Dieter Lutz
-
Patent number: 9011807Abstract: Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.Type: GrantFiled: October 17, 2013Date of Patent: April 21, 2015Assignees: BASF Corporation, N. E. Chemcat Corporation, Heesung Catalysts CorporationInventors: Jaya L. Mohanan, Patrick Burk, Michael J. Breen, Barbara Slawski, Makoto Nagata, Yasuyuki Banno, Eunseok Kim
-
Patent number: 8999145Abstract: One exemplary embodiment can be a slurry hydrocracking process. The process can include providing one or more hydrocarbon compounds having an initial boiling point temperature of at least about 340° C., and a slurry catalyst to a slurry hydrocracking zone. The slurry catalyst may have about 32-about 50%, by weight, iron; about 3-about 14%, by weight, aluminum; no more than about 10%, by weight, sodium; and about 2-about 10%, by weight, calcium. Typically, all catalytic component percentages are as metal and based on the weight of the dried slurry catalyst.Type: GrantFiled: October 15, 2012Date of Patent: April 7, 2015Assignee: UOP LLCInventors: Lorenz J. Bauer, Maureen L. Bricker, Beckay J. Mezza, Alakananda Bhattacharyya
-
Patent number: 8992870Abstract: The present invention relates to a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support for decomposition of N2O in gases containing NO. The catalyst may also contain 0.01-2 weight % ZrO2. The invention further comprises a method for performing a process comprising formation of N2O. The N2O containing gas is brought in contact with a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support, at 250-1000° C. The method may comprise that ammonia is oxidized in presence of an oxidation catalyst and that the thereby formed gas mixture is brought in contact with the catalyst comprising the cobalt component on cerium oxide support at a temperature of 500-1000° C.Type: GrantFiled: October 26, 2009Date of Patent: March 31, 2015Assignee: Yara International ASAInventors: Øystein Nirisen, Klaus Schöffel, David Waller, Dag Øvrebø
-
Patent number: 8986637Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.Type: GrantFiled: November 6, 2013Date of Patent: March 24, 2015Assignee: Johnson Matthey Public Limited CompanyInventors: Janet Mary Fisher, David Thompsett
-
Patent number: 8980785Abstract: A catalyst structure suitable for use in an ammonia oxidation process is described including a plurality of shaped catalyst units supported on one or more members in a spaced relationship that allows the structure to flex.Type: GrantFiled: January 13, 2011Date of Patent: March 17, 2015Assignee: Johnson Matthey PLCInventor: Duncan Roy Coupland
-
Patent number: 8975206Abstract: A catalyst composition comprising a vanadate represented by the formula XVO4/S, wherein XVO4 stands for a Bi-, Sb-, Ga- and/or Al-vanadate optionally in mixture with one or more rare earth metal-vanadates, or in mixture with one or more transition metal-vanadates, or in mixture with one or more transition metal-vanadates and one or more rare earth metal-vanadates, and S is a support comprising TiO2, optionally in combination with a dopant and a process for the preparation of such catalyst compositions.Type: GrantFiled: April 12, 2011Date of Patent: March 10, 2015Assignee: Treibacher Industrie AGInventors: Karl Schermanz, Amod Sagar, Alessandro Trovarelli, Marzia Casanova
-
Patent number: 8969231Abstract: A method of producing an alumina-supported cobalt catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial ?-alumina support material at a temperature to produce a modified alumina support material; impregnating the modified alumina support material with a source of cobalt; calcining the impregnated support material, activating the catalyst with a reducing gas, steam treating the activated catalyst, and activating the steam treated catalyst with a reducing gas.Type: GrantFiled: August 31, 2010Date of Patent: March 3, 2015Assignee: GTL.FI AGInventors: Erling Rytter, Sigrid Eri, Rune Myrstad, Odd Asbjørn Lindvåg
-
Patent number: 8962518Abstract: Disclosed is a catalyst which can be used in the process for producing hydrogen by decomposing ammonia, can generate heat efficiently in the interior of a reactor without requiring excessive heating the reactor externally, and can decompose ammonia efficiently and steadily by utilizing the heat to produce hydrogen. Also disclosed is a technique for producing hydrogen by decomposing ammonia efficiently utilizing the catalyst. Specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising an ammonia-combusting catalytic component and an ammonia-decomposing catalytic component. Also specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising at least one metal element selected from the group consisting of cobalt, iron, nickel and molybdenum.Type: GrantFiled: March 17, 2010Date of Patent: February 24, 2015Assignee: Nippon Shokubai Co., Ltd.Inventors: Junji Okamura, Masanori Yoshimune, Masaru Kirishiki, Hideaki Tsuneki, Shinya Kitaguchi
-
Patent number: 8946113Abstract: The present invention relates to an Fe-modified perovskite-type catalyst, a method for preparing same and a method for preparing a synthesis gas by a combined reforming reaction using same. More particularly, it relates to a catalyst for a combined natural gas/steam/carbon dioxide reforming reaction having a perovskite structure with La and Sr introduced at the A site and Ni and Fe introduced at the B site with specific molar ratios and a method for producing a synthesis gas for Fischer-Tropsch synthesis or methanol synthesis using the catalyst by the combined reforming reaction. The catalyst of the present invention exhibits higher carbon dioxide conversion rate, significantly reduced catalyst deactivation caused by carbon deposition and improved long-term catalyst stability and activity, as compared to the existing catalyst for reforming reaction prepared by the impregnation method.Type: GrantFiled: June 4, 2013Date of Patent: February 3, 2015Assignee: Korea Institute of Science and TechnologyInventors: Dong Ju Moon, Eun Hyeok Yang, Jin Hee Lee, Hyun Jin Kim, Byoung Sung Ahn, Sang Woo Kim, Jae Sun Jung
-
Patent number: 8946108Abstract: A structurally promoted, precipitated, Fischer-Tropsch catalyst that exhibits an RCAI-10 of 0-2.8 and/or produces less than 6 wt % fines after 5 hours ASTM Air Jet Attrition testing, due to formation via: preparing a nitrate solution by forming at least one metal slurry and combining the at least one metal slurry with a nitric acid solution; combining the nitrate solution with a basic solution to form a precipitate; structurally promoting the precipitate with at least one source of silicon to form a promoted mixture, wherein promoting comprises combining the precipitate with (a) silicic acid and one or more component selected from the group consisting of non-crystalline silicas, crystalline silicas, and sources of kaolin or (b) a component selected from the group consisting of non-crystalline silicas and sources of kaolin, in the absence of silicic acid; and spray drying the promoted mixture to produce catalyst having a desired particle size.Type: GrantFiled: June 2, 2014Date of Patent: February 3, 2015Assignee: RES USA, LLC.Inventors: Dawid J. Duvenhage, Belma Demirel
-
Patent number: 8946114Abstract: A method of producing stable ferrous nitrate solution by dissolving iron in nitric acid to form a ferrous nitrate solution and maintaining the solution at a first temperature for a first time period, whereby the Fe(II) content of the ferrous nitrate solution changes by less than about 2% over a second time period. A method of producing stable Fe(II)/Fe(III) nitrate solution comprising ferrous nitrate and ferric nitrate and having a desired ratio of ferrous iron to ferric iron, including obtaining a stable ferrous nitrate solution; dissolving iron in nitric acid to form a ferric nitrate solution; maintaining the ferric nitrate solution at a second temperature for a third time period; and combining amounts of stable ferrous nitrate solution and ferric nitrate solution to produce the stable Fe(II)/Fe(III) nitrate solution. A method of preparing an iron catalyst is also described.Type: GrantFiled: May 29, 2009Date of Patent: February 3, 2015Assignee: Res USA, LLC.Inventors: Pandurang V. Nikrad, Jesse W. Taylor, Richard A. Bley, Danny M. Dubuisson, Sara L. Rolfe, Belma Demirel, Dawid J. Duvenhage, Harold A. Wright
-
Patent number: 8937203Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.Type: GrantFiled: August 27, 2012Date of Patent: January 20, 2015Assignee: Celanese International CorporationInventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
-
Publication number: 20150010455Abstract: Provided is a microwave catalyst. The microwave catalyst comprises: i) an active catalyst component comprising a metal and/or a metal oxide; ii) a microwave-absorbing component comprising at least one of CuO, ferrite spinel, and active carbon; and iii) a support. The microwave catalyst can be used for denitration by microwave catalysis, and has advantages such as high denitration efficiency, low energy consumption, environmental friendliness, and low costs. Also provided is a process for preparing the microwave catalyst and the use thereof.Type: ApplicationFiled: December 24, 2012Publication date: January 8, 2015Inventors: Jicheng Zhou, Zhe Wang, Hongli Wang, Meng Wang, Guiyue Mao, Zunfang Jiang, Lingfei Gao
-
Patent number: 8901027Abstract: A method of forming a Fischer-Tropsch catalyst by providing at least one metal nitrate solution, combining each of the at least one metal nitrate solutions with a precipitating agent whereby at least one catalyst precipitate is formed, and incorporating a strong base during precipitation, subsequent precipitation, or both during and subsequent precipitation. Catalysts produced via the disclosed method are also provided.Type: GrantFiled: November 15, 2011Date of Patent: December 2, 2014Assignee: Res USA, LLCInventors: Deena Ferdous, Belma Demirel
-
Patent number: 8889078Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.Type: GrantFiled: March 15, 2011Date of Patent: November 18, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
-
Patent number: 8883100Abstract: The present invention relates to a particle filter comprising a porous carrier body, an SCR active component and an oxidation catalyst, wherein the SCR active component is present as coating on the exhaust-gas entry surface and the inner surface of the porous carrier body and the oxidation catalyst as coating on the exhaust-gas exit surface of the porous carrier body. According to the invention the oxidation catalyst changes its function depending on operating conditions. In normal operation it serves as NH3 slip catalyst for oxidizing excess NH3 and during filter regeneration it operates according to the 3-way principle for converting NOx and CO. The invention also relates to a method for producing the particle filter, the use of the particle filter for treating exhaust gases from the combustion of fossil, synthetic or biofuels as well as an exhaust-gas cleaning system which contains the particle filter according to the invention.Type: GrantFiled: November 4, 2009Date of Patent: November 11, 2014Assignee: Sued-Chemie IP GmbH & Co. KGInventors: Martin Paulus, Klaus Wanninger
-
Patent number: 8871669Abstract: A catalyst composition is provided comprising a homogeneous solid mixture having ordered directionally aligned tubular meso-channel pores having an average diameter in a range of about 1 nanometer to about 15 nanometers, wherein the homogeneous solid mixture is prepared from a gel formed in the presence of a solvent, modifier, an inorganic salt precursor of a catalytic metal, an inorganic precursor of a metal inorganic network, and a templating agent. The templating agent comprises an octylphenol ethoxylate having a structure [I]: wherein “n” is an integer having a value of about 8 to 20.Type: GrantFiled: May 28, 2010Date of Patent: October 28, 2014Assignee: General Electric CompanyInventors: Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Ashish Balkrishna Mhadeshwar, Ming Yin
-
Publication number: 20140315386Abstract: Solid metal compound coated colloidal particles are made through a process by coating metal compounds onto colloidal particle surfaces. More specifically, metal compound precursors react with the base solution to form solid metal compounds. The solid metal compounds are deposited onto the colloidal particle surfaces through bonding. Excess ions are removed by ultrafiltration to obtain the stable metal compound coated colloidal particle solutions. Chemical mechanical polishing (CMP) polishing compositions using the metal compound coated colloidal particles prepared by the process as the solid state catalyst, or as both catalyst and abrasive, provide uniform removal profiles across the whole wafer.Type: ApplicationFiled: March 25, 2014Publication date: October 23, 2014Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Hongjun Zhou, Xiaobo Shi, James A. Schlueter, Jo-Ann T. Schwartz
-
Patent number: 8865120Abstract: The present invention is directed to a process for the production of ion-exchanged (metal-doped, metal-exchanged) Zeolites and Zeotypes, In particular, the method applied uses a sublimation step to incorporate the ion within the channels of the Zeolitic material. Hence, according to this dry procedure no solvent is involved which obviates certain drawbacks connected with wet exchange processes known in the art.Type: GrantFiled: December 8, 2011Date of Patent: October 21, 2014Assignee: Umicore AG & Co., KGInventors: Fei Wen, Barry W. L. Southward, Liesbet Jongen, Alexander Hofmann, Daniel Herein
-
Publication number: 20140309105Abstract: Disclosed is a method for manufacturing a homogeneous supported catalyst for carbon nanotubes. Advantageously, the method induces deep impregnation of a catalyst in micro pores of a support by using high-temperature aging impregnation, thus providing a high CNT yield.Type: ApplicationFiled: January 9, 2013Publication date: October 16, 2014Inventors: Kyung Yeon Kang, Jin Do Kim, Sung Jin Kim, Jae Keun Yoon
-
Patent number: 8859458Abstract: Provided are a method of preparing an electrocatalyst for fuel cells in a core-shell structure, an electrocatalyst for fuel cells having a core-shell structure, and a fuel cell including the electrocatalyst for fuel cells. The method may be useful in forming a core and a shell layer without performing a subsequent process such as chemical treatment or heat treatment and forming a core support in which core particles having a nanosize diameter are homogeneously supported, followed by selectively forming shell layers on surfaces of the core particles in the support. Also, the electrocatalyst for fuel cells has a high catalyst-supporting amount and excellent catalyst activity and electrochemical property.Type: GrantFiled: September 21, 2011Date of Patent: October 14, 2014Assignee: Korea Institute of Science and TechnologyInventors: Seung Jun Hwang, Sung Jong Yoo, Soo Kil Kim, Eun Ae Cho, Jong Hyun Jang, Hyoung Juhn Kim, Suk Woo Nam, Tae Hoon Lim
-
Publication number: 20140302407Abstract: This invention proposes metal complexes of polyphenylenediamines as the precursors of carbonized materials used as air electrode catalysts. Method of production includes mixing phenylenediamine monomer with a catalyst carrier in a solvent and adding an oxidant with metal salt to produce a metal complex of polyphenylenediamine. After drying the precursor is heat treated in the temperature range 400° C.-1000° C.° in nitrogen. Then the catalyst is leached and heat treated once again. In a modified procedure the heat treatment is carried out in air while leaching and subsequent thermal treatment are eliminated. The catalyst has demonstrated high performance and stability as the component of the air electrode of a metal-air battery.Type: ApplicationFiled: March 6, 2014Publication date: October 9, 2014Applicant: Panisolar IncInventors: Iakov Kogan, Anna Khomenko
-
Publication number: 20140294715Abstract: A method of manufacturing a ferrous oxide nanoparticle includes a water removing step raising temperature of a solution containing an iron oxide, an organic acid dissolving the iron oxide, and a first solvent to a first temperature and removing water in the solution, a second temperature maintaining step raising the first temperature to a second temperature and maintaining the second temperature, and a particle extracting step extracting the ferrous oxide nanoparticle from the solution after the second temperature maintaining step.Type: ApplicationFiled: March 25, 2014Publication date: October 2, 2014Applicant: Aisin Seiki Kabushiki KaishaInventors: Tomoya TAGAMI, Eiji NAKASHIMA, Gang XIE, Saeki YAMAMURO, Naoyuki ARATANI, Takashi NISHIKAWA
-
Patent number: 8846560Abstract: A process for preparing a slurry catalyst is provided. The slurry catalyst is prepared from at least a Group VIB metal precursor and optionally at least a Promoter metal precursor selected from Group VIII, Group IIB, Group IIA, Group IVA metals and combinations thereof. The slurry catalyst comprises a plurality of dispersed particles in a hydrocarbon medium having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is then mixed with a hydrogen feed at a pressure from 1435 psig (10 MPa) to 3610 psig (25 MPa) and a temperature from 200-800° F. at 500 to 15,000 scf hydrogen per bbl of slurry catalyst for a minute to 20 hours, for the slurry catalyst to be saturated with hydrogen providing an increase of k-values in terms of HDS, HDN, and HDMCR of at least 15% compared to a slurry catalyst that is not saturated with hydrogen.Type: GrantFiled: December 20, 2011Date of Patent: September 30, 2014Assignee: Chevron U.S.A. Inc.Inventors: Shuwu Yang, Bruce Edward Reynolds, Julie Chabot, Bo Kou
-
Publication number: 20140274679Abstract: There is presented a catalyst support that has a substantially spherical body, penetrated with a plurality of tunnels extending from a first end on a surface location of the catalyst body to another end on another surface location of the body. The support is made of alumina or like composition. The catalyst body has a total surface that includes the outer surface and surfaces within the tunnels. This total surface is adapted to receive catalyst composition. The catalyst support is adapted to being packed in a reactor and provides lower packed bed pressure drop.Type: ApplicationFiled: March 15, 2013Publication date: September 18, 2014Applicant: UNICAT CATALYST TECHNOLOGIES, INC.Inventor: Mani Erfan
-
Publication number: 20140256966Abstract: A method for stabilizing a metal or metal-containing particle supported on a surface is described, along with the resulting composition of matter. The method includes the steps of depositing upon the surface a protective thin film of a material of sufficient thickness to overcoat the metal or metal-containing particle and the surface, thereby yielding an armored surface; and then calcining the armored surface for a time and at a temperature sufficient to form channels in the protective thin film, wherein the channels so formed expose a portion of the metal- or metal-containing particle to the surrounding environment. Also described is a method of performing a heterogeneous catalytic reaction using the stabilized, supported catalyst.Type: ApplicationFiled: March 8, 2013Publication date: September 11, 2014Applicant: Wisconsin Alumni Research FoundationInventors: James A. Dumesic, Brandon J. O'Neill
-
Publication number: 20140234204Abstract: Disclosed is a catalyst which can be used in the process for producing hydrogen by decomposing ammonia, can generate heat efficiently in the interior of a reactor without requiring excessive heating the reactor externally, and can decompose ammonia efficiently and steadily by utilizing the heat to produce hydrogen. Also disclosed is a technique for producing hydrogen by decomposing ammonia efficiently utilizing the catalyst. Specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising an ammonia-combusting catalytic component and an ammonia-decomposing catalytic component. Also specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising at least one metal element selected from the group consisting of cobalt, iron, nickel and molybdenum.Type: ApplicationFiled: April 29, 2014Publication date: August 21, 2014Applicant: Nippon Shokubai Co., Ltd.Inventors: Junji OKAMURA, Masanori YOSHIMUNE, Masaru KIRISHIKI, Hideaki TSUNEKI
-
Patent number: 8809225Abstract: An iron-based Fischer-Tropsch catalyst comprising magnetite and characterized by integrable X-ray diffraction reflections corresponding to (311), (511), (440), and (400), such that the relative intensity of the (400) reflection to the (300) reflection is less than about 39%. A method of preparing an activated iron-based Fischer-Tropsch catalyst by providing a precipitated catalyst comprising oxides including at least iron oxide; and activating the precipitated catalyst to provide the activated iron-based Fischer-Tropsch catalyst, wherein activating the precipitated catalyst comprises exposing the precipitated catalyst to an activation gas and increasing the temperature from a first temperature to a second temperature at a ramp rate, whereby the ratio of the intensity of the (400) reflection of the activated iron-based Fischer-Tropsch catalyst to the intensity of the (311) reflection thereof is less than 38%.Type: GrantFiled: October 15, 2012Date of Patent: August 19, 2014Assignee: Rentech, IncInventor: Karl C. Kharas