Of Copper Patents (Class 502/345)
  • Patent number: 10865189
    Abstract: A method for the oxidation of ethylene to form ethylene oxide which comprises: providing an aqueous stream containing ethylene glycol and impurities; introducing the aqueous stream in a first ion exchange treatment bed to reduce the content of these impurities; determining whether an outlet of the first ion exchange treatment bed has a conductivity greater than about 5 ?S/cm; upon determining that the outlet of the first ion exchange treatment bed has a conductivity greater than about 5 ?S/cm, introducing the outlet of the first ion exchange treatment bed into a second ion exchange treatment bed; and upon determining that the outlet of the first ion exchange treatment bed has a conductivity greater than about 60 ?S/cm, redirecting the introduction of the aqueous stream to the second ion exchange treatment bed and regenerating the first ion exchange bed.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: December 15, 2020
    Assignee: Scientific Design Company, Inc.
    Inventors: Shaun McGovern, Mansoor Husain, John Sullivan
  • Patent number: 9610568
    Abstract: The invention relates to a catalytically active body for the synthesis of dimethyl ether from synthesis gas. In particular, the invention relates to an improved catalytically active body for the synthesis of dimethyl ether, whereby the components of the active body comprise a defined particle size distribution. Furthermore, the present invention concerns a method for the preparation of a catalytically active body, the use of the catalytically active body and a method for preparation of dimethyl ether from synthesis gas.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: April 4, 2017
    Assignee: BASF SE
    Inventors: Alexander Schäfer, Thorsten von Fehren, Rostam Madon
  • Patent number: 9132417
    Abstract: In a process for preparing a supported hydrogenation catalyst with increased hydrogenation activity, which comprises a hydrogenating metal and/or an oxide of a hydrogenating metal on an Al2O3-containing support material, said calcined supported hydrogenation catalyst is treated before or after the final shaping thereof and before use thereof in the hydrogenation with a base solution having a pH of >10 at a temperature in the range from 20 to 120° C. for 1 to 300 hours.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: September 15, 2015
    Assignee: BASF SE
    Inventors: Rolf Tompers, Heiko Urtel, Rolf Pinkos, Gerd-Dieter Tebben, Jens Heimann, Maria Guixa Guardia, Sabine Borchers
  • Publication number: 20150148220
    Abstract: Process for manufacturing ZPGM catalysts systems that may allow the prevention of formation or the conversion of corrosion causing compounds, such as hexavalent chromium compounds, within ZPGM catalyst systems is disclosed. In one embodiment, disclosed ZPGM catalysts systems, may include metallic substrate, which may include alloys of iron and chromium, a washcoat and an overcoat. Disclosed manufacturing process may include a thermal decomposition of hexavalent chromium compounds which may allow the decomposition of such compounds into trivalent chromium compounds, and may also produce metallic catalyst, such as silver. Such conversion may prevent corrosion formation, such as red color corrosion within ZPGM catalyst system. An embodiment of the disclosed process may include a reducing agent, which may be present in exhaust conditions, which may convert hexavalent chromium compounds into trivalent chromium compounds as well as produce metallic catalyst, such as silver.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 28, 2015
    Applicant: CDTi
    Inventor: Zahra Nazarpoor
  • Patent number: 9029286
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 12, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Brian Neltner, Angela M. Belcher
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Publication number: 20150118599
    Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.
    Type: Application
    Filed: February 24, 2014
    Publication date: April 30, 2015
    Inventor: Joze Bevk
  • Publication number: 20150111725
    Abstract: Novel photocatalytic devices are disclosed, that utilize ultrathin titania based photocatalytic materials formed on optical elements with high transmissivity, high reflectivity or scattering characteristics, or on high surface area or high porosity open cell materials. The disclosure includes methods to fabricate such devices, including MOCVD and ALD. The disclosure also includes photocatalytic systems that are either standalone or combined with general illumination (lighting) utility, and which may incorporate passive fluid exchange, user configurable photocatalytic optical elements, photocatalytic illumination achieved either by the general illumination light source, dedicated blue or UV light sources, or combinations thereof, and operating methodologies for combined photocatalytic and lighting systems.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder
  • Patent number: 9012351
    Abstract: A method for continuously preparing a metal oxides catalyst comprises the following steps: dissolving metal materials using nitric acid solution to produce a metal nitrate solution, and also to produce NOx and water vapor; hydrolyzing the metal nitrate solution by introducing pressurized superheated water vapor into the metal nitrate solution to obtain a slurry of the hydrates of metal oxides as well as acidic gas, the main components of the acidic gas are NO2, NO, O2 and water vapor; filtrating and drying the slurry to obtain the hydrates of metal oxides and/or metal oxides; and then utilizing the obtained hydrates of metal oxides and/or metal oxides as raw materials and preparing the metal oxides catalyst by the conventional method for preparing a catalyst. The NOx gas produced can be absorbed to produce nitric acid which can be reused.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: April 21, 2015
    Assignee: SynFuels China Technology Co., Ltd.
    Inventors: Yong Yang, Baoshan Wu, Jian Xu, Hongwei Xiang, Yongwang Li
  • Patent number: 9012353
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Patent number: 8999881
    Abstract: The present disclosure relates to a Cu/Zn/Al catalyst and a method for preparing same. More particularly, the present disclosure relates to a Cu/Zn/Al catalyst including copper particles having high surface area and thus having excellent activity, which is prepared by: preparing a metal precursor solution by dissolving a copper precursor, a zinc precursor and an aluminum precursor in an organic solvent; mixing an aqueous basic solution with the metal precursor solution and precipitating metal particles; and preparing a Cu/Zn/Al catalyst by collecting and sintering the precipitated metal particles, and a method for preparing same.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: April 7, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Adeline Budiman, Jeong-Myeong Ha, Jae Wook Choi, Young Hyun Yoon, Sung Min Kim, Gi Seok Yang, Dong Jin Suh
  • Publication number: 20150094499
    Abstract: A method for making a solid material which is useful as a heterogeneous catalyst including the steps of: forming at least one copper oxide suspension comprising solid particles of copper oxide in a liquid; forming at least one carrier suspension comprising solid particles of a carrier material in a liquid; combining the copper oxide suspension and the carrier suspension; subjecting the combined suspensions to mechanical energy; separating the suspension liquid from the solid particles in the combined suspension; and subjecting the solid material to a thermal decomposition step. A catalyst made by the method has a BET surface area greater than 150 m2/g, a particle size distribution in which D50 is in the range from 25-35 ?m, and wherein the D50 after 60 minutes ultrasound treatment is at least 30% of the original value.
    Type: Application
    Filed: March 28, 2013
    Publication date: April 2, 2015
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Joachim Pohl, Aalbert Zwijnenburg
  • Publication number: 20150080208
    Abstract: Fabrication of oxide nanowire heterostructures with controlled morphology, interface and phase purity are desired for high-efficiency and low-cost photocatalysis. Disclosed herein is the formation of oxide nanowire heterostructures by sputtering and subsequent air annealing to result in oxide nanowires. This approach allows for fabrication of standing nanowire heterostructures with tunable compositions and morphologies.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 19, 2015
    Inventor: Nitin Chopra
  • Patent number: 8980104
    Abstract: An activated carbon cloth-supported bimetallic Pd—Cu nanocatalyst is disclosed comprising about 1 wt % Pd and about 0.35-0.45 wt % Cu and having a surface Cu/Pd metal ratio of about 8-10 m2/m2. The nanocatalyst is capable of removing nitrate and/or nitrite from wastewater with a high selectivity to nitrogen.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: March 17, 2015
    Assignee: Technion Research and Development Foundation Ltd.
    Inventors: Moshe Sheintuch, Uri Matatov-Meytal
  • Patent number: 8969238
    Abstract: The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which the catalyst metal oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions of nitrogen oxides with ammonia or urea as reductant, oxidations of alcohols or aldehydes with dioxygen or air to provide aldehydes, ketones or carboxylic acids, and photocatalytic oxidation of volatile organic compounds (VOCs).
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: March 3, 2015
    Assignee: Danmarks Tekniske Universitet
    Inventors: Rasmus Fehrmann, Anders Riisager, Søren Birk Rasmussen, Steffen Buss Kristensen, Andreas Jonas Kunov-Kruse
  • Patent number: 8969228
    Abstract: Systems and Methods for manufacturing ZPGM catalysts systems that may allow the prevention of formation or the conversion of corrosion causing compounds, such as hexavalent chromium compounds, within ZPGM catalyst systems are disclosed. ZPGM catalysts systems, may include metallic substrate, which may include alloys of iron and chromium, a washcoat and an overcoat. Disclosed manufacturing processes may include a thermal decomposition of hexavalent chromium compounds which may allow the decomposition of such compounds into trivalent chromium compounds, and may also produce metallic catalyst, such as silver.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: March 3, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventor: Zahra Nazarpoor
  • Patent number: 8962897
    Abstract: In one embodiment, the invention is to a catalyst composition for converting ethanol to higher alcohols, such as butanol. The catalyst composition comprises one or more metals and one or more supports. The one or more metals selected from the group consisting of cobalt, nickel, palladium, platinum, zinc, iron, tin and copper. The one or more supports are selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and mixtures thereof, wherein the catalyst is substantially free of alkali metals and alkaline earth metals.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: February 24, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Patent number: 8961914
    Abstract: Described is a selective catalytic reduction catalyst comprising an 8-ring small pore molecular sieve promoted with copper and an alkaline earth component. The catalyst is effective to catalyze the reduction of nitrogen oxides (NOx) in the presence of a reductant. A method for selectively reducing nitrogen oxides is also described.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: February 24, 2015
    Assignees: Basf Corporation, N.E. Chemcat Corporation, Heesung Catalysts Corporation
    Inventors: Jaya L. Mohanan, Patrick Burk, Makato Nagata, Yasuyuki Banno, Eunseok Kim
  • Publication number: 20150050494
    Abstract: A multi-walled titanium-based nanotube array containing metal or non-metal dopants is formed, in which the dopants are in the form of ions, compounds, clusters and particles located on at least one of a surface, inter-wall space and core of the nanotube. The structure can include multiple dopants, in the form of metal or non-metal ions, compounds, clusters or particles. The dopants can be located on one or more of on the surface of the nanotube, the inter-wall space (interlayer) of the nanotube and the core of the nanotube. The nanotubes may be formed by providing a titanium precursor, converting the titanium precursor into titanium-based layered materials to form titanium-based nanosheets, and transforming the titanium-based nanosheets to multi-walled titanium-based nanotubes.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 19, 2015
    Applicant: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Shammi Akter Ferdousi, Wei Han
  • Patent number: 8956993
    Abstract: Oxychlorination catalyst compositions which include a catalytically effective amount of an oxychlorination catalyst and a diluent having certain chemical composition and/or physical properties are disclosed. Processes using such oxychlorination catalyst compositions are also described. Some oxychlorination catalyst compositions and processes disclosed herein can increase the optimal operating temperature, and thereby increase the production capacity of an existing reactor, such as a fluid-bed reactor, compared to other oxychlorination catalyst compositions.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: February 17, 2015
    Assignee: Oxy Vinyls LP
    Inventors: Keith S. Kramer, Joseph A. Cowfer
  • Patent number: 8940263
    Abstract: Hydrogen and carbon monoxide impurities are removed from a dry gas comprising the impurities, wherein the dry gas is at least substantially free of carbon dioxide, by passing the dry gas with sufficient residence time, e.g. at least 1.5 s, through a layer of catalyst comprising a mixture of manganese oxide and copper oxide. The use of expensive noble metal catalysts to remove hydrogen may thereby be avoided. In addition, regeneration of the catalyst using oxygen-containing regeneration gas does not reduce the effectiveness of the catalyst.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: January 27, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Jeffrey Raymond Hufton, Mohammad Ali Kalbassi, Garret C. Lau, Christine Waweru, Christopher James Raiswell, Christopher Suggitt, Daniel Patrick Zwilling
  • Publication number: 20150018204
    Abstract: Solutions to the problem of washcoat and/or overcoat adhesion loss of ZPGM catalyst on metallic substrates are disclosed. Present disclosure provides an enhanced process for improving WCA to metallic substrates of ZPGM catalyst systems. Reduction of WCA loss and improved catalyst activity may be enabled by the selection of processing parameters determined from variation of rheological properties by the solid content of the overcoat slurry and variation of the overcoat slurry particle size distribution to produce desirable homogeneity, specific loading, and adherence of the coating on metallic substrates. Processing parameters may be applied to a plurality of metallic substrates of different geometries and cell densities.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Patent number: 8932977
    Abstract: A catalyst for the electrolysis of water molecules and hydrocarbons, the catalyst including catalytic groups comprising A1-xB2-yB?yO4 spinels having a cubical M4O4 core, wherein A is Li or Na, B and B? are independently any transition metal or main group metal, M is B, B?, or both, x is a number from 0 to 1, and y is a number from 0 to 2. In photo-electrolytic applications, a plurality of catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can also be used as part of a photo-electrochemical cell for the generation of electrical energy.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 13, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: G. Charles Dismukes, Martha Greenblatt
  • Publication number: 20150010455
    Abstract: Provided is a microwave catalyst. The microwave catalyst comprises: i) an active catalyst component comprising a metal and/or a metal oxide; ii) a microwave-absorbing component comprising at least one of CuO, ferrite spinel, and active carbon; and iii) a support. The microwave catalyst can be used for denitration by microwave catalysis, and has advantages such as high denitration efficiency, low energy consumption, environmental friendliness, and low costs. Also provided is a process for preparing the microwave catalyst and the use thereof.
    Type: Application
    Filed: December 24, 2012
    Publication date: January 8, 2015
    Inventors: Jicheng Zhou, Zhe Wang, Hongli Wang, Meng Wang, Guiyue Mao, Zunfang Jiang, Lingfei Gao
  • Patent number: 8927452
    Abstract: The present invention relates to a method for producing a shell catalyst which comprises a porous shaped catalyst support body with an outer shell in which at least one catalytically active species is present.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: January 6, 2015
    Assignee: SUD-Chemie AG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck, Sybille Ungar
  • Publication number: 20150005159
    Abstract: The present disclosure refers to a plurality of process employed for optimization of Zero-PGM metal loading in Washcoat and Overcoat on metallic substrates. According to an embodiment a substantial increase in conversion of HC and CO may be achieved by optimizing the metal loading of the catalyst. According to another embodiment, the present disclosure may provide solutions to determine the optimum metal loading in washcoat for minimizing washcoat adhesion loss. As a result, may increase the conversion of HC and CO from discharge of exhaust gases from internal combustion engines, optimizing performance of Zero-PGM catalyst systems.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Applicant: CDTi
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Publication number: 20150005158
    Abstract: Solutions to the problem of washcoat and/or overcoat adhesion loss of ZPGM catalyst on metallic substrates are disclosed. Present disclosure provides a novel process for improving WCA to metallic substrates of ZPGM catalyst systems. Reduction of WCA loss and improved catalyst activity may be enabled by the selection of processing parameters determined from variations of pH and addition of binder to overcoat slurry, and particle size of washcoat. Processing parameters may be applied to a plurality of metallic substrates of different geometries and cell densities.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Publication number: 20140370422
    Abstract: We disclose novel metallic nanoparticles coated with a thin protective carbon shell, and three-dimensional nano-metallic sponges; methods of preparation of the nanoparticles; and uses for these novel materials, including wood preservation, strengthening of polymer and fiber/polymer building materials, and catalysis.
    Type: Application
    Filed: September 3, 2014
    Publication date: December 18, 2014
    Applicant: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Kun Lian, Qinglin Wu
  • Patent number: 8906329
    Abstract: A catalyst composition is provided having a zeolite material of a CHA crystal structure and a silica to alumina mole ratio (SAR) of about 10 to about 25 and preferably having a mean crystal size of at least 1.0 microns; and a non-aluminum base metal (M), wherein said zeolite material contains said base metal in a base metal to aluminum ratio (M:Al) of about 0.10 to about 0.24.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: December 9, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Todd Howard Ballinger, Philip Gerald Blakeman, Guy Richard Chandler, Hai-Ying Chen, Julian Peter Cox, Joseph M. Fedeyko, Alexander Nicholas Michael Green, Paul Richard Phillips, Stuart David Reid, Erich Conlan Weigert, James Alexander Wylie
  • Patent number: 8901027
    Abstract: A method of forming a Fischer-Tropsch catalyst by providing at least one metal nitrate solution, combining each of the at least one metal nitrate solutions with a precipitating agent whereby at least one catalyst precipitate is formed, and incorporating a strong base during precipitation, subsequent precipitation, or both during and subsequent precipitation. Catalysts produced via the disclosed method are also provided.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: December 2, 2014
    Assignee: Res USA, LLC
    Inventors: Deena Ferdous, Belma Demirel
  • Patent number: 8889588
    Abstract: Disclosed is a catalyst support for steam carbon dioxide reforming reaction utilizing the advantages of superior thermal conductivity and thermal dispersion of a metal foam support and a large specific surface area of a carrier material, which allows selective control of coating amount and the thickness of a support layer and prevents cracking on the support surface, using both the sol-gel method and the slurry method that have been used for coating of a metal foam support.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: November 18, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Tae Gyu Kim, Dae Il Park
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Publication number: 20140336036
    Abstract: The electrocatalyst for the electrochemical conversion of carbon dioxide includes a copper material supported on titania nanotubes. The copper material may be pure copper, copper and ruthenium, or copper and iron supported on the titania nanotubes. The electrocatalyst is prepared by first dissolving copper nitrate trihydrate in deionized water to form a salt solution. Titania nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the volume of deionized water, either iron nitrate monohydrate or ruthenium chloride may also be dissolved in the deionized water to form the salt solution.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: SALEEM UR RAHMAN, SYED MOHAMMED JAVAID ZAIDI, SHAKEEL AHMED, SK SAFDAR HOSSAIN
  • Publication number: 20140316018
    Abstract: An object of the present invention is to provide titanium oxide granules that have a novel structure and have a characteristic of highly efficient decomposing capability, and a method of decomposing plastic and organic waste by using the granules. The present invention has been completed based on the finding that a method of decomposing plastic waste by using titanium oxide granules having a transition metal and/or a transition metal oxide, in particular copper, supported thereon enables decomposition of plastic waste at extremely high efficiency in a low-temperature region for a long period of time as compared to methods of decomposing plastic waste by using the related-art titanium oxide granules.
    Type: Application
    Filed: December 14, 2012
    Publication date: October 23, 2014
    Inventors: Hiromitsu Shimizu, Itsushi Kashimoto
  • Patent number: 8865614
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Patent number: 8865120
    Abstract: The present invention is directed to a process for the production of ion-exchanged (metal-doped, metal-exchanged) Zeolites and Zeotypes, In particular, the method applied uses a sublimation step to incorporate the ion within the channels of the Zeolitic material. Hence, according to this dry procedure no solvent is involved which obviates certain drawbacks connected with wet exchange processes known in the art.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 21, 2014
    Assignee: Umicore AG & Co., KG
    Inventors: Fei Wen, Barry W. L. Southward, Liesbet Jongen, Alexander Hofmann, Daniel Herein
  • Publication number: 20140309103
    Abstract: Provided is a visible-light-responsive titanium oxide microparticle dispersion or the like readily enabling manufacture of a highly transparent photocatalyst thin film demonstrating photocatalyst activity even using visible light alone, and having exceptional titanium oxide microparticle dispersion stability even after storage for prolonged periods of time in cold and dark interior locations. The present invention makes it possible to: produce a peroxotitanic acid solution containing vanadium and a tin compound from a titanium compound, a vanadium compound, a tin compound, a basic substance, hydrogen peroxide, and an aqueous dispersion medium as starting materials; subject the peroxotitanic acid solution to a hydrothermal reaction under high pressure; subsequently admix a copper compound into the acid solution; and obtain a visible-light-responsive titanium oxide microparticle dispersion or the like.
    Type: Application
    Filed: October 10, 2012
    Publication date: October 16, 2014
    Inventors: Manabu Furudate, Tomohiro Inoue, Yoshitsugu Eguchi, Tadashi Amano
  • Patent number: 8859458
    Abstract: Provided are a method of preparing an electrocatalyst for fuel cells in a core-shell structure, an electrocatalyst for fuel cells having a core-shell structure, and a fuel cell including the electrocatalyst for fuel cells. The method may be useful in forming a core and a shell layer without performing a subsequent process such as chemical treatment or heat treatment and forming a core support in which core particles having a nanosize diameter are homogeneously supported, followed by selectively forming shell layers on surfaces of the core particles in the support. Also, the electrocatalyst for fuel cells has a high catalyst-supporting amount and excellent catalyst activity and electrochemical property.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 14, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Seung Jun Hwang, Sung Jong Yoo, Soo Kil Kim, Eun Ae Cho, Jong Hyun Jang, Hyoung Juhn Kim, Suk Woo Nam, Tae Hoon Lim
  • Patent number: 8858903
    Abstract: Oxidation ZPGM catalyst systems and three way ZPGM catalyst systems are disclosed. ZPGM catalyst systems may oxidize toxic gases, such as carbon monoxide and hydrocarbons, optionally some ZPGM catalyst systems may as well reduce nitrogen oxides that may be included in exhaust gases. ZPGM catalyst systems may include: a substrate, a washcoat, and an overcoat. The washcoat may include at least one ZPGM catalyst and carrier material oxides. Similarly, overcoat may include at least one ZPGM catalyst, carrier material oxides and OSMs. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM catalyst systems.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: October 14, 2014
    Assignee: Clean Diesel Technology Inc
    Inventor: Zahra Nazarpoor
  • Publication number: 20140302980
    Abstract: This invention relates to a metal catalyst, a manufacturing method of the metal catalyst, and an electrochemical reduction method. The metal catalyst is manufactured by a method comprising providing a conductor to one side of an insulator, providing a fluid including a metal ion and an electron mediator to the other side of the insulator and providing a voltage to the conductor. The electrochemical reduction method comprises providing a conductor to one side of an insulator, providing a fluid including reduction material and an electron mediator to the other side of the insulator and providing a voltage to the conductor.
    Type: Application
    Filed: August 19, 2013
    Publication date: October 9, 2014
    Applicant: Seoul National University R&DB Foundation
    Inventors: Taekdong CHUNG, Jinyoung LEE
  • Patent number: 8852518
    Abstract: The present invention is to provide a catalyst for removing nitrogen oxides which is capable of keeping sufficient denitrification performance, i.e., a high removal rate of nitrogen oxides in exhaust gas having a high NO2 content especially under conditions where the ratio of NO2/NO in exhaust gas is 1 or higher, a catalyst molded product therefor, and an exhaust gas treating method. The catalyst is designed for removing nitrogen oxides, which is used to denitrify exhaust gas containing nitrogen oxides having a high NO2 content, which comprises: at least one kind of oxide selected from the group consisting of copper oxides, chromium oxides, and iron oxides as a component for reducing NO2 to NO; and which further comprises: at least one kind of titanium oxide; at least one kind of tungsten oxide; and at least one kind of vanadium oxide as components for reducing NO to N2.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: October 7, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shigeru Nojima, Kozo Iida, Yoshiaki Obayashi, Masashi Kiyosawa, Masanori Demoto
  • Patent number: 8853121
    Abstract: The effect of aging temperature on oxygen storage materials (OSM) substantially free from platinum group (PGM) and rare earth (RE) metals is disclosed. Samples of ZPGM-ZRE metals OSM, hydrothermally aged at a plurality of high temperatures are found to have significantly high oxygen storage capacity (OSC) and phase stability than conventional PGM catalysts with Ce-based OSM. ZPGM-ZRE metals OSM includes a formulation of Cu—Mn stoichiometric spinel structure deposited on Nb—Zr oxide support and may be converted into powder to be used as OSM application or coated onto catalyst substrate. ZPGM-ZRE metals OSM, after aging condition, presents enhanced level of thermal stability and OSC property which shows improved catalytic activity than conventional PGM catalysts including Ce-based OSM. ZPGM-ZRE metals OSM may be suitable for a vast number of applications, and more particularly in underfloor catalyst systems.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: October 7, 2014
    Assignee: Clean Diesel Technology Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140294989
    Abstract: The Cu- and Ti-containing composition of the present invention contains titanium oxide including rutile-crystal-type titanium oxide, and a divalent copper compound, wherein the rutile-crystal-type titanium oxide exhibits the most intense diffraction peak attributed to rutile-type titanium oxide having a full width at half maximum of 0.65° or less, in a Cu—K? line X-ray diffraction pattern, which is obtained by plotting intensity of diffraction line with respect to diffraction angle 2?. The composition exhibits excellent anti-viral property under light and in the dark, and excellent organic compound degradability under light.
    Type: Application
    Filed: December 17, 2012
    Publication date: October 2, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: So Miyaishi, Yasushi Kuroka, Yasuhiro Hosogi, Ding Li
  • Patent number: 8845998
    Abstract: A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: September 30, 2014
    Inventor: Yasuo Ishikawa
  • Publication number: 20140274679
    Abstract: There is presented a catalyst support that has a substantially spherical body, penetrated with a plurality of tunnels extending from a first end on a surface location of the catalyst body to another end on another surface location of the body. The support is made of alumina or like composition. The catalyst body has a total surface that includes the outer surface and surfaces within the tunnels. This total surface is adapted to receive catalyst composition. The catalyst support is adapted to being packed in a reactor and provides lower packed bed pressure drop.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: UNICAT CATALYST TECHNOLOGIES, INC.
    Inventor: Mani Erfan
  • Publication number: 20140256966
    Abstract: A method for stabilizing a metal or metal-containing particle supported on a surface is described, along with the resulting composition of matter. The method includes the steps of depositing upon the surface a protective thin film of a material of sufficient thickness to overcoat the metal or metal-containing particle and the surface, thereby yielding an armored surface; and then calcining the armored surface for a time and at a temperature sufficient to form channels in the protective thin film, wherein the channels so formed expose a portion of the metal- or metal-containing particle to the surrounding environment. Also described is a method of performing a heterogeneous catalytic reaction using the stabilized, supported catalyst.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: James A. Dumesic, Brandon J. O'Neill
  • Publication number: 20140248544
    Abstract: This disclosure relates generally to cathode materials for electrochemical energy cells, more particularly to metal/air electrochemical energy cell cathode materials containing silver vanadium oxide and methods of making and using the same. The metal/air electrochemical energy cell can be a lithium/air electrochemical energy cell. Moreover the silver vanadium oxide can be a catalyst for one or more of oxidation and reduction processes of the electrochemical energy cell.
    Type: Application
    Filed: February 7, 2014
    Publication date: September 4, 2014
    Inventors: Weibing Xing, Joshua Buettner-Garrett
  • Patent number: 8821820
    Abstract: A process for improving catalytic activity of a copper-promoted zeolitic catalyst with a chabazite structure, the copper-promoted zeolitic catalyst having a temperature-programmed reduction (TPR) signal in a temperature range from 230° C. to 240° C. as examined in a TPR with a test gas having a hydrogen content of 5% by volume, a heating rate of 10 K/min, and a catalyst sample weight containing from 3 to 8 milligrams of copper calculated as metal.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: September 2, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Michael Seyler, Nicola Soeger, Katja Adelmann, Thomas R. Pauly, Gerald Jeske
  • Patent number: 8815767
    Abstract: Mixed oxides catalysts usable in particular in the full oxidation to CO2 and H2O of volatile organic compounds (VOC), in the decomposition of nitrogen protoxide to nitrogen and oxygen and the combustion of CO, H2 and CH4 off gases in fuel cells, comprising oxides of manganese, copper and La2O3 and/or Nd2O3, having a percentage composition by weight expressed as MnO, CuO, La2O3 and/or Nd2O3 respectively of 35-56%, 19-31% and 20-37%. The oxides are supported on inert porous inorganic oxides, preferably alumina.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: August 26, 2014
    Assignee: Sued-Chemie Catalysts Italia S.R.L.
    Inventors: Alberto Cremona, Marvin Estenfelder, Edoardo Vogna
  • Patent number: 8802052
    Abstract: The method in accordance with the present invention has steps of: preparing a hydrogen producing device with a high gravitational rotating packed bed, initiating the device, adjusting the temperature of the device, inputting a reagent gas and a liquid vaporized for mixing with the reagent gas into a reagent mixture, and passing the reagent mixture through the device to obtain hydrogen.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: August 12, 2014
    Inventors: Wei-Hsin Chen, Yu-Jhih Syu