Of Copper Patents (Class 502/345)
  • Patent number: 6964936
    Abstract: A method of making a catalyst with monolayer or sub-monolayer metal by controlling the wetting characteristics on the support surface and increasing the adhesion between the catalytic metal and an oxide layer. There are two methods that have been demonstrated by experiment and supported by theory. In the first method, which is useful for noble metals as well as others, a negatively-charged species is introduced to the surface of a support in sub-ML coverage. The layer-by-layer growth of metal deposited onto the oxide surface is promoted because the adhesion strength of the metal-oxide interface is increased. This method can also be used to achieve nanoislands of metal upon sub-ML deposition. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 15, 2005
    Assignee: Sandia Corporation
    Inventor: Dwight R. Jennison
  • Patent number: 6926880
    Abstract: A methanol reforming catalyst containing passivated copper and zinc oxide and/or alumina can be prepared by (1) precipitating or spray-drying a mixture of catalyst precursor components dissolved or suspended in a diluent in order to form a solid catalyst precursor in the form of powder or granules, (2) calcining and reducing the solid catalyst precursor obtained in stage (1), (3) passivating the reduced catalyst precursor obtained in stage (2) and (4) shaping the passivated catalyst precursor obtained in stage (3) to form the catalyst. A reduction in the volume shrinkage and an increase in the mechanical hardness during operation of the methanol reforming catalyst are achieved by the preparation process.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: August 9, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Markus Hölzle, Michael Jolyon Sprague, Klaus Harth, Martin Schüssler, Martin Karl, Stefan Boneberg
  • Patent number: 6919066
    Abstract: Catalysts containing passivated copper and zinc oxide and/or alumina are prepared by (1) precipitating a mixture of catalyst precursor components dissolved or suspended in a diluent with anion-containing precipitating agents, washing and drying to form a solid catalyst precursor in the form of powder or granules, (2) calcining the solid catalyst precursor obtained in stage (1) to an anion content from the precipitating agent of from 0.1 to 2.5% by weight and (3) shaping and, if required, reducing and passivating the calcined catalyst precursor from stage (2) in any desired order to form the catalyst.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: July 19, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Markus Hölzle, Michael Jolyon Sprague, Klaus Harth, Wolfgang Jürgen Pöpel
  • Patent number: 6914032
    Abstract: The present invention relates to a method of producing W—Cu based composite powder, which is used in heat-sink materials for high-power integrated circuits, electric contact materials, etc, and to a method of producing a W—Cu based sintered alloy by using the composite powder. The method of producing tungsten-copper based composite powder includes first preparing composite oxide powder by dissolving ammonium metatungstate, [(NH4)6(H2W12O40).
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: July 5, 2005
    Assignees: Korea Institute of Machinery and Materials, Nanotech Co., Ltd.
    Inventors: Byoung Kee Kim, Seong Hyeon Hong, Yong Won Woo
  • Patent number: 6872684
    Abstract: Catalysts for oxychlorination of ethylene to 1,2-dichloroethane, comprising compounds of copper and magnesium supported on alumina, in which the copper, expressed as metal, is present in an amount of 7 to 12% by weight and the Mg/Cu ratio is 0.05 to 1, and wherein the ratio between the concentration of copper provided by the Al/Cu ratio at the surface and that provided by the Al/Cu ratio in the entire particle of the catalyst is from 0.8 to 1.3.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: March 29, 2005
    Assignee: Sud Chemie MT S.R.I.
    Inventors: Francesco Casagrande, Carlo Orsenigo
  • Patent number: 6867163
    Abstract: A molybdenum-based precipitate is prepared according to a process including the first step of forming a crude precipitate by pH adjustment to 6.5 or less in the presence of an alkali metal compound, and the second step of dissolving the crude precipitate in aqueous ammonia and forming a precipitate by pH adjustment to 6.5 or less. Then, the resulting molybdenum-based precipitate is washed with an acid aqueous solution having a pH of 6.5 or less and containing not less than 0.01 mole/L of ammonium root. Thus, a change in average particle diameter can be suppressed and good workability can be achieved, so that a molybdenum-based precipitate having a high purity and a desired average particle diameter can be obtained.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: March 15, 2005
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Hideyasu Takezawa, Toru Kuroda, Seiichi Kawato, Masanori Nitta
  • Patent number: 6852298
    Abstract: A composition for controlling NOx emissions during FCC processes comprises (i) an acidic oxide support, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria such as praseodymium oxide, and (iv), optionally, an oxide of a metal from Groups Ib and IIb such as copper, silver and zinc.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: February 8, 2005
    Assignee: Engelhard Corporation
    Inventors: Chandrashekhar P. Kelkar, David Stockwell, Samual Tauster
  • Patent number: 6833125
    Abstract: Oxidation catalysts for used in the full oxidation to CO2 and H2O of volatile organic compounds, such as hydrocarbons, comprising mixed oxides of copper, manganese and one or more rare-earth metals, wherein the metals can assume multiple valency states, having a percentage composition by weight, expressed as CuO, MnO and rare-earth oxides, in which the metal has the minimum value of 8-50%, 10-75% and 2-15%, respectively. The oxides are supported on inert porous inorganic oxides.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: December 21, 2004
    Assignee: SUD Chemie MT. S.r.l.
    Inventors: Alberto Cremona, Carlo Rubini, Edoardo Vogna
  • Patent number: 6828272
    Abstract: The invention pertains to new catalyst systems for polycondensation reactions, for example for producing polyethylene terephthalate. In accordance with the invention, complex compounds with hydrotalcite-analogous structures of general formula [M(II)1−xM(III)x(OH)2]x+(An−x/n).mH2O are used, wherein M(II) represents divalent metals, preferably Mg or Zn or NI or Cu or Fe(II) or Co, and M(III) represents trivalent metals, for example Al or Fe(III), and A represents anions, preferably carbonates or borates. These catalysts can be calcinated and can be used in combination with phosphorus compounds that contain at least one hydrolyzable phosphorus-oxygen bond.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: December 7, 2004
    Assignee: Equipolymers GmbH
    Inventors: Jens-Peter Wiegner, Rolf Eckert, Volkmar Voerckel, Gunter Feix, Marion Sela, Sarat Munjal
  • Patent number: 6821924
    Abstract: An oxidative halogenation process involving contacting a hydrocarbon, for example, ethylene, or a halogenated hydrocarbon with a source of halogen, such as hydrogen chloride, and a source of oxygen in the presence of a catalyst so as to form a halocarbon, preferably a chlorocarbon, having a greater number of halogen substituents than the starting hydrocarbon or halogenated hydrocarbon, for example, 1,2-dichloroethane. The catalyst is a novel composition comprising copper dispersed on a porous rare earth halide support, preferably, a porous rare earth chloride support. A catalyst precursor composition comprising copper dispersed on a porous rare earth oxyhalide support is disclosed. Use of the porous rare earth halide and oxyhalide as support materials for catalytic components is disclosed.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: November 23, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Robert J. Gulotty, Jr., Mark E. Jones, Daniel A. Hickman
  • Patent number: 6803342
    Abstract: Catalytic composition comprising copper chloride, magnesium chloride and potassium chloride deposited on an alumina, which may be used in particular for the oxychlorination of ethylene into 1,2-dichloroethane. In the processes for the oxychlorination of ethylene in oxygen in a fluid bed, this catalytic composition makes it possible to obtain an excellent yield of 1,2-dichloroethane without causing the deposition of soiling material on the surface of the bundle of tubes of the heat exchanger located in the reactor.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: October 12, 2004
    Assignee: Solvay (Societe Anonyme)
    Inventors: Helmut Derleth, Deniz Adem, Michel Strebelle
  • Patent number: 6800586
    Abstract: A composition for controlling NOx emissions during FCC processes comprises (i) an acidic oxide support, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria such as praseodymium oxide, and (iv), optionally, an oxide of a metal from Groups Ib and IIb such as copper, silver and zinc.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: October 5, 2004
    Assignee: Engelhard Corporation
    Inventors: Chandrashekhar P. Kelkar, David Stockwell, Samuel Tauster
  • Patent number: 6790423
    Abstract: A catalyst for the full oxidation of volatile organic compounds (VOC), particularly hydrocarbons, and of CO to CO2, comprising: a non-stoichiometric crystalline compound conventionally designated by a formula which corresponds to A14Cu24O41 (I), where A is Sr or a solid solution of Sr with alkaline-earth metals, alkaline metals, lanthanides; or a non-stoichiometric crystalline compound conventionally designated by a formula which corresponds to B4Cu5O10 (II), where B is Ca or a solid solution of Ca with alkaline-earth metals, alkaline metals, lanthanides; or mixtures thereof; and in that it is prepared in a form which has a large specific surface area, preferably larger than 25 m2/g; a method for preparing the catalysts; their use in methods for the full oxidation of VOC and of CO to CO2; and the oxidation methods.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: September 14, 2004
    Assignee: Consiglio Nazionale delle Ricerche
    Inventors: Francesco Cino Matacotta, Gianluca Calestani, Chiara Dionigi, Petr Nozar
  • Patent number: 6787677
    Abstract: In a process for the catalytic hydrogenation of a carbonyl compound or a mixture of two or more carbonyl compounds in the presence of catalyst tablets which comprise an inorganic, TiO2-containing support and, as active component, copper or a mixture of copper with at least one metal selected from the group consisting of zinc, aluminum, cerium, nobel metals and metals of transition group VIII and whose copper surface area is not more than 10 m2/g, the diameter d and/or the height h of the tablets is less than 3 mm.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: September 7, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Koch, Steffen Maas, Wolfgang Jürgen Pöpel, Matthias Dernbach
  • Patent number: 6784135
    Abstract: A composition is provided that can be used, for example, in a fuel processor for a fuel cell system. The composition includes a first material such as a catalyst, and a second material such as a desiccant. The second material is capable of sorbing and desorbing a heat transfer material such as water, and is present in an amount sufficient to sorb an amount of the heat transfer material sufficient to remove a portion of the heat generated when the first material undergoes an exothermic reaction.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: August 31, 2004
    Assignee: Power Plug, Inc.
    Inventors: Anton Scholten, Peter F. M. T. Van Nisselrooy, Walter R. De Jongh, Jan Stokman
  • Patent number: 6756339
    Abstract: A catalyst for the nonoxidative production of alkenylaromatics from alkylaromatics, wherein the catalyst is predominantly iron oxide, an alkali metal compound, copper oxide, cerium oxide and less than about 100 ppm of a source for a noble metal, such as palladium, platinum, ruthenium, rhenium, osmium, rhodium or iridium. Additional components of the catalyst may include compounds based on molybdenum, tungsten, calcium, magnesium, chromium and other such promoters.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: June 29, 2004
    Assignees: Sud-Chemie Inc., Sud-Chemie Catalysts Japan, Inc.
    Inventors: Andrzej Rokicki, Dennis Smith, David L. Williams
  • Publication number: 20040097767
    Abstract: An oxidative halogenation process involving contacting a hydrocarbon, for example, ethylene, or a halogenated hydrocarbon with a source of halogen, such as hydrogen chloride, and a source of oxygen in the presence of a catalyst so as to form a halocarbon, preferably a chlorocarbon, having a greater number of halogen substituents than the starting hydrocarbon or halogenated hydrocarbon, for example, 1,2-dichloroethane. The catalyst is a novel composition comprising copper dispersed on a porous rare earth halide support, preferably, a porous rare earth chloride support. A catalyst precursor composition comprising copper dispersed on a porous rare earth oxyhalide support is disclosed. Use of the porous rare earth halide and oxyhalide as support materials for catalytic components is disclosed.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Inventors: Robert J. Gulotty, Mark E. Jones, Daniel A. Hickman
  • Patent number: 6733734
    Abstract: Regenerable gas purifier materials are provided capable of reducing the level of contaminants such as oxygen and moisture in a hydride gas stream to parts-per-billion levels or sub-parts-per-billion levels. The purifier materials of this invention comprise a thin layer of one or more reduced forms of a metal oxide coated on the surface of a nonreactive substrate. The thin layer may further contain the completely reduced form of the metal. In one embodiment, the total surface area of the thin layer is less than 100 m2/g.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: May 11, 2004
    Assignee: Matheson Tri-Gas
    Inventors: Tadaharu Watanabe, Dan Fraenkel
  • Patent number: 6716789
    Abstract: The disclosure is directed to a process for preparing an oxidic catalyst comprising copper in an oxidation state >0, which comprises treating a solid oxidic support material with an aqueous solution comprising at least one copper salt and at least one organic water soluble polymer which binds copper ions coordinatively in a concentration of from 0.1 to 100 g/l and then calcining, to the catalyst obtainable by this process and also to a process for dehydrogenating secondary alcohols to ketones using the catalysts, especially for dehydrogenating cyclohexanol.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: April 6, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Daniel Heineke, Ruprecht Meissner, Michael Hesse, Henning-Peter Gehrken
  • Patent number: 6706662
    Abstract: This invention is directed to a process for dehydrogenating primary alcohols to make salts of carboxylic acids. The process comprises contacting a catalyst, preferably a metal support coated with copper or silver, with an alkaline mixture comprising a primary alcohol. The invention further provides for novel copper-containing and silver-containing catalysts which may be used, for example, in the above process as well as processes for making such catalysts.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: March 16, 2004
    Assignee: Monsanto Technology LLC
    Inventors: David A. Morgenstern, Juan P. Arhancet, Howard C. Berk, William L. Moench, Jr., James C. Peterson
  • Patent number: 6703342
    Abstract: Copper/alumina compositions for uses as e.g. catalysts are made by impregnating a porous transition alumina support with an aqueous solution of a copper ammine carbonate complex, draining off any excess of the impregnating solution, and then heating the impregnated support to a temperature above 80° C. to decompose the complex thereby depositing a basic copper carbonate compound on the surfaces of the pores of transition alumina support. After reduction, the composition has a high copper surface area, expressed per unit weight of copper in the composition.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: March 9, 2004
    Assignee: Johnson Matthey PLC
    Inventor: Cornelis Martinus Lok
  • Patent number: 6696389
    Abstract: The invention relates to a method and a device for cleaning flowing gases. To reduce the total emissions, nitrogen oxides, especially NO and NOx, are extracted at least partially from the gas to be scrubbed, in the temperature range from 50 and 300° C., preferably between 50 and 150° C. To extract the nitrogen oxides, an intermediate storage medium is used that is composed of a storage material and a supporting material for the storage material. The intermediate storage medium having in particular a composition of the formal chemical formula Ag.CuAl2O4 in an Al2O3 matrix, with the composition being a spinel or being of the spinel type, and with the composition having characteristic spinel lines in the x-ray spectrum, where 0≦x<1.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: February 24, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Walter Boegner, Rolf-Dirc Roitzheim, Martin Hartweg, Andrea Seibold, Thomas Fetzer, Bernd Morsbach
  • Patent number: 6693057
    Abstract: A low temperature copper/zinc/aluminum water gas shift catalyst is described. The catalyst is formed from a precursor, wherein the precursor includes aluminum in the form of hydrotalcite and aluminum separate from the hydrotalcite. A method of making the catalyst and a process for using the catalyst are also described.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: February 17, 2004
    Assignee: Sud-Chemie Inc.
    Inventors: Yeping Cai, Sally L. Davies, Jon P. Wagner
  • Publication number: 20040029728
    Abstract: A catalyst for the hydrogenation of C4-dicarboxylic acids and/or their derivatives, preferably maleic anhydride, in the gas phase comprises from 5 to 100% by weight, preferably from 40 to 90% by weight, of copper oxide and from 0 to 95% by weight, preferably from 10 to 60% by weight, of one or more metals or compounds thereof selected from the group consisting of Al, Si, Zn, Pd, La, Ce, the elements of groups III A to VIII A and groups I A and II A as active composition applied in the form of a thin layer to an inert support material.
    Type: Application
    Filed: May 29, 2003
    Publication date: February 12, 2004
    Inventors: Holger Borchert, Stephan Schlitter, Rolf-Hartmuth Fischer, Markus Rosch, Frank Stein, Ralf-Thomas Rahn, Alexander Weck
  • Patent number: 6689713
    Abstract: This invention relates to a copper-containing catalyst, a process for the preparation thereof and uses of the catalyst. The catalyst includes copper oxide of 30-70 wt %, zinc oxide of 30-70 wt %, alumina of 0-30 wt % and no sodium, and has a specific surface area of 30-50 m2/g, a pore volume of 0.10-0.25 ml/g, and an average pore diameter of 10-25 nm and has a uniform crystallite distribution wherein the crystallites having a diameter of less than 1.0 nm account for 0-10%, thoseof 1.0-2.0 nm account for 80-95%, and those of more than 2.0 nm account for 0-10%. The process includes a co-precipitation method using an organic acid and/or an ammonium salt thereof as precipitant to provide a copper-containing catalyst having a relatively large specific surface area and pore volume, and a uniform crystallite distribution.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: February 10, 2004
    Assignees: China Petrochemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals
    Inventors: Leiping Zhao, Lijuan Zhang, Yuzhuo Chen, Yuliang Wang
  • Patent number: 6686312
    Abstract: In the synthesis of organohalosilanes by the direct process of reacting an organic halogen with metallic silicon powder, a metallic copper catalyst in the form of a thermally active metallic copper powder having large strain energy is used.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: February 3, 2004
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Mikio Aramata, Masaaki Furuya, Yoshihiro Shirota, Akio Muraida, Susumu Ueno, Toshio Shinohara
  • Patent number: 6685899
    Abstract: A catalyst, method, and exhaust system for purifying exhaust gas from vehicle engines, including a catalyst having a carrier doped with copper oxide (CuO), and a precious metal as a main catalyst is disclosed. The impregnation of copper oxide into the carrier protects the catalyst from damage due to the toxicity of exhaust gas, and hinders agglomeration of precious metal particles used as the main catalyst. As a result, the heat resistance of the catalyst at high temperatures in addition to the catalytic activity for the oxidation of particulates can be improved.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: February 3, 2004
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Sang-cheol Park
  • Patent number: 6680416
    Abstract: A process for preparing 1,2-dichloroethane by reacting about 2 mols of ethylene, about 4 mols of hydrogen chloride and about 1 mol of oxygen in the presence of a fixed bed of supported catalyst based on copper(II) chloride in only one reaction zone at a pressure of from 2 to 10 bar and at from 220 to 280° C.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: January 20, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Hebgen, Christopher William Rieker, Ruprecht Meissner
  • Patent number: 6673433
    Abstract: Disclosed are antifouling material possessing excellent surface antifouling properties, particularly excellent antifouling activity against greasy stains and soils, a process for producing the same, and a coating composition and an apparatus for the antifouling material. The antifouling material comprises: a substrate; and an inorganic layer consisting essentially of an amorphous metal oxide, the inorganic layer containing an alkali metal and non-bridging oxygen in an amount effective in removing contaminants, derived from an exhaust gas, adhered on the surface of the inorganic layer by cleaning using running water alone to restore the diffuse reflectance of the surface of the inorganic layer to not less than 75% of the initial diffuse reflectance, the inorganic layer constituting the outermost fixed layer of the antifouling material.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: January 6, 2004
    Assignee: Toto Ltd.
    Inventors: Yoshimitsu Saeki, Hideki Kobayashi, Yoshitaka Mayumi, Kazuya Tsujimichi, Hiroyuki Fujii, Junji Kameshima, Tomoaki Morikawa, Shinji Tanaka, Yasushi Nakashima, Tatsuhiko Kuga
  • Publication number: 20040002620
    Abstract: A process for making aldehydes involving: (a) providing a fatty alcohol; (b) providing an oxidic copper/zinc catalyst; and (c) continuously dehydrogenating the fatty alcohol, in the presence of the oxidic copper/zinc catalyst, at a temperature of from about 200 to 280° C. and a pressure of from about 10 mbar to 1 bar.
    Type: Application
    Filed: July 11, 2003
    Publication date: January 1, 2004
    Inventors: Albrecht Schwerin, Gerrit Pelzer, Lothar Friesenhagen, Bernhard Gutsche
  • Patent number: 6660685
    Abstract: To carry out a heterogeneously catalysed reaction, a reaction mixture comprising hydrocarbon and water is fed onto a catalyst that is produced by compressing at least one catalyst powder into a highly compressed layer which forms a shaped body. The reaction mixture is pressed through the catalyst layer with a pressure drop.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: December 9, 2003
    Assignee: Ballard Power Systems AG
    Inventors: Martin Schüssler, Tomas Stefanovski, Detlef zur Megede
  • Patent number: 6649562
    Abstract: A methanol-decomposing catalyst comprises catalytically active components containing copper and zinc, and a carrier composed of zirconia and/or titania and ceria for supporting the catalytically active components. The methanol-decomposing catalyst has excellent catalytic activity, thereby efficiently producing a hydrogen gas while suppressing side reactions.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: November 18, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takahiro Naka, Hideaki Sumi, Kazuhito Matsuda, Shoji Isobe
  • Publication number: 20030203814
    Abstract: To carry out a heterogeneously catalysed reaction, such as for example the generation of hydrogen from hydrocarbons or alcohol, in particular methanol, in which a reaction mixture comprising hydrocarbon and water is fed onto a catalyst, a catalyst is proposed which is produced by compressing at least one catalyst powder into a highly compressed layer which forms a shaped body, it being possible to press the reaction mixture through the catalyst layer with a pressure drop.
    Type: Application
    Filed: May 15, 2003
    Publication date: October 30, 2003
    Applicant: Ballard Power Systems, Inc.
    Inventors: Martin Schussler, Tomas Stefanovski, Detlef Zur Megede
  • Publication number: 20030203812
    Abstract: A fixed bed Raney copper catalyst, which is doped with iron, noble metals or other metals, is employed as the fixed bed catalyst in the fixed bed dehydrogenation of alcohols.
    Type: Application
    Filed: April 29, 2003
    Publication date: October 30, 2003
    Inventors: Daniel Ostgard, Monika Berweiler, Karsten Seelbach
  • Patent number: 6638889
    Abstract: A method of treating a catalyst support comprises introducing onto and/or into an untreated catalyst support which is partially soluble in an aqueous acid solution and/or a neutral aqueous solution, Si, Zr, Cu, Zn, Mn, Ba, Co, Ni and/or La as a modifying component. The modifying component is capable, when present in and/or on the catalyst support, of suppressing the solubility of the catalyst support in the aqueous acid solution and/or the neutral aqueous solution. A protected modified catalyst support which is less soluble or more inert in the aqueous acid solution and/or the neutral aqueous solution, than the untreated catalyst support, is thus formed. A method of forming a catalyst from the modified catalyst support is also provided.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: October 28, 2003
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Peter Jacobus Van Berge, Jan Van De Loosdrecht, Elsie Adriana Caricato, Sean Barradas
  • Publication number: 20030187283
    Abstract: The present invention provides a catalyst for the epoxidation of hydrocarbons with oxygen, a process for the preparation of the catalyst, and a process for the epoxidation of hydrocarbons with oxygen in the presence of the catalyst.
    Type: Application
    Filed: February 21, 2003
    Publication date: October 2, 2003
    Inventors: Ursula Jansen, Andreas Wegner, Markus Dugal
  • Patent number: 6627578
    Abstract: A catalyst for selective hydrogenation, which comprises, on the basis of the total weight of catalyst, 1-30 wt % of copper as the first active component, 0.001-5 wt % of palladium as the second active component, 0.001-6 wt % of at least one metal selected from Ag, Pt, Pb, Mn, Co, Ni, Cr, Bi, Zr and Mo as cocatalyst, and the balance of at least one support selected from alumina, silica or titania. The present invention further relates to its preparation, its use in removal of alkynes from alkyne-enriched C4 cuts through selective hydrogenation and its regeneration.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: September 30, 2003
    Assignees: China Petro-Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Liying Xu, Yunxian Zhu, Yi Yue, Lingke Kong, Shusheng Gao
  • Patent number: 6627572
    Abstract: A low temperature metal promoted copper/zinc/aluminum water gas shift catalyst is described. The catalyst is formed from a precursor, wherein the precursor includes aluminum in the form of hydrotalcite and aluminum separate from the hydrotalcite. A method of making the catalyst and a process for using the catalyst are also described.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: September 30, 2003
    Assignee: Sud-Chemie Inc.
    Inventors: Yeping Cai, Sally Davies, Jon Wagner
  • Publication number: 20030166465
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline and diesel fuels are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promotors are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline and diesel fuels whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product.
    Type: Application
    Filed: January 21, 2003
    Publication date: September 4, 2003
    Inventor: Gyanesh P. Khare
  • Publication number: 20030162656
    Abstract: A CO-selective catalyst comprises a catalytic material, wherein the catalytic material is selected from the group consisting of Pt, Pd, Rh, Ir, Os, Ru, Ta, Zr, Y, Ce, Ni, Cu, and oxides, alloys, compounds, and combinations comprising at least one of the foregoing; a modifying agent selected from the group consisting of Pb, Bi, Ge, Si, Sb, As, P, and combinations comprising at least one of the foregoing; and a support.
    Type: Application
    Filed: February 25, 2002
    Publication date: August 28, 2003
    Inventors: Ming-Cheng Wu, Jeffrey G. Weissman
  • Patent number: 6610628
    Abstract: The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m2/gram as measured by adsorption of N2 or Kr using the BET method.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: August 26, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew Francis Nordquist, Frederick Carl Wilhelm, Francis Joseph Waller, Reinaldo Mario Machado
  • Publication number: 20030119666
    Abstract: A catalyst which contains at least one element selected from the group consisting of Group V elements, Group VI elements, Group VII elements, Group VIII elements, Group IX elements, Group X elements, and Group XI elements in the periodic table, and is to be used for subjecting an epoxy alcohol represented by a general formula (1) to a hydrogenolysis reaction in the presence of at least one solvent selected from the group consisting of ethers, esters, aromatic hydrocarbon compounds, alicyclic hydrocarbon compounds and aliphatic hydrocarbon compounds. By use of such a catalyst, a both end-hydroxyl group-terminated diol having a high purity can be produced efficiently.
    Type: Application
    Filed: March 26, 2002
    Publication date: June 26, 2003
    Inventors: Yasushi Kadowaki, Masato Kaneda, Hiroshi Uchida
  • Publication number: 20030100448
    Abstract: Monolithic metallic catalyst substrates offering improved heat conductivity are provided from metal powder extrusion batches of copper, tin, zinc, aluminum, iron, silver, nickel, and mixtures and alloys thereof by extrusion through a honeycomb extrusion die followed by drying and firing in a two stage firing process to oxidize organic extrusion batch components, remove residual oxides from the porous wall structure, and consolidate the metal powders to strong, integral honeycomb support structures.
    Type: Application
    Filed: August 8, 2001
    Publication date: May 29, 2003
    Inventors: Willard A. Cutler, Lin He, Anthony R. Olszewski, Charles M. Sorensen
  • Patent number: 6563000
    Abstract: A process for producing acrylic acid through vapor-phase catalytic oxidation of acrolein or acrolein-containing gas with molecular oxygen or a molecular oxygen-containing gas using a catalyst-filled fixed bed shell-and-tube reactor is provided, which is characterized in that plural catalysts of different activity levels which are prepared by changing the kind and/or amount of alkaline metal(s) therein are filled in the reaction tubes in such an arrangement that the activity levels rise from the gas-inlet side toward the gas-outlet side of said tubes. According to this process, not only yield and productivity of acrylic acid are improved but also excessive heat, accumulation in the catalyst layer can be inhibited and catalysts degradation under heat is prevented, resulting in prolongation of catalyst life.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: May 13, 2003
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiromi Yunoki, Michio Tanimoto, Daisuke Nakamura
  • Patent number: 6548445
    Abstract: In the process for preparing an aromatic carbonate from an aromatic hydroxy compound, CO and O2 in the presence of a quaternary salt and a base using a platinum metal catalyst and a cocatalyst, use is advantageously made of supported catalysts containing, in the reaction-ready state, (i) a platinum metal, a platinum metal halide or a platinum metal halide complex and (ii) a metal compound acting as cocatalyst from groups IB, IIB, IIIA, IIIB, IVA, IVB, VB, VIB, VIIB, the iron group (atomic numbers 26-28) or the rare earth metals (atomic numbers 58-71) of the Periodic Table of the Elements (Mendeleev), each in an amount of 0.01-15% by weight, calculated as metal and based on the total weight of the catalyst.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: April 15, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Hans-Josef Buysch, Carsten Hesse, Jörg-Dietrich Jentsch, Johann Rechner, Eberhard Zirngiebl
  • Patent number: 6548447
    Abstract: A process for the production of a mono-olefin from a gaseous paraffinic hydrocarbon having at least two carbon atoms or mixtures thereof comprising reacting the hydrocarbons and molecular oxygen in the presence of a platinum catalyst. The catalyst consists essentially of platinum modified with Sn or Cu and supported on a ceramic monolith.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: April 15, 2003
    Assignee: Regents of the University of Minnesota
    Inventors: Chikafumi Yokoyama, Sameer S. Bharadwaj, Lanny D. Schmidt
  • Publication number: 20030069456
    Abstract: A process for preparing a 1,3-alkandiol from a 3-hydroxyester, comprises preparing a catalyst by adding an alkaline precipitator to an aqueous copper salt solution to form copper hydroxide particles, and aging the particles following the addition of a colloidal silica thereto; activating the catalyst by reduction with a H2 gas or a H2-containing gas and applying a pressure of about 5 psig to about 2000 psig at a temperature of about 100° C. to about 250° C. in the presence of an activation solvent; and hydrogenating a 3-hydroxyester in a liquid phase slurry with a H2 gas or a H2-containing gas and applying a pressure of about 50 psig to about 3000 psig at a temperature of about 100° C. to about 250° C. in the presence of the activated catalyst and a reaction solvent, whereby a 1,3-alkanediol can be selectively prepared from a 3-hydroxyester with a high yield.
    Type: Application
    Filed: August 6, 2002
    Publication date: April 10, 2003
    Applicant: Samsung Electronics Co., Ltd. and
    Inventors: Byeong No Lee, In Sun Jung, Eun Joo Jang, Jung Ho Lee, Hyung Rok Kim, Yo Han Han
  • Publication number: 20030069457
    Abstract: A non-chrome, copper-containing catalyst, Cu—Al—O and method of preparing the same are provided wherein the Cu—Al—O catalyst is prepared by the co-precipitation of copper nitrate (Cu(NO3)2) and sodium aluminate (Na2Al2O4) solutions using sodium carbonate (Na2CO3) as a precipitant. The precipitate is filtered, washed to removed excess sodium, and dried. The dried product, to be used in a powder form, is calcined at a preferred temperature of approximately 700° to 900° C. for approximately 1 to 4 hours. The dry powder, to be tableted or extruded, is calcined at a temperature of approximately 400° to 700° C. The activity of the Cu—Al—O catalyst can be promoted in hydrogenolysis applications by the addition of various agents. The Cu—Al—O catalyst can be employed in applications in place of Cu/Cr, or other copper based catalysts.
    Type: Application
    Filed: July 16, 2002
    Publication date: April 10, 2003
    Inventor: Jianping Chen
  • Publication number: 20030064886
    Abstract: The present invention is to provide a metal oxide sintered structure having a homogeneous catalyst supporting ability, and a production method therefor. Hardly reducing oxide powders and reducing oxide powders are mixed, and then kneaded with a binder. By extrusion molding, a structure comprising channels (fluid communicating holes) is formed. Then, after heating reaction and solid solution, it is reduced under an atmosphere containing a hydrogen. Thereby, a metal oxide sintered structure having the fluid communicating holes, with the metal particles precipitated on the surface is produced. The structure is suitable for use as a catalyst for a fuel cell, or the like.
    Type: Application
    Filed: September 4, 2002
    Publication date: April 3, 2003
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Suenaga, Takayuki Fukasawa, Miho Maruyama, Yasuhiro Goto
  • Patent number: 6541419
    Abstract: A sulfur sorber for the reduction of gaseous sulfur compounds, e.g., H2S, in a gas stream The sulfur sorber, e.g., zinc oxide, is present in the form of one or more layers on the surface of a monolith carrier, e.g., cordierite. The layers have a total thickness of at least 3 g/in3 of the carrier. Preferably, the sorber is present in the form of at least three layers on the surface of the monolith carrier.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: April 1, 2003
    Assignee: Engelhard Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto