Of Titanium Patents (Class 502/350)
  • Patent number: 7691781
    Abstract: This invention provides layered porous titanium oxide comprising an inorganic oxide as a core and titanium oxide deposited on the surface of the inorganic oxide, wherein the titanium localization index B/A represented by the ratio of the proportion of titanium (Ti) to the sum of the constituent metal (M) of the inorganic oxide and titanium (Ti) determined by X-ray photoelectron spectroscopy (XPS) [B=Ti XPS/(Ti XPS+M XPS)] to the bulk mixing molar ratio of titanium (Ti) to the sum of the constituent metal (M) of the inorganic oxide and titanium (Ti) [A=Ti/(Ti+M)] is 1.6 or more and the titanium oxide is deposited on the surface of the inorganic oxide so as to be chemically and/or microscopically united to the inorganic oxide and also provides a process for producing the same and a catalyst comprising the same. The layered porous titanium oxide of this invention has a regulated pore structure, a large specific surface area, and excellent mechanical strength and is useful as a catalyst or a catalyst carrier.
    Type: Grant
    Filed: December 25, 2003
    Date of Patent: April 6, 2010
    Assignee: Chiyoda Corporation
    Inventors: Shinichi Inoue, Akihiro Mutou, Yukitaka Wada, Hidehiko Kudou, Tateo Ono, Hisashi Nomura
  • Patent number: 7686881
    Abstract: Flame-hydrolytically produced titanium dioxide powder that is present in the form of aggregates of primary particles, and has a BET surface of 20 to 200 m²/g, a half width (HW) [nm] of the primary particle distribution of HW = a×BETf where a = 670×10?9 m³/g and ?1.3 ≤ f ≤ ?1.0 and the proportion of particles with a diameter of more than 45 &mgr;m lies in a range from 0.0001 to 0.05 wt. %. The powder is produced by a process in which a titanium halide is vapourised at temperatures of less than 200°C.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: March 30, 2010
    Assignee: Degussa AG
    Inventors: Kai Schumacher, Andreas Schild, Martin Moerters
  • Publication number: 20100075836
    Abstract: A photocatalyst formed using a sol-gel process provides high photoactivity, increased photocatalyst lifetime, and improved resistance to performance degradation caused by siloxane-based contaminants. The photocatalyst is formed by a method including the steps of photocatalyst template creation, template conditioning, template refinement, and coating application.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Applicant: CARRIER CORPORATION
    Inventors: Treese Hugener-Campbell, Thomas Henry Vanderspurt, Wayde R. Schmidt, Steven M. Zhitnik
  • Publication number: 20100069231
    Abstract: The present invention provides a catalyst base material and a catalyst which have high strength, high porosity or high activity and methods of producing the catalyst base material and catalyst. The present invention relates to a method of producing a catalyst base material, the method comprising dispersing or dissolving a hydrophilic polymer coagulant as a first component, a water-soluble thickener as a second component, a colloidal inorganic binder as a third component and an inorganic fiber as a fourth component in water to form a catalytic slurry or paste, supporting the catalytic slurry or paste on a net-like substrate such that the meshes of the net-like substrate are filled up with the slurry or paste, by drying and/or calcinating the substrate.
    Type: Application
    Filed: August 28, 2006
    Publication date: March 18, 2010
    Inventors: Yasuyoshi Kato, Naomi Imada
  • Publication number: 20100062931
    Abstract: Methods for forming porous anatase titanium dioxide coatings are disclosed. Sol-gel compositions are prepared having at least one porosity agent, are applied to a substrate, and at least one porosity agent is removed. Porous anatase titanium dioxide coatings having at least one of improved antimicrobial properties, self-cleaning properties, hydrophilicity, and/or temperability are also disclosed. Substrates comprising such coatings are also disclosed.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 11, 2010
    Applicant: Guardian Industries Corp.
    Inventor: Pramod K. Sharma
  • Patent number: 7674744
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a carrier in a reversed micelle, and a step of precipitating at least one of a noble metal particle and a transition metal particle in the reversed micelle in which the carrier is precipitated. By this method, it is possible to obtain catalyst powder excellent in heat resistance and high in the catalytic activity.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: March 9, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Toru Sekiba, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hirofumi Yasuda
  • Publication number: 20100051443
    Abstract: Heterodimeric photocatalytic systems and methods of making and using the same are disclosed. The systems can include a first nanomaterial comprising titanium dioxide (TiO2) having a first bandgap energy characterized by a first highest occupied molecular orbital (HOMO) and a first lowest unoccupied molecular orbital (LUMO). The systems can further include a second nanomaterial comprising semiconducting metal oxide and/or metal sulfide (MOX/MSX) having a second bandgap characterized by a second HOMO and a second LUMO, wherein the second bandgap energy is in the range of energies for a visible light spectrum, and the second LUMO is higher than the first LUMO.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Inventor: Kwangyeol Lee
  • Publication number: 20100056365
    Abstract: With respect to 100 parts by volume of an aqueous alcohol solution containing 0.01 to 50% by volume of an alcohol, 20 or less parts by volume of titanium tetrachloride is added thereto to obtain a coating agent wherein titanium oxide or a precursor thereof in the form of nanoparticles is dispersed in the aqueous alcohol solution. Consequently, the coating agent exhibiting a high photocatalytic activity can be produced by a simple operation at low cost. Since the coating agent obtained by the present invention has a high self-adhesiveness in addition to the high photocatalytic activity, it can adhere to an object substance by itself.
    Type: Application
    Filed: November 8, 2007
    Publication date: March 4, 2010
    Applicant: YUKU COLLABORATION CORPORATION
    Inventors: Ryoue Kawai, Masafumi Shimizu, Ryuji Maekubo
  • Publication number: 20100047611
    Abstract: A method of preparing a nanoporous titanium film includes depositing a film of a mixture including titanium and one or more metals that are immiscible with the titanium on a substrate; and eliminating the one or more metals that are immiscible with the titanium selectively from the mixture by an electrochemical method. A method of preparing a nanoporous TiO2 film includes depositing a film of a mixture including titanium and one or more metals that are immiscible with the titanium on a substrate; eliminating the one or more metals that are immiscible with the titanium selectively from the mixture by an electrochemical method; and oxidizing the titanium.
    Type: Application
    Filed: August 25, 2008
    Publication date: February 25, 2010
    Inventor: Seo-Yong Cho
  • Publication number: 20100041913
    Abstract: The invention provides a polycondensation catalyst for producing polyester by an esterification reaction or a transesterification reaction between a dicarboxylic acid or ester-forming derivative thereof and a glycol, wherein the polycondensation catalyst comprises particles of a solid base having on their surfaces either a coat layer of titanic acid in an amount of from 0.1 to 50 parts by weight in terms of TiO2 per 100 parts by weight of the solid base, or an inner coat layer of an oxide of at least one element selected from silicon, aluminum and zirconium or a composite oxide of at least two elements selected from silicon, aluminum and zirconium in an amount of from 1 to 20 parts by weight per 100 parts by weight of the solid base and an outer coat layer of titanic acid in an amount of from 0.
    Type: Application
    Filed: June 28, 2006
    Publication date: February 18, 2010
    Inventors: Toshikatsu Umaba, Hiromitsu Shimizu, Kenji Mori, Keiichi Tabata
  • Patent number: 7662359
    Abstract: The invention relates to a process for manufacturing a particulate titanium dioxide product, wherein hydrated titanium dioxide is precipitated from an aqueous solution of titanium oxychloride by adding to the solution titanium dioxide particles as crystal nuclei and the product obtained from the precipitation step is isolated and optionally calcined. The process is characterized by the addition of crystal nuclei to an aqueous solution of titanium oxychloride having a content of >90 g TiO2/l calculated as TiO2 and the performance of precipitation at a temperature below the boiling point of the said aqueous solution and at normal pressure. In addition, the invention relates to a titanium dioxide product prepared by using the process, the use of the product as a photocatalyst, and a photocatalyst, which comprises a titanium dioxide product prepared according to the invention.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: February 16, 2010
    Assignee: Sachtleben Pigments Oy
    Inventors: Saila Mariatta Karvinen, Ralf-Johan Lamminmäki
  • Patent number: 7663003
    Abstract: A process for hydrogenating an organic compound which has at least one carbonyl group, in which the organic compound is brought into contact in the presence of hydrogen with a shaped article which can be produced in a process in which (i) an oxidic material comprising copper oxide, aluminum oxide and at least one of the oxides of lanthanum, tungsten, molybdenum, titanium or zirconium is prepared, (ii) powdered metallic copper, copper flakes, powdered cement, graphite or a mixture thereof is added to the oxidic material, and (iii) the mixture resulting from (ii) is shaped to a shaped article.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: February 16, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Sylvia Huber-Dirr, Michael Hesse, Andrea Haunert, Henrik Junicke
  • Patent number: 7659432
    Abstract: Mixed ketones are prepared from a mixture of carboxylic acids in a process with high selectivity by using an improved catalyst. The catalyst contains zirconium dioxide or zirconium dioxide and titanium dioxide, and a Group 1 or 2 metal silicate or phosphate salt. The new catalyst is more selective toward the formation of the mixed ketone, as opposed to a symmetrical ketone.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: February 9, 2010
    Assignee: Eastman Chemical Company
    Inventors: Alexey V. Ignatchenko, Michelle Manichanh King, Zhufang Liu, Calvin W. Whiddon
  • Patent number: 7659226
    Abstract: A method of making amorphous metal peroxide solution includes mixing hydrogen peroxide and an amorphous metal hydroxide mixture to form a hydrogen peroxide and amorphous metal hydroxide mixture, and simultaneously heating and applying pressure above atmospheric pressure to the hydrogen peroxide and amorphous metal hydroxide mixture for a period of time to form the amorphous metal peroxide solution.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: February 9, 2010
    Assignee: EnVont LLC
    Inventor: Gary D. Tucker, II
  • Patent number: 7655749
    Abstract: Methods for synthesizing dimeric or higher polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst is in particulate form and comprises a first metal substrate having a second reduced metal coated on the substrate.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: February 2, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
  • Patent number: 7655137
    Abstract: The reforming catalysts include a halogen promoter and a plurality of nanocatalyst particles supported on a support material. The nanocatalyst particles have a controlled crystal face exposure of predominately (110). The controlled coordination structure is manufactured by reacting a plurality of catalyst atoms with a control agent such as polyacrylic acid and causing or allowing the catalyst atoms to form nanocatalyst particles. The catalysts are used in a reforming reaction to improve the octane number of gasoline feedstock. The reforming catalysts show improved C5+ hydrocarbon production and improved octane barrel number increases as compared to commercially available reforming catalysts.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 2, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Horacio Trevino, Zhihua Wu
  • Publication number: 20100022383
    Abstract: The present invention relates to photocatalytically active coatings for surfaces of buildings, vehicles, equipment, paths and the like which comprise interference pigments as photocatalytically active material and optionally an infrared light-absorbent material, to processes for the production of such surfaces, and to objects coated therewith.
    Type: Application
    Filed: August 24, 2007
    Publication date: January 28, 2010
    Inventors: Matthias Kuntz, André Salie
  • Publication number: 20100022796
    Abstract: Especially physically stable metal oxide catalyst supports are prepared by suspending a metal oxide in a continuous phase, activating by fine dispersion, coagulation to a viscoelastic mass, shaping, drying, and calcining. The catalyst support thus prepared may be treated with catalytic agents to produce supported catalysts for olefin oxidation.
    Type: Application
    Filed: December 6, 2007
    Publication date: January 28, 2010
    Applicant: WACKER CHEMIE AG
    Inventors: Roland Heidenreich, Hans-Jurgen Eberle, Johann Weis
  • Patent number: 7651972
    Abstract: Disclosed herein is a method for manufacturing a high-crush-strength iridium catalyst for hydrazine decomposition for spacecraft and satellite propulsion using bauxite, the method including: an acid treatment step of bringing bauxite into contact with a 0.1-10 M acid solution for 10-14 hr; a filtration step of filtering the acid-treated bauxite as a solid to remove the remaining acid and impurities; a thermal treatment step of bringing the filtered bauxite into contact with hot air at a temperature of 500-700° C. for 2-6 hr; a catalyst loading step of loading an iridium catalyst onto the thermally treated bauxite; and a reduction step of reducing the catalyst of the catalyst-loaded bauxite.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: January 26, 2010
    Assignee: Korean Aerospace Research Institute
    Inventors: Myoung-Jong Yu, Kyun-Ho Lee, Su-Kyum Kim, Joon-Min Choi, Sung-June Cho
  • Patent number: 7648936
    Abstract: A catalyst comprising a spray-dried transition metal zeolite and a noble metal is disclosed. The spray-dried transition metal zeolite comprises a transition metal zeolite and a binder. At least 50 wt. % of the binder is titania. The catalyst is used in a process to produce an epoxide by reacting an olefin, hydrogen, and oxygen. The catalyst is easy to filter from a slurry and produces a reduced level of hydrogenation products.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: January 19, 2010
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Edrick Morales, Guoyi Fu, Roger A. Grey, Kun Qin
  • Patent number: 7642214
    Abstract: An object of the present invention is to provide a highly active catalyst for producing an unsaturated oxygen-containing compound from an alkane and the catalyst comprising Mo, V, Ti and Sb or Te as the indispensable active components. The preferable catalyst is represented by formula (1) or (2) as shown below, Mo1.0VaTibXcYdOe??(1) Mo1.0VaTibXcYdZfOe??(2) wherein X represents Sb or Te; Y represents Nb, W or Zr; Z represents Li, Na, K, Rb, Cs, Mg, Ca or Sr; a, b, c, d, e and f represent atomic ratios of their respective elements, with 0<a<0.7, 0<b<0.3, 0<c<0.7, 0?d<0.3, 0<f<0.1; e is a number determined by oxidation states of the other elements than oxygen.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: January 5, 2010
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Tomoaki Kobayashi, Yoshimasa Seo
  • Publication number: 20090325787
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Application
    Filed: July 14, 2009
    Publication date: December 31, 2009
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20090325788
    Abstract: The present invention is related to single and/or multiple-wall carbon nanotubes which may contain interstitial metals obtainable by a preparation process, comprising a catalytic step using a catalytic system, said catalytic system comprising a catalyst and a support, said support comprising hydroxides and/or carbonates or mixtures thereof with or without metal oxides. The present invention is also related to carbon fibers obtainable by said preparation process. The present invention also pertains in particular to said catalytic system and to said preparation process. Another aspect concerns the use of the nanotubes and of the catalytic system according to the invention.
    Type: Application
    Filed: July 20, 2009
    Publication date: December 31, 2009
    Applicant: FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX
    Inventors: Janos B. Nagy, Narasimaiah Nagaraju, Isabelle Willems, Antonio Fonseca
  • Publication number: 20090324468
    Abstract: The present invention pertains to catalyst systems for nitrogen oxide, carbon monoxide, hydrocarbon, and sulfur reactions that are free or substantially free of platinum group metals. The catalyst system of the present invention comprise a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst system may optionally have an overcoat, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalysts, or mixtures thereof.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Inventors: Stephen J. Golden, Randal Hatfield, Jason Pless, Johnny Ngo, Mann Sakbodin
  • Patent number: 7638459
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7638113
    Abstract: The disclosure relates to a process for making titanium dioxide, comprising: reacting titanium tetrachloride with oxygen by contacting the titanium tetrachloride with the oxygen in a vapor phase reactor under mixing conditions and at an elevated temperature to form a gaseous product stream containing titanium dioxide; separating the titanium dioxide from the gaseous product stream to form a process stream; analyzing the process stream to detect a concentration of titanium tetrachloride in the process stream; comparing the concentration of titanium tetrachloride detected in the process stream to an aim point concentration; and modifying the oxidation conditions to restore or maintain the concentration of titanium tetrachloride in the process stream at the aim point.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: December 29, 2009
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert E Bucher, Jr., James Timothy Cronin, Yung-Hsing Samson Hsu, Charles David Musick, Kunle Ogunde, Robert J. Rossi, Barbara A. Kirsch
  • Patent number: 7638460
    Abstract: An exhaust gas purifying catalyst of the present invention has a substrate, and a catalyst layer formed on an inner wall of the substrate and composed of at least a single layer. The catalyst layer contains a carrier supporting noble metal. Further, a maximum height of profile of a surface of a top layer in the catalyst layer is not less than 2 ?m and not more than 50 ?m, and the top layer contains the carrier supporting noble metal.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 29, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masanori Nakamura, Katsuo Suga, Kiyoshi Miyazaki, Jun Ikezawa
  • Publication number: 20090317308
    Abstract: Catalysts are formulated to resemble a direct ammonia/air fuel cell at short circuit at the nanoscale level to convert ammonia in aqueous solution directly and spontaneously to nitrogen at near or above ambient temperature. The catalyst particle contains a type-A catalyst subparticles for ammonia oxidation to nitrogen, and a type-C catalyst subparticles for oxygen reduction, with the type-A and type-C catalyst subparticles electrically shorted. Advantages realized at the nanoscale level are enhanced conductances for electrons and hydroxyl anions between the neighboring type-A and type-C catalyst subparticles. With the catalysts packed and confined in a catalyst bed in a chemical reactor, the direct conversion of ammonia in an aqueous phase to nitrogen can be carried out continuously for ammonia removal from a water stream in a compact package, and without the high cost arising from constructing and maintaining a bulk electrochemical device, and without the step of exacting the ammonia into gas phase.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 24, 2009
    Inventor: Xiaoming Ren
  • Patent number: 7635461
    Abstract: Composite combustion catalyst particles are described and disclosed. A metal core of a combustible metal can be coated with a metal oxide coating. Additionally, a catalyst coating can at least partially surround the metal oxide coating to form a composite catalyst particle. The composite catalyst particles can be dispersed in a variety of fuels such as propulsion fuels and the like to form an enhanced fuel. During initial stages of combustion, the catalyst coating acts to increase combustion of the fuel. As combustion proceeds, the metal core heats sufficiently to disturb the metal oxide coating. The metal core then combusts in highly exothermic reactions with an oxidizer and the catalyst coating to provide improved energy densities to the enhanced fuel.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: December 22, 2009
    Assignee: University of Utah Research Foundation
    Inventor: Scott L. Anderson
  • Patent number: 7635659
    Abstract: The photocatalytic apatite composition and its production method are disclosed. The photocatalytic apatite comprises a photocatalytic apatite having incorporated into the apatite crystal structure thereof a metal oxide having a photocatalytic action, such as titanium oxide, and a metal ion having an antimicrobial property, such as a silver ion or a copper ion. The photocatalyst apatite composition is capable of maintaining excellent decomposition and adsorption properties for various organic materials such as VOCs or specific adsorbing substances such as a virus for a long time and, at the same time, expressing an excellent antimicrobial property in a dark place as well as under daylight.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: December 22, 2009
    Assignee: Fujitsu Limited
    Inventors: Yasuo Naganuma, Masato Wakamura
  • Publication number: 20090312562
    Abstract: The present invention relates to the use of titanium dioxide having a content of sulphur, calculated as elemental sulphur, of less than about 1000 ppm and a BET surface area of at least 5 m2/g for preparing a catalyst for gas phase oxidation of hydrocarbons, especially for gas phase oxidation of o-xylene and/or naphthalene. Also described is a preferred process for preparing such a catalyst.
    Type: Application
    Filed: May 23, 2007
    Publication date: December 17, 2009
    Applicant: SUD-CHEMIE AG
    Inventors: Christian Guckel, Marvin Estenfelder, Gerhard Mestl
  • Publication number: 20090312181
    Abstract: A catalyst support material comprising TiO2, and optionally being doped with a transition metal element, and a method for synthesizing the same have been developed. The catalyst support material exhibits an electrical conductivity comparable to widely-used carbon materials. This is because the TiO2 present is primarily arranged in its rutile crystalline phase. Furthermore, a mesoporous morphology provides the catalyst support material with appropriate porosity and surface area properties such that it may be utilized as part of a fuel cell electrode (anode and/or cathode). The TiO2-based catalyst support material may be formed using a template method in which precursor titanium and transition metal alkoxides are hydrolyzed onto the surface of a latex template, dried, and heat treated.
    Type: Application
    Filed: March 27, 2009
    Publication date: December 17, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Thanh Ba Do, Mei Cai, Martin S. Ruthkosky
  • Publication number: 20090312179
    Abstract: A method of supporting a hydrocarbon synthesis catalyst material comprising a catalytically active metal and a carrier material on a substrate comprising the steps of: (a) applying the catalyst material to the substrate; and (b) heating the catalyst material to form a catalyst material layer fixed to the substrate, characterised in that—the catalyst carrier is a porous inorganic refractory oxide or precursor therefor; the catalyst material applied in step (a) comprises 60 to 90 weight % solvent calculated on the total weight of the catalyst material layer; when the catalyst material is subjected to the heating step (b) it comprises at most 10 weight % of solvent, calculated on the total weight of the catalyst material layer; in heating step (b) the catalyst material is heated to a temperature in the range between 250° C. and 800° C.; cracks having sub-millimetre widths are uniformly formed in the layer; after step (b) the catalyst material layer has a thickness of 5-200 microns.
    Type: Application
    Filed: July 9, 2007
    Publication date: December 17, 2009
    Inventors: Abderrahmane Chettouf, Gerardus Petrus Lambertus Niesen, Marinus Johannes Reynhout, David Schaddenhorst
  • Patent number: 7632780
    Abstract: The present invention relates to a method for preparing a vanadia-titania catalyst having a core-shell structure, which is highly active in decomposing chlorinated organic compounds such as dioxin present in the exhaust of an incinerator.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: December 15, 2009
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong Soo Jurng, Sung Min Chin, Ju Young Jeong, Jung Eun Lee, Gwi-Nam Bae
  • Patent number: 7631488
    Abstract: Disclosed herein is an oxidation catalyst for use in removing fine soot particulates from exhaust gases of diesel engines, incinerators, boilers or other combustion devices, and to a method of removing fine soot particulates using the oxidation catalyst. The oxidation catalyst of the current invention functions to effectively remove fine soot particulates at a low temperature, and also, has thermal durability, and thus, the activity of the catalyst may be stably maintained even under thermal stress for a long time period. Further, the catalyst prevents poisoning due to a sulfur compound present in exhaust gases, and can maintain stable activity.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: December 15, 2009
    Assignee: Postech Foundation
    Inventors: Jong Shik Chung, Ji Hyang Shon, Young Nam Kim
  • Patent number: 7632778
    Abstract: An apparatus for producing hydrogen, which comprises: a. a heated steam reforming stage (1) with a reforming catalyst to convert gaseous or vaporizable hydrocarbons and water into hydrogen, carbon monoxide and further reformer products; b. at least one stage downstream of the steam reforming stage for the catalytic conversion of the mixture of hydrogen, carbon monoxide and excess steam leaving the steam reforming stage (shift stage) (2); and c. a fine purification stage (3) downstream of the shift stage(s) for the catalytic lowering of the residual carbon monoxide content of the conversion products by selective methanization, is described. In the apparatus, the shift stage (2) and the fine purification stage (3) are configured as a unitary hollow body (exothermic catalyst stage).
    Type: Grant
    Filed: January 17, 2005
    Date of Patent: December 15, 2009
    Assignee: Süd-Chemie AG
    Inventors: Klaus Wanninger, Peter Britz, Nicolas Zartenar
  • Patent number: 7628968
    Abstract: The present invention is directed to high activity titanium oxide DeNOx catalysts. In preferred embodinents, by depositing vanadium oxide on a titania supported metal oxide such as tungsten oxide, an improved catalyst may be generated. This catalyst may be used in the treatment of exhaust from sources such as automobiles and industrial plants.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: December 8, 2009
    Assignee: Millenium Inorganic Chemicals, Inc.
    Inventors: Steven M Augustine, Guoyi Fu
  • Patent number: 7629289
    Abstract: A process and catalyst for the selective hydrodesulfurization of a naphtha containing olefins. The process produces a naphtha stream having a reduced concentration of sulfur while maintaining the maximum concentration of olefins.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: December 8, 2009
    Assignee: UOP LLC
    Inventors: Lorenz J. Bauer, Suheil F. Abdo, Laura E. Jones, Peter Kokayeff
  • Patent number: 7625835
    Abstract: A composite photocatalyst includes a semiconducting core and a nanoscale particle disposed on a surface of the semiconducting core, wherein the nanoscale particle is an electron carrier, and wherein the photocatalyst is sensitive to visible light irradiation.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: December 1, 2009
    Assignees: GM Global Technology Operations, Inc., Pohang University of Science and Technology
    Inventors: Wei Li, Se H. Oh, Jae S. Lee, Jum S. Jang
  • Patent number: 7622419
    Abstract: To provide a filter catalyst in which the closure of ventilation holes by a catalytic layer is inhibited. A filter catalyst of the present invention is characterized in that it has pores of 1-20 ?m in a porosity of 11% or more. The filter catalyst of the present invention has an effect of being capable of inhibiting the rise of pressure loss when sufficient particulates deposit.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: November 24, 2009
    Assignees: Cataler Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Makoto Tsuji, Daisuke Oki, Seiji Okawara
  • Publication number: 20090286676
    Abstract: A method for producing a titanium dioxide photocatalyst is provided. The method uses a sol-gel process wherein acid and base catalysts are added in two separate steps. According to the method, a titanium dioxide photocatalyst with increased mesoporosity can be produced without the use of any particular additive. Further, an anatase structure is formed upon drying and is maintained even after high-temperature calcination. Further provided is a titanium dioxide photocatalyst produced by the method. Further provided is a titanium dioxide photocatalyst doped with sulfur and zirconium, which is produced by using the method. The doped titanium dioxide photocatalyst exhibits catalytic activity even under visible light and excellent surface characteristics to achieve improved photocatalytic activity.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 19, 2009
    Applicant: Kyungpook National University Industry- Academic Cooperation Foundation
    Inventors: Tae Jeong Kim, Wha Jung Kim, Sun Woo Kim
  • Patent number: 7618919
    Abstract: A method of producing a catalyst support comprising a substrate, and coating formed on the surface of the substrate and including powder of a first metal oxide of at least one member selected from the group consisting of alumina, zirconia, titania, iron oxides, oxides of rare earth elements, alkali metal oxides and alkali earth metal oxides, wherein the coating is obtained by heat treating the substrate after applied with a coating composition obtained by mixing the first metal oxide powder together with a fluid raw material composition containing raw material of a second metal oxide of at least one member selected from the group consisting of alumina, zirconia, titania, iron oxides, oxides of rare earth elements, alkali metal oxides and alkali earth metal oxides, at a shear rate of 1000 sec?1 or higher.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: November 17, 2009
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takashi Shimazu, Ryusuke Tsuji, Hideo Sobukawa
  • Patent number: 7618918
    Abstract: The present invention relates to a catalyst, in particular for the preparation of phthalic anhydride by gas phase oxidation of o-xylene and/or naphthalene, having an inert support and at least one layer which has been applied thereto and has a catalytically active composition comprising TiO2, characterized in that at least a portion of the TiO2 used has the following properties: (a) the BET surface area is more than 15 m2/g, (b) the primary crystal size is more than 210 ångstrøm. Also described is a preferred process for preparing such a catalyst, and the preferred use of the titanium dioxide used in accordance with the invention.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: November 17, 2009
    Assignee: Süd-Chemie AG
    Inventors: Marvin Estenfelder, Helmut Hartsberger, Christian Guckel
  • Patent number: 7615512
    Abstract: The invention relates to a titanium dioxide-based photocatalyst containing carbon that is highly photoactive in visible light (vlp-TiO2) and to a method of manufacture. The vlp-TiO2 is manufactured by mixing a fine grained titanium compount (BET?50 m2/g) with an organic carbon compound and subsequent thermal treatment at temperatures up to 350° C. The carbon content amounts to 0.05 to 4% by weight, preferably 0.4 to 0.8% by weight. The product is characterized by an ESR spectrum which displays only one significant signal in the g value range from 1.97 to 2.05 at g about 2.003. The inventive photocatalyst can be used for to degrade contaminants and pollutants in liquids and gases.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: November 10, 2009
    Assignee: Kronos International Inc
    Inventors: Jürgen Orth-Gerber, Horst Kisch
  • Patent number: 7615513
    Abstract: The present invention relates to the use of a catalyst comprising at least one first catalyst zone located towards the gas inlet, a second catalyst zone located closer to the gas outlet and a third catalyst zone located even closer to or at the gas outlet for the preparation of phthalic anhydride by gas-phase oxidation of o-xylene and/or naphthalene, with the catalyst zones preferably each having an active composition comprising TiO2, characterized in that the catalyst activity of the first catalyst zone is higher than the catalyst activity of the second catalyst zone. Furthermore, a preferred process for the preparation of phthalic anhydride is described.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: November 10, 2009
    Assignee: Süd-Chemie AG
    Inventors: Christian Guckel, Harald Dialer, Marvin Estenfelder, Werner Pitschi
  • Patent number: 7615511
    Abstract: Organo-titanate catalysts are prepared that are useful to catalyze depolymerization of a polyester to produce macrocyclic oligoesters substantially free from macrocyclic co-oligoesters.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: November 10, 2009
    Assignee: Cyclics Corporation
    Inventors: Peter D. Phelps, Timothy A. Thompson, Yi-Feng Wang, Donald G. Le Grand
  • Publication number: 20090275463
    Abstract: A method for making a catalyst includes providing a sol that sol includes a catalyst and a catalyst substrate; drying the sol via freeze-drying, spray drying, freeze granulation, or supercritical fluid drying to form a powder; mixing the powder with a solvent to form a slurry; and washcoating the slurry onto a catalyst support. Another method for making a catalyst includes providing a sol, wherein the sol includes a catalyst substrate; drying the sol via freeze-drying, spray drying, freeze granulation, or supercritical fluid drying to form a powder; mixing the powder with a solvent to form a slurry; washcoating the slurry onto a catalyst support; and depositing a catalyst onto the catalyst substrate.
    Type: Application
    Filed: May 1, 2008
    Publication date: November 5, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hrishikesh Keshavan, Robert Joseph Lyons, Larry Neil Lewis, Dan Hancu
  • Patent number: 7612015
    Abstract: A photocatalyst layer (TiO2) is formed on the surface of a substrate (glass plate) through the intermediary of a monoclinic undercoat layer (ZrO2), and no dead layer is substantially present between the photocatalyst layer and the undercoat layer. Also, by providing a peel preventing layer between the substrate and the undercoat layer, it is possible to eliminate film peeling between the photocatalyst layer and the substrate, defects and discoloration. A metal element may be doped in the photocatalyst layer, and it is preferable that the metal element is at least one of Sn, Zn, Mo and Fe. The phrase “no dead layer is substantially present” means that the thickness of the dead layer is 20 nm or less. The thickness of the photocatalyst layer is preferably from 1 nm to 1,000 nm, more preferably from 1 nm to 500 nm.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: November 3, 2009
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Toshiaki Anzaki, Yoshifumi Kijima, Kenji Mori
  • Patent number: 7608562
    Abstract: A method of producing a photocatalyst according to the invention comprises forming an amorphous titanium oxide and heat-treating it in an atmosphere containing oxygen, whereby a photocatalyst having a good photocatalysis can be obtained. In particular, the amorphous titanium oxide is obtained by using the reactive sputtering method and via deposition at a low temperature and at a high film formation rate. This apparatus can be provided with cooling means to allow enhancement of the throughput of the film formation process.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: October 27, 2009
    Assignee: Shibaura Mechatronics Corporation
    Inventors: Junji Hiraoka, Minoru Takashio, Tetsuya Fukushima, Daisuke Noguchi, Yoshio Kawamata
  • Publication number: 20090263304
    Abstract: A porous material having fine holes with controlled diameters and a catalyst having an active ingredient supported in the fine holes in the porous material are used. According to a first embodiment of the invention, the diameter of the plurality of fine holes is within a range of 8 to 9 ?. The fine hole diameter is preferably from 8 to 9 ? when the diameter is measured in a gas adsorption method in which fine holes with diameters of 3.4 to 14 ? can be measured. The fine hole diameter is also preferably from 8 to 9 ? when the fine hole diameter is calculated from a crystal structure. According to a second embodiment of the invention, the porous material is mesoporous silica. The primary particle diameter of the mesoporous silica is preferably within a range of 150 to 300 nm.
    Type: Application
    Filed: February 12, 2008
    Publication date: October 22, 2009
    Inventors: Noriko Yoshida, Hidehiro Iizuka, Yasuyoshi Kato, Yoshinori Nagai, Toshiaki Arato