Of Tin Patents (Class 502/352)
  • Patent number: 9029286
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 12, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Brian Neltner, Angela M. Belcher
  • Publication number: 20150093686
    Abstract: A method of preparing catalytic materials comprising depositing platinum or non-platinum group metals, or alloys thereof on a porous oxide support.
    Type: Application
    Filed: March 11, 2013
    Publication date: April 2, 2015
    Applicant: STC.UNM
    Inventors: Alexey Serov, Ulises A Martinez, Plamen B Atanassov
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Publication number: 20140256540
    Abstract: Photocatalytic materials are described herein which include thin nanostructures. For example, the catalytic material can include a nanostructure that has a thin structure of a photocatalytic composition, wherein the thin structure is defined by a first surface and a second surface on opposite sides of the thin structure of the photocatalytic composition. The photocatalytic composition may include an inorganic compound, such as a titanium and/or stannous oxide. The first surface and a second surface may be relatively large as compared to the thickness of the thin structure, or the thickness of the nanostructure.
    Type: Application
    Filed: September 6, 2013
    Publication date: September 11, 2014
    Applicant: Nitto Denko Corporation
    Inventors: Ekambaram Sambandan, Rajesh Mukherjee, Takuya Fukumura, Amane Mochizuki
  • Patent number: 8815768
    Abstract: The present invention relates to catalysts, to processes for making catalysts with acidic precursors and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a support, optionally a modified support.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: August 26, 2014
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner
  • Patent number: 8802044
    Abstract: The invention relates to a filtration structure, for filtering a gas coming from a diesel engine, which is laden with gaseous pollutants of the nitrogen oxide NOx type and with solid particles, of the particulate filter type, said filtration structure being characterized in that it includes a catalytic system comprising at least one noble metal or transition metal suitable for reducing the NOx and a support material, in which said support material comprises or is made of a zirconium oxide partially substituted with a trivalent cation M3+ or with a divalent cation M?2+, said zirconium oxide being in a reduced, oxygen-sub-stoichiometric, state.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 12, 2014
    Assignees: Saint-Gobain Centre de Recherches et d'Etudes Europeen, Centre National de la Recherche Scientifique
    Inventors: Philippe Vernoux, Abdelkader Hadjar, Agnes Princivalle, Christian Guizard
  • Publication number: 20140213441
    Abstract: The present invention provides an electrocatalytic material and a method for making an electrocatalytic material. There is also provided an electrocatalytic material comprising amorphous metal or mixed metal oxides. There is also provided methods of forming an electrocatalyst, comprising an amorphous metal oxide film.
    Type: Application
    Filed: September 4, 2012
    Publication date: July 31, 2014
    Inventors: Simon Trudel, Curtis Berlinguette
  • Publication number: 20140171696
    Abstract: In one embodiment, the invention is to a catalyst composition for converting ethanol to higher alcohols, such as butanol. The catalyst composition comprises one or more metals and one or more supports. The one or more metals selected from the group consisting of cobalt, nickel, palladium, platinum, zinc, iron, tin and copper. The one or more supports are selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and mixtures thereof, wherein the catalyst is substantially free of alkali metals and alkaline earth metals.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Patent number: 8748337
    Abstract: The present invention relates to a method for preparing a multi-metals/activated carbon composite, more particularly to a method for preparing a multi-metals/activated carbon composite, which is prepared by electrochemical electroplating of an alloy plate comprising at least two metals and activated carbons fixed on a conductive support under a predetermined condition. The multi-metals/activated carbon composite prepared in accordance with the present invention has improved adhesion force and specific surface area than those of a conventional composite obtained by continuously plating activated carbons, in which metal salts are impregnated, or metals and good reactivity due to the introduction of pure metals. Since the composition and content of metals can be controlled accurately, the multi-metals/activated carbon composite is useful as an active material for filters for removing gaseous or liquid pollutants, secondary cells, fuel cells, capacitors, hydrogen storage electrodes, etc.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: June 10, 2014
    Assignee: INHA—Industry Partnership Institute
    Inventors: Soo-Jin Park, Byung-Joo Kim
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Publication number: 20140140904
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Application
    Filed: July 23, 2013
    Publication date: May 22, 2014
    Applicant: National Applied Research Laboratories
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Patent number: 8716165
    Abstract: A method for providing a catalyst on a substrate is disclosed comprising providing a first washcoat comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material, contacting the first washcoat with a substrate to form a coated substrate, and then contacting the coated substrate with a second washcoat comprising an oxide or an oxide-supported catalyst to physisorb, chemisorb, bond, or otherwise adhere the oxide or the oxide-supported catalyst to the coated substrate. Also disclosed is a catalyst on a substrate comprising: a substrate; an anchor layer comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material; and a second layer comprises an oxide or an oxide-supported catalyst. The catalyst on a substrate can be in either green or fired form.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 6, 2014
    Assignee: Corning Incorporated
    Inventor: William Peter Addiego
  • Patent number: 8685877
    Abstract: A catalyst particle for use in growth of elongated nanostructures, such as e.g. nanowires, is provided. The catalyst particle comprises a catalyst compound for catalyzing growth of an elongated nanostructure comprising a nanostructure material without substantially dissolving in the nanostructure material and at least one dopant element for doping the elongated nanostructure during growth by substantially completely dissolving in the nanostructure material. A method for forming an elongated nanostructure, e.g. nanowire, on a substrate using the catalyst particle is also provided. The method allows controlling dopant concentration in the elongated nanostructures, e.g. nanowires, and allows elongated nanostructures with a low dopant concentration of lower than 1017 atoms/cm3 to be obtained.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: April 1, 2014
    Assignee: IMEC
    Inventors: Francesca Iacopi, Philippe M. Vereecken
  • Publication number: 20140066663
    Abstract: A catalyst composition comprises (i) a support; (ii) a dehydrogenation component comprising at least one metal or compound thereof selected from Groups 6 to 10 of the Periodic Table of Elements; and (iii) tin or a tin compound, wherein the tin is present in an amount of 0.01 wt % to about 0.25 wt %, the wt % based upon the total weight of the catalyst composition.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 6, 2014
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Terry E. Helton, Keith H. Kuechier, Jenna L. Waliace
  • Publication number: 20140031546
    Abstract: A hydrodeoxygenation catalyst comprises a metal catalyst, an acid promoter, and a support. The metal catalyst is selected from platinum, palladium, ruthenium, rhenium rhodium, osmium, iridium, nickel, cobalt, molybdenum, copper, tin, or mixtures thereof. The support is a promoted-zirconium material including texture promoters and acid promoters. The hydrodeoxygenation catalyst may be used for hydrodeoxygenation (HDO) of sugar or sugar alcohol in an aqueous solution. In one embodiment the HDO catalyst may be used for HDO of fatty acids such as fatty acid methyl esters (FAME), triglycerols (in plant oil and animal fat), pyrolysis oil, or lignin. The hydrodeoxygenation catalyst for fatty acid process does not require the use of an acid promoter, it is optional.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Inventors: Wenqin Shen, Alguo Liu, Wayne Turbeville
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Patent number: 8609579
    Abstract: A composition capable of radiation activated catalysis is provided. The composition comprises a metal compound, a mercapto compound and an olefinic compound. Radiation curable urethane compositions comprising the disclosed composition are also provided. The radiation curable urethane compositions comprise the disclosed composition, a hydroxyl compound and an isocyanate compound. Activation of the composition by radiation in a urethane formulation provides for an efficient method of curing the urethane composition. Coating and adhesive compositions comprising the radiation curable urethane compositions are also provided. In addition, methods for coating and bonding substrates are disclosed.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 17, 2013
    Assignee: Ashland Licensing and Intellectual Property LLC
    Inventors: Raymond Scott Harvey, Thomas Michael Moy, Gary M. Carlson
  • Patent number: 8592609
    Abstract: Processes for producing lactide from lactic acid oligomers are described herein. The processes generally include heating a lactic acid oligomer in the presence of a catalyst at a temperature of between 150° C. and 300° C. under a pressure of less than 0.01 MPa to form a lactide; distilling the lactide; and condensing and recovering the lactide, wherein the catalyst is a metal salt of the phosphite anion PO33? in which the metal is selected from the group consisting of tin, aluminum, zinc, titanium and zirconium.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 26, 2013
    Assignee: Futerro S.A.
    Inventors: Philippe Coszach, Pierre-Antoine Mariage
  • Publication number: 20130261349
    Abstract: A catalyst composition comprising tin and optionally a second metal for use in the production of alcohols such as ethanol from carboxylic acids such as acetic acid. An acidic solution such as nitric acid is utilized in the preparation of the catalyst according to one embodiment of the present invention to better solubilize an organometallic tin precursor resulting in the formation of catalysts having particularly high selectivity to ethanol.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou
  • Publication number: 20130237409
    Abstract: Photocatalytic materials are described herein which include thin nanostructures. For example, the catalytic material can include a nanostructure that has a thin structure of a photocatalytic composition, wherein the thin structure is defined by a first surface and a second surface on opposite sides of the thin structure of the photocatalytic composition. The photocatalytic composition may include an inorganic compound, such as a titanium and/or stannous oxide. The first surface and a second surface may be relatively large as compared to the thickness of the thin structure, or the thickness of the nanostructure.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 12, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Ekambaram Sambandam, Rajesh Mukherjee, Takuya Fukumura, Amane Mochizuki
  • Patent number: 8530372
    Abstract: Catalysts, systems and methods for abating emissions in an exhaust stream are provided. Systems comprising a transition metal oxide stabilized oxygen storage catalyst are described. The emissions treatment system is advantageously used for the treatment of exhaust streams from lean burn engines including diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: September 10, 2013
    Assignee: BASF Corporation
    Inventors: Tian Luo, Michel Deeba
  • Publication number: 20130216470
    Abstract: The present invention relates to a catalyst for preparation of chlorine by catalytic gas phase oxidation of hydrogen chloride with oxygen, in which the catalyst comprises calcined tin dioxide as a support and at least one halogen-containing ruthenium compound, and to the use thereof.
    Type: Application
    Filed: August 22, 2011
    Publication date: August 22, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Aurel Wolf, Leslaw Mleczko, Oliver Felix-Karl Schlüter
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Publication number: 20130178668
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Publication number: 20130178666
    Abstract: The present invention relates to catalysts, to processes for making catalysts with halide containing precursors and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a support, optionally a modified support.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner
  • Publication number: 20130177494
    Abstract: The present invention relates to a catalyst for preparation of chlorine by catalytic gas phase oxidation of hydrogen chloride with oxygen, in which the catalyst comprises at least tin dioxide as a support material and at least one ruthenium-containing compound as a catalytically active material, and comprises, as an additional secondary constituent, a compound of an element or an element selected from the group of: Nb, V, Ta, Cr, Mo, Au, In, Sc, Y and lanthanoids, especially La and Ce.
    Type: Application
    Filed: August 22, 2011
    Publication date: July 11, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Aurel Wolf, Leslaw Mleczko, Oliver Felix-Karl Schlüter
  • Publication number: 20130178665
    Abstract: The present invention relates to catalysts, to processes for making catalysts with acidic precursors and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a support, optionally a modified support.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner
  • Patent number: 8455384
    Abstract: According to the present invention, the catalyst performance of a chelate catalyst comprising a complex of a macrocyclic compound such as a porphyrin derivative is improved. Also, the following method is provided: a method for preparing a fuel cell electrode catalyst comprising a nitrogen-containing metal complex in which a metallic element is coordinated with a macrocyclic organic compound, such method comprising the steps of: adding tin oxalate to the nitrogen-containing metal complex; and baking a mixture of the nitrogen-containing metal complex and tin oxalate in an inert gas atmosphere, wherein elution of metal tin is carried out via acid treatment.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: June 4, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Helmholtz-Zentrum Berlin Fuer Materialien und Energie GmbH
    Inventors: Naoko Iwata, Hiroaki Takahashi, Peter Bogdanoff, Sebastian Fiechter, Iris Herrmann-Geppert, Ulrike Kramm
  • Patent number: 8449852
    Abstract: Diesel oxidation catalysts comprising a first washcoat layer including a platinum group metal impregnated on a promoted non-zeolitic support are described. The promoter is one or more of tin, manganese, indium, group VIII metals. Methods of making and using the diesel oxidation catalyst, including emissions treatment systems, are also described.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: May 28, 2013
    Assignee: BASF Corporation
    Inventors: Shiang Sung, Stanley A. Roth, Torsten W. Mueller-Stach, Attilio Siani
  • Publication number: 20130131339
    Abstract: The present invention relates to a process for producing a supported tin-comprising catalyst, wherein a solution (S) comprising tin nitrate and at least one complexing agent is applied to the support, where the solution (S) does not comprise any solid or has a solids content of not more than 0.5% by weight based on the total amount of dissolved components.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 23, 2013
    Applicant: BASF SE
    Inventor: BASF SE
  • Patent number: 8414835
    Abstract: The present invention relates to oxygen storage components for catalytic converters for automobile exhaust systems, particularly for those with petrol-driven engines. In accordance with the present invention there is provided a ceria containing mixed oxide suitable as an oxygen storage material having a ceria content in the range 10 to 80% by weight and at least one metal oxide in an amount of less than 0.5% by weight, wherein the metal is selected from the first row transition elements and the group IVB elements of the periodic table. The inventions also provides an oxygen storage material for catalytic converters for automobile exhaust systems comprising an oxide of the present invention.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: April 9, 2013
    Assignee: Magnesium Elektron Limited
    Inventors: Heather Bradshaw, Colin Norman
  • Patent number: 8404204
    Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the color is maintained and the quality of the air is improved.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 26, 2013
    Assignee: Rockwood Italia SpA
    Inventors: Marino Sergi, Christian Egger
  • Patent number: 8357625
    Abstract: An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 22, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventor: Atsushi Okamoto
  • Publication number: 20130017473
    Abstract: Provided is a method for manufacturing a mixed catalyst containing a metal oxide nanowire, and an electrode and a fuel cell which include a mixed catalyst manufactured by the method. The method includes: forming a metal/polymer nanowire by electrospinning a polymer solution containing a first metal precursor and a second metal precursor; forming a metal oxide nanowire by heat-treating the metal/polymer mixture nanowire; and mixing the metal oxide nanowire with active metal nanoparticles. Here, the metal of the second metal precursor is used as a dopant for the metal oxide nanowire. In the event an electrode catalyst layer of a fuel cell is formed using the manufactured mixed catalyst, the fuel cell has the advantages of significantly improved performance and reduced costs in generating electricity.
    Type: Application
    Filed: December 14, 2010
    Publication date: January 17, 2013
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Won Bae Kim, Yong-Seok Kim
  • Patent number: 8349760
    Abstract: The invention concerns a homogeneous bed of particles of a catalyst, said catalyst comprising at least one amorphous matrix, at least one noble metal, at least one additional metal M and at least one halogen, and in which, for a catalyst particle, CPt is the local concentration of noble metal Pt; CM is the local concentration of additional metal M; CX is the local concentration of halogen; said catalyst being in the form of a homogeneous bed of particles, in which across the diameter of the particle, at least 70% of the values CPt/CM or CPt/CX differ from the mean local ratio by at most 30%, and in which the mole ratio M/Pt in the catalyst is in the range 1.8 to 6.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: January 8, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Herve Cauffriez, Fabienne Le Peltier
  • Patent number: 8349761
    Abstract: A catalyst material for use at elevated temperatures is provided. The material can include a plurality of fibers and a plurality of particles supported on the fibers. In addition, a porous layer can cover the plurality of particles and allow for process fluid to come into contact with the particles, and yet retard sintering of the particles at elevated temperatures is present. The plurality of fibers can be a plurality of nanofibers which may or may not be oxide nanofibers. The particles can be metallic nanoparticles and the porous layer can be a porous oxide layer.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: January 8, 2013
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., University of Washington Center for Commercialization, Washington University
    Inventors: Younan Xia, Charles Taylor Campbell, Yunqian Dai, Byungkwon Lim, Benjamin Alan Grayson, Paul T. Fanson
  • Publication number: 20120316061
    Abstract: This invention provides a highly stable electrocatalyst having excellent electrochemical properties, which comprises a support containing a composite oxide containing Sb-doped SnO2 and a catalyst supported by the support, wherein the composite oxide is an amorphous composite oxide and the percentage of Sb with respect to the sum of Sb and Sn in the composite oxide is 2 to 10 at. %, or wherein the composite oxide is a crystalline composite oxide and the percentage of Sb with respect to the sum of Sb and Sn in the composite oxide is 1 to 3 at. %.
    Type: Application
    Filed: March 5, 2010
    Publication date: December 13, 2012
    Inventors: Tetsuo Nagami, Isotta Cerri, Claire Mormiche, Jonathan Conrad Davies, Brian Elliott Hayden
  • Publication number: 20120297779
    Abstract: Ceramic catalyst carriers that are mechanically, thermally and chemically stable in a ionic salt monopropellant decomposition environment and high temperature catalysts for decomposition of liquid high-energy-density monopropellants are disclosed. The ceramic catalyst carrier has excellent thermal shock resistance, good compatibility with the active metal coating and metal coating deposition processes, melting point above 1800° C., chemical resistance to steam, nitrogen oxides and acids, resistance to sintering to prevent void formation, and the absence of phase transition associated with volumetric changes at temperatures up to and beyond 1800° C.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: SIENNA TECHNOLOGIES, INC.
    Inventors: Ender Savrun, Stephanie J. Sawhill
  • Publication number: 20120301363
    Abstract: A mix-type catalyst filter which has a variety of pore sizes and thus improves efficiency of catalysts and a method for manufacturing the same. The method includes spinning nanofibers, heating the nanofibers, crushing the nanofibers to form chip-type nanofibers, mixing the chip-type nanofibers with particulate catalysts to obtain a mix-type catalyst and heating the mix-type catalyst.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 29, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jee Yong KIM, Rae Eun PARK, Jeong Myeong KIM
  • Patent number: 8298985
    Abstract: This invention is directed to catalysts for dehydrogenating primary alcohols. Catalysts comprising a metal support comprising (a) from about 2% to about 30% by weight copper, and (b) at least about 50% by weight non-copper metal selected from the group consisting of nickel, zinc, tin, cobalt, iron and combinations thereof; and a copper-containing coating are described.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: October 30, 2012
    Assignee: Monsanto Technology LLC
    Inventors: David A. Morgenstern, Juan P. Arhancet, Howard C. Berk
  • Publication number: 20120245022
    Abstract: A process for producing a catalyst comprising the steps of contacting a support with a mixed metal precursor comprising tin oxalate, a second metal precursor, a solubilizing agent such as ammonium oxalate, and water to form an impregnated support and heating the impregnated support under conditions effective to remove at least a weight majority of the water and reduce the tin from the tin oxalate and the second metal from the second metal precursor and thereby form the catalyst.
    Type: Application
    Filed: June 4, 2012
    Publication date: September 27, 2012
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Victor J. Johnston, Radmila Jevtic
  • Patent number: 8227373
    Abstract: A catalyst and its use for the abatement of carbon monoxide and unburned hydrocarbons in the exit stream of a combustion device, such as an automobile and spray paint booths are disclosed.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: July 24, 2012
    Assignee: The University of Toledo
    Inventors: Abdul-Majeed Azad, Desikan Sundararajan
  • Publication number: 20120183869
    Abstract: A catalyst including active particles that have a core including a first metal oxide, and a shell including an alloy of a second metal with a reduction product of the first metal oxide; a method of preparing the catalyst; a fuel cell including the catalyst; an electrode for lithium air battery that includes the active particles; and a lithium air battery including the electrode.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 19, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Seon-ah Jin, Chan-ho Pak, Kang-hee Lee, Kyung-jung Kwon
  • Publication number: 20120148478
    Abstract: The present invention relates to a process for the preparation of chlorine by gas phase oxidation using a supported catalyst based on ruthenium, characterised in that the catalyst support has a plurality of pores having a pore diameter>50 nm and carries nanoparticles containing ruthenium and/or ruthenium compounds as catalytically active components.
    Type: Application
    Filed: July 14, 2010
    Publication date: June 14, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Timm Schmidt, Christoph Gürtler, Jürgen Kintrup, Thomas Ernst Müller, Tim Loddenkemper, Frank Gerhartz, Walther Müller
  • Publication number: 20120149560
    Abstract: Provided is a method of manufacturing porous metal oxide, the method including: preparing a metal-organic framework (MOF) wherein an ion of a metal to be used as a catalyst is linked to an organic ligand; impregnating the MOF with a precursor solution of metal oxide to be manufactured; and thermally treating the metal oxide precursor solution-impregnated MOF to remove the organic ligand. The inventive method of manufacturing porous metal oxide involves the impregnation of a metal oxide precursor solution in a MOF wherein metal ions are uniformly linked to organic ligands and the thermal treatment (calcination) of the metal oxide precursor solution-impregnated MOF to remove the organic ligands.
    Type: Application
    Filed: October 28, 2011
    Publication date: June 14, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hyung-Kun LEE, Nak Jin Choi, Seungeon Moon, Woo Seok Yang
  • Publication number: 20120122657
    Abstract: The present invention provides atomic Re nanostructures selected from binary Re-metal nanotubes, binary Re-metal nanowires, binary Re-metal nanorods, Re branched nanostructures, and hollow Re nanostructures.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 17, 2012
    Applicant: RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: NOAM ELIAZ, ELIEZER GILEADI, ADI NAOR
  • Publication number: 20120111768
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprising a surface, with a metal oxide integrally synthesized and providing a coating on the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur and nitrogen reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: Heather A. Elsen
  • Publication number: 20120093703
    Abstract: A catalyst composition includes a catalytic metal secured to a porous substrate. The substrate has pores that are templated. The catalyst composition is prepared by a process that includes the steps of mixing a catalytic metal salt, a templating agent, and water to form a mixture, adding a substrate precursor to the mixture to form a slurry, and calcining the slurry to form a substrate having a porous template that is capable of supporting the catalyst composition.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 19, 2012
    Applicant: General Electric Company
    Inventors: Larry Neil Lewis, Robert Edgar Colborn, Ashish Balkrishna Mhadeshwar, Dan Hancu
  • Patent number: 8158550
    Abstract: The invention relates to a multilayer catalyst for the partial oxidation of hydrocarbons in gaseous phase, comprising a monolithic ceramic or metallic substrate having a solid macroporous structure consisting of one or more structures, on which a first active layer with a crystal-line perovskitic structure is deposited, having general formula AxA? 1-xByB? 1-YO3±? wherein: A is a cation of at least one of the rare earth elements, A? is a cation of at least one element selected from groups Ia, IIa and VIa of the periodic table of elements, B is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb, or VIII of the periodic table of elements, B? is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb or VIII of the periodic table of elements Mg2+ or Al3+, x is a number which is such that 0?x?1, y is a number which is such that 0?y?1, and ? is a number which is such that 0???0, 5, a second more external active layer consisting of a dispersion of a noble metal and a possible s
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: April 17, 2012
    Assignee: Consiglio Nazionale Delle Ricerche
    Inventors: Stefano Cimino, Francesco Donsi, Raffaele Pirone, Gennaro Russo
  • Patent number: 8148293
    Abstract: Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: April 3, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Stefan Vajda, Michael J. Pellin, Jeffrey W. Elam, Christopher L. Marshall, Randall A. Winans, Karl-Heinz Meiwes-Broer