Of Group V (i.e., V, Nb, Ta, As, Sb Or Bi) Patents (Class 502/353)
  • Patent number: 8652988
    Abstract: In one embodiment, the invention is to a catalyst composition, comprising vanadium and titanium. Preferably, the molar ratio of vanadium to titanium in an active phase of the catalyst composition is greater than 0.5:1.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: February 18, 2014
    Assignee: Celanese International Corporation
    Inventors: Dick Nagaki, Heiko Weiner, Josefina T. Chapman, Mark O. Scates, Alexandra S. Locke, Craig J. Peterson
  • Patent number: 8642498
    Abstract: In one embodiment, the invention is to a catalyst composition comprising vanadium, titanium; and at least one oxide additive. The at least one oxide additive is present in an amount of at least 0.1 wt % based on the total weight of the catalyst composition. The molar ratio of titanium to metal additive in an active phase of the catalyst composition is at least 0.05:1.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: February 4, 2014
    Assignee: Celanese International Corporation
    Inventors: Dick Nagaki, Heiko Weiner, Josefina T. Chapman, Mark O. Scates, Alexandra S. Locke, Craig J. Peterson
  • Patent number: 8637418
    Abstract: A method for treating a catalyst base that comprises a contact area of porous material. A fluid, such as a flue gas stream, can be conducted along the contact area. A catalytically relevant substance is introduced into pores of the catalyst base using a transport fluid and remains on pore wall areas after removal of the transport fluid. The introduction is carried out such that an amount of the catalytically relevant substance relative to the surface remains on the pore wall areas as a function of location within the pore and decreases within the pore after exceeding a specific pore depth. A blocking fluid can first be introduced into pore regions beyond the specific pore depth, thus blocking these regions when transport fluid containing the catalytically relevant substance is introduced.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: January 28, 2014
    Assignee: STEAG Energy Services GmbH
    Inventors: Hermann Brüggendick, Maik Blohm
  • Patent number: 8637417
    Abstract: A method for treating a catalyst base that comprises a contact area of porous material. A fluid, such as a flue gas stream, can be conducted along the contact area. A catalytically relevant substance is introduced into pores of the catalyst base using a transport fluid and remains on pore wall areas after removal of the transport fluid. The introduction is carried out such that an amount of the catalytically relevant substance relative to the surface remains on the pore wall areas as a function of location within the pore and decreases within the pore after exceeding a specific pore depth. A blocking fluid can first be introduced into pore regions beyond the specific pore depth, thus blocking these regions when transport fluid containing the catalytically relevant substance is introduced.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: January 28, 2014
    Assignee: Steag Energy Services GmbH
    Inventors: Hermann Brüggendick, Maik Blohm
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Publication number: 20140018550
    Abstract: The present invention relates to a catalyst for preparing carboxylic acids and/or carboxylic anhydrides, which has a plurality of catalyst zones arranged in series and has been produced using a vanadium antimonate having a maximum content of crystalline valentinite of 5% by weight. The present invention further relates to a process for gas-phase oxidation in which a gas stream comprising at least one hydrocarbon and molecular oxygen is passed through a catalyst which has a plurality of catalyst zones arranged in series and has been produced using a vanadium antimonate having a maximum content of crystalline valentinite of 5% by weight.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 16, 2014
    Inventors: Michael Krämer, Jürgen Zühlke, Stefan Altwasser, Nico Frederik Fischer, Frank Rosowski, Hans-Martin Allmann
  • Patent number: 8629080
    Abstract: An olefin hydration catalyst and method for producing same is provided. The olefin hydration catalyst can be prepared by contacting a niobium containing compound with a strong Bronsted acid, such as sulfuric or phosphoric acid, to produce niobium oxo sulfate or niobium oxo phosphate nanoparticles. The nanoparticles can be separated, dried and utilized in a reactor for the hydration of olefins to their corresponding alcohols.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: January 14, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Abdennour Bourane, Stephan Ralf Vogel, Wei Xu
  • Patent number: 8623781
    Abstract: The oxidative dehydrogenation of propane provides a highly selective catalyst for the oxidative dehydrogenation of propane to propylene, and a process for preparing the catalyst. The catalyst is a mixed metal oxides catalyst of the general formula MoaVbOx, where the molar ratio of molybdenum to vanadium is between 1:1 and 9:1 (a:b is between 0.5:0.5 and 0.9:0.1) and x is determined according to the oxidation state of the cations present. The catalyst is prepared by mixing the metals by sol-gel technique, heating the gel to dry the mixed oxides, further heating the dried product to induce auto-combustion, washing the product with isopropyl alcohol, and drying with a supercritical CO2 dryer. Oxidative dehydrogenation is carried out by contacting a stream of propane gas with the bulk mixed metal oxides catalyst at a temperature between 350° C. and 550° C. Propylene selectivity of 100% is reached at conversion rates between 1.9% and 4.8%.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: January 7, 2014
    Assignee: King Fahd University of Pretroleum and Minerals
    Inventors: Shakeel Ahmed, Hassan S. Alasiri, Faizur Rahman, Adnan M. J. Al-Amer
  • Patent number: 8623491
    Abstract: A nanostructure includes a plurality of metal nanoblades positioned with one edge on a substrate. Each of the plurality of metal nanoblades has a large surface area to mass ratio and a width smaller than a length. A method of storing hydrogen includes coating a plurality of magnesium nanoblades with a hydrogen storage catalyst and storing hydrogen by chemically forming magnesium hydride with the plurality of magnesium nanoblades.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 7, 2014
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Toh-Ming Lu, Gwo-Ching Wang, Fu Tang, Thomas Parker
  • Publication number: 20130331257
    Abstract: The invention relates to a method for producing micro-nano combined active systems in which nanoparticles of a first component are bonded to microparticles of a second component, comprising the following steps: (a) producing a low-ligand colloidal suspension containing nanoparticles of the first component, (b) adding microparticles to the colloidal suspension containing the nanoparticles or adding the colloidal suspension containing the nanoparticles to a dispersion containing the microparticles and intensively mixing so that the nanoparticles adsorb onto the microparticles, (c) separating the microparticles and the nanoparticles bonded thereto from the liquid and drying the microparticles and the nanoparticles bonded thereto.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 12, 2013
    Applicant: LASER ZENTRUM HANNOVER E.V.
    Inventors: Stephan Barcikowski, Philipp Wagener, Andreas Schwenke
  • Patent number: 8592767
    Abstract: Disclosed are tunable catalysts and methods of controlling the activity of a catalyst. For example, disclosed are methods of controlling the activity of a catalyst, comprising providing a catalyst, comprising a ferroelectric substrate of finite thickness comprising two opposing surfaces, the ferroelectric substrate being characterized as having a polarization; an electrode surmounting one of the surfaces of the ferroelectric substrate; and a catalytically active material surmounting the surface of the ferroelectric substrate opposing the electrode; and subjecting the ferroelectric substrate to a controllable electric field to give rise to a modulation of the polarization of the ferroelectric substrate, whereby the modulation of the polarization controllably alters the activity of one or more chemical species on the catalytically active material.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: November 26, 2013
    Assignee: The Trustees of The University of Pennsylvania
    Inventors: Andrew M. Rappe, Alexie M. Kolpak, Ilya Grinberg
  • Patent number: 8580216
    Abstract: A catalyst system and a method for reducing nitrogen oxides in an exhaust gas by reduction with a hydrocarbon or oxygen-containing organic compound reducing agent are provided. The catalyst system contains a silver catalyst and a modifier catalyst, where the modifier catalyst contains a modifier oxide, where the modifier oxide is selected from the group consisting of iron oxide, cerium oxide, copper oxide, manganese oxide, chromium oxide, a lanthanide oxide, an actinide oxide, molybdenum oxide, tin oxide, indium oxide, rhenium oxide, tantalum oxide, osmium oxide, barium oxide, calcium oxide, strontium oxide, potassium oxide, vanadium oxide, nickel oxide, tungsten oxide, and mixtures thereof. The modifier oxide is supported on an inorganic oxide support or supports, where at least one of the inorganic oxide supports is an acidic support. The catalyst system of the silver catalyst and the modifier catalyst provides higher NOx conversion than either the silver catalyst or the modifier catalyst alone.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 12, 2013
    Assignees: ECS Holdings, Inc., Catalytic Solutions, Inc.
    Inventors: Rajashekharam V. Malyala, Stephen J. Golden
  • Patent number: 8567099
    Abstract: A system and process for removing an inorganic salt from a catalyst roaster belt is disclosed. The system includes an apparatus with a drying vessel having a catalyst roaster belt inlet, a catalyst roaster belt outlet, a heating medium inlet, and a heating medium outlet, wherein the catalyst roaster belt inlet and the catalyst roaster belt outlet are spaced apart along a first direction, the heating medium inlet and the heating medium outlet are spaced apart along a second direction, the heating medium inlet is spaced apart from the catalyst roaster belt inlet in the second direction, and the catalyst roaster belt inlet is between the heating medium inlet and the heating medium outlet along the second direction. The system includes an acid bath and a moveable catalyst roaster belt extending from the acid bath through the catalyst roaster belt inlet and through the catalyst roaster belt outlet.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: October 29, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Hua Bai, Ralph S. Kruska
  • Patent number: 8569197
    Abstract: For preparing a reforming catalyst comprising a support, a group VIIIB metal and a group VIIB metal, comprises the following steps in the order a) then b) or b) then a): a step a) impregnating the support with an aqueous solution of hydrochloric acid comprising a group VIIIB metal; a step b) impregnating the support with an aqueous solution comprising a group VIIB metal and a sulphur-containing complexing agent in a reducing environment, or a step b) impregnation with an aqueous solution comprising a group VIIB metal, then with a solution comprising a sulphur-containing complexing agent in a reducing environment. The reducing environment is any reducing atmosphere comprising more than 0.1% by weight of a reducing gas or a mixture of reducing gases; or reducing solutions comprising, with respect to the group VIIB metal, in the range 0.1 to 20 equivalents of reducing metals, reducing organic compounds or inorganic reducing compounds.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: October 29, 2013
    Assignee: IFP Energies Nouvelles
    Inventor: Yohan Oudart
  • Publication number: 20130280159
    Abstract: To provide a sulfur trioxide decomposition catalyst, particularly, a sulfur trioxide decomposition catalyst capable of lowering the temperature required when producing hydrogen by an S—I cycle process. A sulfur trioxide decomposition catalyst comprising a composite oxide of vanadium and at least one metal selected from the group consisting of transition metal and rare earth elements is provided. Also, a sulfur dioxide production process comprising decomposing sulfur trioxide into sulfur dioxide and oxygen by using the sulfur trioxide decomposition catalyst above, is provided. Furthermore, a hydrogen production process, wherein the reaction of decomposing sulfur trioxide into sulfur dioxide and oxygen by an S—I cycle process is performed by the above-described sulfur dioxide production process, is provided.
    Type: Application
    Filed: December 27, 2011
    Publication date: October 24, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichi Takeshima, Masato Machida
  • Patent number: 8563774
    Abstract: Disclosed is a method for producing a catalyst, in which physical properties of a dried material or a calcined material in a production process of the catalyst are stable and a change in at least one of a catalyst activity and a selectivity to a target product is small and hence reproducibility of the catalyst is excellent. The present invention is a method for producing a catalyst containing molybdenum, bismuth, and iron, which contains the steps of washing a surface of at least one device equipped in an apparatus for the production of catalyst, to which a solid matter adheres, with a basic solution, and producing the catalyst with the apparatus for the production of catalyst thus washed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 22, 2013
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Masahide Kondo, Masanori Nitta, Hiroyuki Naitou, Toru Kuroda, Seiichi Kawato
  • Publication number: 20130244867
    Abstract: The present invention relates to a novel catalyst for producing N-substituted carbamates, the preparation of the catalyst and an improved method for producing N-substituted carbamates from these novel catalysts. The active component of the catalyst is a heteropoly acid and the catalyst support comprises a metal oxide or a metalloid oxide. The catalyst can be used to promote the reaction of carbamate and amine, thereby generating N-substituted carbamates with high yield. In the presence of the catalyst, the reaction conditions are relatively mild, the catalytic activity and selectivity of the reaction are high, and the reaction time is relatively short. Furthermore, the catalyst can be conveniently separated from the reaction system and recycled, therefore, the catalyst can be used to facilitate the further scale-up test and commercial application.
    Type: Application
    Filed: May 2, 2013
    Publication date: September 19, 2013
    Inventors: Stefan Wershofen, Stephan Klein, Hongchao Li, Xinkui Wang, Qifeng Li, Maoquing Kang
  • Patent number: 8530372
    Abstract: Catalysts, systems and methods for abating emissions in an exhaust stream are provided. Systems comprising a transition metal oxide stabilized oxygen storage catalyst are described. The emissions treatment system is advantageously used for the treatment of exhaust streams from lean burn engines including diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: September 10, 2013
    Assignee: BASF Corporation
    Inventors: Tian Luo, Michel Deeba
  • Patent number: 8513153
    Abstract: Described are catalyst compositions and methods for their preparation and use. Certain catalyst compositions can include at least one reduction catalyst and at least one oxidation catalyst. A catalyst composition as described herein is useful in providing certain benefits to a combustible fuel, such as, for example, reducing harmful emissions and/or improving overall fuel economy.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: August 20, 2013
    Assignee: UTO Environmental Products Limited
    Inventors: S. Deborah Oyler, Edward Carroll Hale, III
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Patent number: 8501132
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20130180932
    Abstract: Photocatalyst compositions and elements exhibiting desired photocatalytic activity levels and transparency.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 18, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventor: Nitto Denko Corporation
  • Publication number: 20130184414
    Abstract: The present invention relates to a process for preparation of polyester resin in the presence of a novel catalyst system comprising an antimony compound and inorganic tin compound. The present invention also relates to a catalyst system for the preparation of polyester comprising an antimony compound and inorganic tin compound which reduces the polymerization time at all stages of polyester synthesis and reduces the generation of degradation product. This invention further relates to polyester resin with improved L color having significant importance in end-use applications.
    Type: Application
    Filed: January 27, 2011
    Publication date: July 18, 2013
    Applicant: RELIANCE INDUSTRIES LIMITED
    Inventors: Srinivasacharya Ramacharya Ayodhya, Sudan Pushap, Shivamurthy Padadayya Jadimath, Nandkumar Gopal Pawashe, Vikas Kadu Bhangale
  • Publication number: 20130178668
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 8481452
    Abstract: An apparatus and method for treating diesel exhaust gases are described. The system consists of two functionalities, the first being a selective catalytic reduction (SCR) catalyst system and the second being a capture material for capturing catalyst components that have appreciable volatility under extreme exposure conditions. The SCR catalyst component is typically based on a majority phase of titania, with added minority-phase catalyst components comprising of one or more of the oxides of vanadium, silicon, tungsten, molybdenum, iron, cerium, phosphorous, copper and/or manganese vanadia. The capture material typically comprises a majority phase of high surface area oxides such as silica-stabilized titania, alumina, or stabilized alumina, for example, wherein the capture material maintains a low total fractional monolayer coverage of minority phase oxides for the duration of the extreme exposure.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: July 9, 2013
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventor: David M. Chapman
  • Patent number: 8481453
    Abstract: An apparatus and method for treating diesel exhaust gases are described. The system consists of two functionalities, the first being a selective catalytic reduction (SCR) catalyst system and the second being a capture material for capturing catalyst components such as vanadia that have appreciable volatility under extreme exposure conditions. The SCR catalyst component is typically based on a majority phase of titania, with added minority-phase catalyst components comprising of one or more of the oxides of vanadium, silicon, tungsten, molybdenum, iron, cerium, phosphorous, copper and/or manganese vanadia. The capture material typically comprises a majority phase of high surface area oxides such as silica-stabilized titania, alumina, or stabilized alumina, for example.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 9, 2013
    Assignee: Millenium Inorganic Chemicals, Inc.
    Inventor: David M. Chapman
  • Patent number: 8481448
    Abstract: The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst. Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, David Sullivan, James W. Kauffman, Clark Rea, Joe Linzer, Shahid Shaikh
  • Patent number: 8475921
    Abstract: A composite material includes an aggregate which contains a first metal particle constituting a core and second metal oxide particulates surrounding the first metal particle and having an average primary particle diameter ranging from 1 to 100 nm.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tomoyuki Kayama, Kouzi Banno, Kiyoshi Yamazaki, Koji Yokota
  • Publication number: 20130165728
    Abstract: Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: November 29, 2012
    Publication date: June 27, 2013
    Applicant: SILURIA TECHNOLOGIES, INC.
    Inventor: Siluria Technologies, Inc.
  • Patent number: 8470730
    Abstract: Disclosed is a method for producing a catalyst, in which physical properties of a dried material or a calcined material in a production process of the catalyst are stable and a change in at least one of a catalyst activity and a selectivity to a target product is small and hence reproducibility of the catalyst is excellent. The present invention is a method for producing a catalyst containing molybdenum, bismuth, and iron, which contains the steps of washing a surface of at least one device equipped in an apparatus for the production of catalyst, to which a solid matter adheres, with a basic solution, and producing the catalyst with the apparatus for the production of catalyst thus washed.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: June 25, 2013
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Masahide Kondo, Masanori Nitta, Hiroyuki Naitou, Toru Kuroda, Seiichi Kawato
  • Publication number: 20130157203
    Abstract: A gas fired catalytic heater is provided that foregoes the need for an electrical heating element to provide the activation energy for the hydrocarbon catalyst pad. An alcohol self-igniting catalyst pad is used to provide the activation energy to the hydrocarbon catalyst pad thereby removing dependence of the heater on an outside electrical energy source to initiate start-up of the heater. The catalyst pad includes a flexible wash coat; a noble metal dispersed on the wash coat; an anti-sintering element saturating the wash coat; and a catalyst promoter saturating the wash coat.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Applicant: CC/ Thermal Technologies Inc.
    Inventor: CC/ Thermal Technologies Inc.
  • Patent number: 8465713
    Abstract: A catalyst composition represented by the general formula XVO4/S wherein XVO4 stands for TransitionMetal-Vanadate, or a mixed TransitionMetal-/RareEarth-Vanadate, and S is a support comprising TiO2.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: June 18, 2013
    Assignee: Treibacher Industrie AG
    Inventors: Karl Schermanz, Amod Sagar, Alessandro Trovarelli, Marzia Casanova
  • Patent number: 8465714
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 18, 2013
    Assignee: Cristal USA Inc.
    Inventor: Steven M. Augustine
  • Patent number: 8449762
    Abstract: A sulfur reduction catalyst useful to reduce the levels of sulfur in a cracked gasoline product comprises a metal vanadate compound. The metal vanadate compound can be supported on a molecular sieve such as a zeolite in which the metal vanadate compound is primarily located on the exterior surface of the pore structure of the zeolite and on the surface of any matrix material used to bind or support the zeolite.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: May 28, 2013
    Assignee: BASF Corporation
    Inventors: Xingtao Gao, James Fu
  • Patent number: 8435918
    Abstract: Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: May 7, 2013
    Assignee: University of Utah Research Foundation
    Inventors: Edward M. Eyring, Richard D. Ernst, Gregory C. Turpin, Brian C. Dunn
  • Publication number: 20130090511
    Abstract: The invention generally relates to the ultrasmall MOx nanoparticles that are made in a solvothermal method using water soluble inorganic ammonium salt precursors of the MOx and organic amines, and slow heating to generate uniform ultrasmall MOx nanoparticles of 5 nm or less, as well as methods to make and use same.
    Type: Application
    Filed: June 9, 2011
    Publication date: April 11, 2013
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Nikolaos Soultanidis, Michael S. Wong
  • Patent number: 8410328
    Abstract: A method of preparing multicomponent bismuth molybdate catalysts composed of four metal components and a method of preparing 1,3-butadiene using the catalyst, and particularly, to multicomponent bismuth molybdate catalysts composed of a divalent cationic metal, a trivalent cationic metal, bismuth and molybdenum, a preparation method thereof, and a method of preparing 1,3-butadiene from a C4 mixture including n-butene and n-butane using oxidative dehydrogenation are described.
    Type: Grant
    Filed: August 24, 2008
    Date of Patent: April 2, 2013
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Young Min Chung, Tae Jin Kim, Seong Jun Lee, Yong Seung Kim, Seung Hoon Oh, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Patent number: 8389760
    Abstract: Disclosed is a palladium-containing catalyst which enables to produce an ?,?-unsaturated carboxylic acid in high selectivity from an olefin or an ?,?-unsaturated aldehyde. Also disclosed are a method for producing such a catalyst and a method for producing an ?,?-unsaturated carboxylic acid using such a catalyst. Specifically disclosed is a palladium-containing catalyst containing 0.001 to 0.25 mole of antimony element to 1 mole of palladium element or a palladium-containing catalyst containing palladium element which composes a metal, tellurium element, and bismuth element.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: March 5, 2013
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Toshiya Yasukawa, Toshiki Matsui, Ken Ooyachi, Yoshiyuki Himeno, Wataru Ninomiya
  • Patent number: 8357625
    Abstract: An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 22, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventor: Atsushi Okamoto
  • Publication number: 20130017473
    Abstract: Provided is a method for manufacturing a mixed catalyst containing a metal oxide nanowire, and an electrode and a fuel cell which include a mixed catalyst manufactured by the method. The method includes: forming a metal/polymer nanowire by electrospinning a polymer solution containing a first metal precursor and a second metal precursor; forming a metal oxide nanowire by heat-treating the metal/polymer mixture nanowire; and mixing the metal oxide nanowire with active metal nanoparticles. Here, the metal of the second metal precursor is used as a dopant for the metal oxide nanowire. In the event an electrode catalyst layer of a fuel cell is formed using the manufactured mixed catalyst, the fuel cell has the advantages of significantly improved performance and reduced costs in generating electricity.
    Type: Application
    Filed: December 14, 2010
    Publication date: January 17, 2013
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Won Bae Kim, Yong-Seok Kim
  • Publication number: 20120325226
    Abstract: A low sidestream smoke cigarette comprises a conventional tobacco rod, and a combustible treatment paper having a sidestream smoke treatment composition. The treatment composition comprises in combination, an oxygen storage and donor metal oxide oxidation catalyst and an essentially non-combustible finely divided porous particulate adjunct for said catalyst.
    Type: Application
    Filed: August 24, 2012
    Publication date: December 27, 2012
    Applicant: ROTHMANS, BENSON & HEDGES, INC.
    Inventors: Stanislav M. Snaidr, E. Robert Becker
  • Publication number: 20120321524
    Abstract: Disclosure relates to a slip catalyst for reducing a NO2 content in an exhaust train of an internal combustion engine flowed through by an exhaust gas flow, which has an oxidizing catalyst for the formation of NO2 and a particulate filter arranged downstream for binding carbon black particles and simultaneous and/or subsequent reaction of the same with NO2 formed on the oxidizing catalyst, having a substrate that is provided with a coating, which coating reduces a proportion of NO2 in the exhaust gas flow flowing through. The coating has at least two elements from the group of rare-earth metals, which are present in the coating in the form of a salt or an oxide or in an elementary form and in a concentration of more than 300.0 g/m3.
    Type: Application
    Filed: December 21, 2010
    Publication date: December 20, 2012
    Inventor: Bernhard Kahlert
  • Publication number: 20120323056
    Abstract: Disclosed herein is a catalyst for producing biodiesel, including a carrier having water resistance and an active component supported on the carrier and used in a hydrotreating reaction or a decarboxylation reaction. Since the catalyst for producing biodiesel includes a carrier having strong water resistance, the deactivation of the catalyst due to the water produced through a process of producing HBD can be prevented, thus remarkably improving the long term stability of a catalyst.
    Type: Application
    Filed: October 20, 2010
    Publication date: December 20, 2012
    Applicants: SK ENERGY CO., LTD., SK INNOVATION CO., LTD.
    Inventors: Sang Il Lee, Do Woan Kim, Hee Jung Jeon, Sang Jun Ju, Jae Wook Ryu, Gyung Rok Kim
  • Patent number: 8323610
    Abstract: The invention relates to a catalyst for the oxidation of SO2 to SO3. The catalyst contains an active substance which contains vanadium, alkali metal compounds and sulfate applied to a support. The support contains naturally occurring diatomaceous earth, wherein the support contains at least one relatively soft naturally occurring uncalcined diatomaceous earth which has a percentage reduction of at least 35% in its D50 value determined in a particle size determination according to the dry method in comparison with the wet method.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 4, 2012
    Assignee: BASF SE
    Inventors: Michael Krämer, Markus Schubert, Thomas Lautensack, Thomas Hill, Reinhard Körner, Frank Rosowski, Jürgen Zühlke
  • Patent number: 8298983
    Abstract: A process for producing a composite metal oxide of an acidic metal oxide and a basic metal oxide, wherein the process comprises (a) providing an aqueous solution containing a colloidal particle of the acidic metal oxide and a salt of the basic metal, (b) adjusting the pH of the aqueous solution to a pH at which a part of the basic metal dissolves in the aqueous solution, the remaining of the basic metal precipitates as a hydroxide and has a positive zeta potential, and the colloidal particle of the acidic metal oxide is not dissolved and has a negative surface potential, and then maintaining this pH over a predetermined time to obtain a precursor of the composite metal oxide, and (c) drying and firing the precursor of the composite metal oxide obtained.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: October 30, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Akio Koyama
  • Publication number: 20120270727
    Abstract: Provided a compound catalyst allowing for substitution of a rare noble metal such as platinum, palladium and the like or reduction of costs associated with the use thereof. According to the present invention, the oxidation-reduction characteristics thereof may be controlled and catalytic effects similar to those of a noble metal or a transition metal complex may be exhibited by controlling the valence electron concentration of a compound to change the electronic occupation number of the d-band and maintaining the electronic state at the Fermi level of the electronic state identical to a noble metal or a transition metal complex.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 25, 2012
    Applicant: HITACHI, LTD.
    Inventor: Shin YABUUCHI
  • Patent number: 8288309
    Abstract: A highly durable mercury oxidation catalyst contains V2O5 and MoO3 as active components, and is capable of preventing volatilization of MoO3 in the mercury oxidation catalyst. A method of producing the mercury oxidation catalyst is provided. A mercury oxidation catalyst oxidizing mercury in an exhaust gas into mercury oxide includes: TiO2 as a carrier, V2O5 and MoO3 supported on the carrier as active components, and at least one kind of element or compound selected from the group consisting of W, Cu, Co, Ni, and Zn or the compounds thereof supported on the carrier as a MoO3 volatilization preventing component.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 16, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Masanao Yonemura, Masashi Kiyosawa
  • Patent number: 8288306
    Abstract: The present invention provides a preparation process of complex oxides catalyst containing Mo, Bi, Fe and Co, which comprising steps as following: dissolving precursor compounds of the components for catalyst and complexing agent in water to obtain a solution, and then drying, molding and calcining the solution to obtain catalyst. The catalyst is used for gas phase oxidation of light alkenes to unsaturated aldehydes. The catalyst has high activity, selectivity and stability. The reaction condition is mild. The preparation process of the catalyst is easy to operate and can be used for mass production.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: October 16, 2012
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Ge Luo, Xin Wen, Xiaoqi Zhao, Xuemei Li, Yan Zhuang, Jianxue Ma, Jingming Shao
  • Publication number: 20120258858
    Abstract: The subject of the invention is a process for obtaining a substrate coated with a photocatalytic film based on a mixed oxide of bismuth and at least one metal other than bismuth, comprising at least a step of depositing said oxide by a sputtering technique.
    Type: Application
    Filed: July 8, 2010
    Publication date: October 11, 2012
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Nicolas Chemin, Eric Gouardes
  • Patent number: 8282993
    Abstract: A nanostructure includes a plurality of metal nanoblades positioned with one edge on a substrate. Each of the plurality of metal nanoblades has a large surface area to mass ratio and a width smaller than a length. A method of storing hydrogen includes coating a plurality of magnesium nanoblades with a hydrogen storage catalyst and storing hydrogen by chemically forming magnesium hydride with the plurality of magnesium nanoblades.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: October 9, 2012
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Toh-Ming Lu, Gwo-Ching Wang, Fu Tang, Thomas Parker