Silicon Containing Patents (Class 502/407)
  • Patent number: 11571656
    Abstract: This invention relates to a dispersion comprising porous particles dispersed in a liquid phase, wherein the porous particles comprise a zeolite and the liquid phase is a size-excluded liquid. The invention also relates to a method of adsorbing a gas into a liquid, comprising at least the step of bringing the gas into contact with the dispersion. In addition, the invention relates to an assemblage of the dispersion, the zeolite comprising a cavity and a gas contained within the cavity.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: February 7, 2023
    Inventors: Stuart James, Min Ying Tsang, John Cahir
  • Patent number: 11305259
    Abstract: A functionalized silica sorbent is described. The sorbent comprises mesoporous silica nanoparticles having a surface functionalized with a conjugated system comprising an azole and a phenyl. The surface may be functionalized by a Cu-catalyzed click reaction. The nanoparticles have an average particle size of 10-80 nm, and may be used to adsorb phenolic contaminants from aqueous solutions.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: April 19, 2022
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Khalid Alhooshani, Abdulkadir Tanimu
  • Patent number: 11207660
    Abstract: A method for reacting a reaction object with a liquid containing the reaction object in contact with a granular porous body. The upper limit D (mm) of the particle diameter of the granular porous body is determined from D=0.556×LN (T)+0.166 in a column flow method in non-circulation type, and determined from D=0.0315×T+0.470 in the column flow method in a circulation type and a shaking method. The granular porous body includes a skeleton body including an inorganic compound having a three-dimensional continuous network structure, and has a two-step hierarchical porous structure including through-holes formed in voids in the skeleton body, and pores extending from a surface to an inside of the skeleton body and dispersed on the surface. A functional group having affinity with the metal ion is chemically modified on a surface of the granular porous body.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: December 28, 2021
    Assignee: SNG INC.
    Inventors: Riichi Miyamoto, Hongzhi Bai
  • Patent number: 11180310
    Abstract: An active moisture control material comprising a fiber based material and at least one active additive, wherein said active additive is adapted to control moisture transfer in the active moisture control material, and wherein said moisture control material is produced in a paper or board making process, wherein the active additive is incorporated into said active moisture control material.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: November 23, 2021
    Assignee: Stora Enso OYJ
    Inventors: Simo Siitonen, Kimmo Nevalainen
  • Patent number: 11148951
    Abstract: A silica-titania composite has a BET specific surface area, as determined by BET analysis of a water vapor adsorption isotherm, in the range of 250 m2/g to 500 m2/g and a contact angle with water of 100° or greater. In the water vapor adsorption isotherm, an adsorbed amount at relative pressure P/P0=0.1 is in a range of 65 cm3/g to 120 cm3/g, an adsorbed amount at relative pressure P/P0=0.5 is in a range of 150 cm3/g to 300 cm3/g, and an adsorbed amount at relative pressure P/P0=0.9 is in a range of 350 cm3/g to 500 cm3/g.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: October 19, 2021
    Assignee: FUJIFILM Business Innovation Corp.
    Inventors: Yuka Zenitani, Hiroyoshi Okuno, Hideaki Yoshikawa, Takeshi Iwanaga, Shunsuke Nozaki, Sakae Takeuchi
  • Patent number: 10674746
    Abstract: Animal nutrition compositions include a carrier and a fermentation product applied to the carrier. Liquid fermentation products are fluidly applied to dry carriers, such as phyllosilicates or other earthen components, while mixing and applying air flow, under appropriate temperature and pH conditions, to bind the fermentation product to the carrier and dry the reaction product to appropriate moisture content. Fermentation products are also mixed with liquid carriers, such as water. Fermentation products include components of a microbial fermentation culture, such as liquid medium, microbial cellular components, and fermentation metabolites produced by microorganisms. Some compositions include a pH buffering agent and/or additional components to further enhance beneficial effects of the composition, such as improved weight gain and feed conversion, reduced gut lesions, harmful gut bacteria count, and decreased mortality. Compositions can be mixed with animal feeds or otherwise administered.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: June 9, 2020
    Assignee: Cytozyme Animal Nutrition, Inc.
    Inventor: Elizabeth Wozniak
  • Patent number: 10549232
    Abstract: The subject invention provides systems and methods for capturing carbon dioxide in a cyclic process of mechano-chemical reactions. The subject invention also provides systems and methods for synthesizing siderite, by means of mechano-chemical reactions, using mill rotation. Siderite acts as an efficient reversible sorbent and can be decomposed, generating magnetite, carbon and/or metallic iron as well as pure carbon dioxide. Said systems and methods employing carbon dioxide capture/release reactions in the carbonation-calcination cycles are suitable for using in any iron, steel and non-steel industries to reduce carbon dioxide emissions into the atmosphere.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: February 4, 2020
    Inventors: Eduin Yesid Mora Mendoza, Vadym Drozd, Andriy Durygin, Surendra K. Saxena
  • Patent number: 10294312
    Abstract: A catalyst system comprising a combination of: 1) an activator; 2) one or more metallocene catalyst compounds; 3) a support comprising an organosilica material, which may be a mesoporous organosilica material. The organosilica material may be a polymer of at least one monomer of Formula [Z1OZ2SiCH2]3 (I), where Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4 alkoxy group, a C1-C6 alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: May 21, 2019
    Inventors: Matthew W. Holtcamp, Gregory S. Day, David F. Sanders, David C. Calabro, Quanchang Li, Machteld M. W. Mertens
  • Patent number: 10287438
    Abstract: Color-bleed resistant pigment particles containing an anionic dye, a quaternary ammonium compound, and a silica and/or silicate material having a negative zeta potential are disclosed. Related methods of making these colored pigment particles also are provided.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: May 14, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Terry W. Nassivera, Karl W. Gallis
  • Patent number: 10266622
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds having at least one nitrogen linkage and at least one oxygen linkage to a transition metal; 2) a support comprising an organosilica material, which is a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include ONNO-type transition metal catalysts, ONYO-Type transition metal catalysts, and/or oxadiazole transition metal catalysts. The organosilica material is a polymer of at least one monomer of Formula [z?OZ2 SiCH2]3(l), where Z1 represents a hydrogen atom, a C1-C4alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: April 23, 2019
    Inventors: Matthew W. Holtcamp, Matthew S. Bedoya, Charles J. Harlan, Quanchang Li, Machteld M. W. Mertens
  • Patent number: 10239967
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds comprising at least one nitrogen linkage; 2) a support comprising an organosilica material, which is a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include pyridyldiamido transition metal complexes, HN5 compounds, and bis(imino)pyridyl complexes. The organosilica material is a polymer of at least one monomer of Formula [Z1OZ2SiCH2]3(1), where Z1 represents a hydrogen atom, a C1-C4alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6 alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: March 26, 2019
    Inventors: Matthew W. Holtcamp, Matthew S. Bedoya, Charles J. Harlan, Quanchang Li, Machteld M. W. Mertens
  • Patent number: 10086359
    Abstract: The invention provides the incorporation of Co2+, Ni2+ or Cu2+ onto the surface of mesoporous SBA-15 via an amino-organic grafting method and the screening of materials as sorbents for the removal of Naproxen from water.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: October 2, 2018
    Assignee: University of Puerto Rico
    Inventors: Arturo Hernandez-Maldonado, Sandra Mendez-Gonzalez, Sindia Rivera-Jimenez
  • Patent number: 9468901
    Abstract: A polyvinylidene fluoride (PVDF) pyrolyzate adsorbent is described, having utility for storing gases in an adsorbed state, and from which adsorbed gas may be desorbed to supply same for use. The PVDF pyrolyzate adsorbent can be of monolithic unitary form, or in a bead, powder, film, particulate or other finely divided form. The adsorbent is particularly suited for storage and supply of fluorine-containing gases, such as fluorine gas, nitrogen trifluoride, carbo-fluoride gases, and the like. The adsorbent may be utilized in a gas storage and dispensing system, in which the adsorbent is contained in a supply vessel, from which sorbate gas can be selectively dispensed.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: October 18, 2016
    Assignee: ENTEGRIS, INC.
    Inventors: Shaun M. Wilson, Edward A. Sturm
  • Patent number: 9365424
    Abstract: A chlorite salt-absorbent particle is prepared by absorbing a water soluble chlorite salt or a concentrated chlorite salt solution in an absorbent particle. The absorbent can be a silica gel particle or other particulate absorbent that can release the chlorite salt as an aqueous solution over time by simply contacting the chlorite salt-absorbent particle with water. The chlorine salt is extracted from the chlorite salt-absorbent particle over a period of minutes while being flushed with water. A chlorine dioxide generator in the form of a cartridge includes the chlorite salt-absorbent particles and an acid resin or a redox resin. Water can be introduced into an inlet of the cartridge and passes sequentially through the chlorite salt-absorbent particles and the acid resin or the redox resin with the discharge of a chlorine dioxide solution from the outlet of the cartridge.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: June 14, 2016
    Inventor: David Ernest Richardson
  • Patent number: 9322119
    Abstract: The invention relates to a nonwoven web with superior initial tensile strength. The web constructed from at least one type of fiber that has been modified to increase its specific surface area. The fiber has a specific surface area of at least 55 m2/g. The invention also relates to use of the nonwoven web with superior initial tensile strength for the making of a disposable absorbent article. These include, diapers, training pants, incontinence pants, tampons, female hygiene pads and wipes.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: April 26, 2016
    Inventors: Gueltekin Erdem, Michael Jan Trinkaus
  • Patent number: 9289750
    Abstract: The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 22, 2016
    Assignee: Brigham Young University
    Inventors: Maryam Khosravi-Mardkhe, Brian F. Woodfield, Calvin H. Bartholomew, Baiyu Huang
  • Patent number: 9287120
    Abstract: The present application relates to a method for dispersing quantum dots (QDs) or quantum wires in zeolite, to zeolite containing quantum dots or quantum wires dispersed by the method, and to a method for stabilizing quantum dots or quantum wires in zeolite.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: March 15, 2016
    Assignee: Sogang University Research Foundation
    Inventors: Kyung Byung Yoon, Hyun Sung Kim, Nak Cheon Jeong
  • Patent number: 9012352
    Abstract: The present invention relates to a catalyst for Fischer-Tropsch synthesis which has excellent heat transfer capability. This catalyst contains (1) central core particle or particles made of a heat transfer material (HTM) selected from the group consisting of a metal, a metal oxide, a ceramic, and a mixture thereof; and (2) outer particle layer which surrounds the central core particles and is attached to the surfaces of the central core particles by a binder material layer. The outer particle layer has a support and catalyst particles in a powder form containing metal particles disposed on the support. The catalyst having such a dual particle structure shows excellent heat transfer capability and, thus, exhibits high selectivity to a target hydrocarbon. Therefore, the catalyst of the present invention is useful in a fixed-bed reactor for Fischer-Tropsch synthesis for producing hydrocarbons from synthetic gas.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 21, 2015
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kyoung Su Ha, Joo Young Cheon, Yun Jo Lee, Seung-Chan Baek, Geun Jae Kwak, Seon Ju Park, Ki Won Jun
  • Publication number: 20150101483
    Abstract: An adsorbent media has a pore volume/media volume of at least about 0.12 cc pore volume/cc media, a specific heat capacity of less than about 2.9 J/cc pore volume, and a pressure drop of less than about 4.0 inH2O/ft media at a superficial air velocity of about 500 ft/min, wherein the adsorbent media is in a concentrator system. An extruded honeycomb adsorbent media has a cell density of more than about 200 cells per square inch (cspi), % open area of at least about 50%, an activated carbon content of at least about 50% by weight based on total weight, and a pressure drop of less than about 4.0 inH2O/ft media at a superficial fluid velocity of about 500 ft/min.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Inventors: John D. PERRY, Paula S. WALMET
  • Patent number: 9006135
    Abstract: This invention relates to an absorbent including trimethylsilylated mesoporous silica SBA-15, and more particularly to an absorbent including trimethylsilylated mesoporous silica SBA-15, which can effectively remove 90% or more of the seven pharmaceuticals of carbamazepine, diclofenac, estrone, gemfibrozil, ibuprofen, ketoprofen, and trimethoprim which are present in high concentration.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: April 14, 2015
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Heechul Choi, Tung Xuan Bui
  • Patent number: 8975208
    Abstract: The present invention provides an adsorbent for removing sulfur from cracking gasoline or diesel fuel. The adsorbent has excellent abrasion-resistance and desulfurization activity. The adsorbent comprises from about 5 to about 35 wt % of alumina, from about 3 to about 30 wt % of silica, from about 10 to about 80 wt % of at least one oxide of metal selected from Groups IIB and VB, from about 3 to about 30 wt % of at least one metal accelerant selected from Groups VIIB and VIII, and from about 0.5 to about 10 wt % of at least one oxide of metal selected from Groups IA and IIA, based on the total weight of the adsorbent.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: March 10, 2015
    Assignees: China Petroleum Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Huiping Tian, Wei Lin
  • Patent number: 8969240
    Abstract: A sorbent, suitable for removing heavy metals, particularly mercury, from fluid streams containing a reductant such as hydrogen and/or carbon monoxide, is in the form of a shaped unit containing ?0.1% by weight in total of heavy metal selected from mercury, arsenic, lead, cadmium and antimony, and 4-75% by weight of copper in the form of one or more reduced copper sulphides which have a sulphur to copper atomic ratio of ?0.6:1.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: March 3, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Lucy Jane Hetherington, Matthew John Cousins
  • Patent number: 8969241
    Abstract: A silica precursor having a selective adsorptivity with respect to cobalt ions is disclosed. The silica precursor includes a cross-linked 2,6-diamino pyridine group obtained by using 2,6-diamino pyridine, phosgene and 3-aminopropyltriethoxysilane.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: March 3, 2015
    Assignee: Pusan National University Industry—University Cooperation Foundation
    Inventors: Chang-Sik Ha, Sang Hyun Lee, Sung Soo Park
  • Patent number: 8969229
    Abstract: The present invention generally relates to high rate adsorbents and a method for their manufacture involving the steps of component mixing, extrusion, spheronization and calcination. The component mixing can involve both dry mixing in addition to wet mixing of an adsorbent with a binder, if required, and a fluid such as water. The paste so formed from the mixing stage is extruded to produce pellets which are optionally converted to beads by spheronization using in one embodiment, a marumerizer. The product is harvested and calcined to set any binder or binders used and/or burn out any additives or processing aids. This basic manufacturing scheme can be augmented by extra processing steps including ion exchange and activation to alter the composition of the adsorbents, as required.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: March 3, 2015
    Assignee: Praxair Technology, Inc.
    Inventors: Philip Alexander Barrett, Neil Andrew Stephenson, Steven John Pontonio, Jian Zheng
  • Patent number: 8961820
    Abstract: An granular composition for absorbing liquids, the composition comprising perlite, super-absorbent polymer, a pH-indicating dye, and a minor amount of water. According to one preferred embodiment of the invention, the subject composition comprises about 80 weight percent perlite, about 5 weight percent SAP, about 0.0125 weight percent pH indicating dye (most preferably phenolphthalein), and from about 7 to about 9 weight percent water in the final product.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: February 24, 2015
    Assignee: NCH Corporation
    Inventors: Robert C. Pearce, III, Katrell Deon Copeland, Alisha D. Farrington, Ecaterina Henderson
  • Patent number: 8962519
    Abstract: The present invention relates to novel precipitated silicic acids for use as support materials, manufacture thereof and use thereof.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: February 24, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Frank Heindl, Claus-Peter Drexel, Frank Haselhuhn
  • Patent number: 8951332
    Abstract: Urban ore is a mixture of a lot of metallic elements, and these metallic elements need to be separately collected therefrom. However, because the content of each metallic element is very small, it has been extremely difficult to selectively collect the required metallic element. In order to solve the problem, there is provided a metal-ion adsorbent which is for use in a method for collecting metal ions present in a liquid, and in which a continuously porous support having large numbers of pores of uniform size and shape, and a compound having a metal ion-binding group is chemically bonded to the inner surfaces of the pores, whereby a material and a method with which rare-metal ions contained in urban ore are efficiently and inexpensively taken out are provided.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: February 10, 2015
    Assignee: National Institute for Materials Science
    Inventors: Sherif El-Safty, Ahmed Shahat Ahmed, Kohmei Halada
  • Patent number: 8946118
    Abstract: Compositions and methods are disclosed for remediating environmental contaminants when such contaminants primarily include hydrophobic materials such as petroleum.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 3, 2015
    Assignee: Red Lion Chem Tech, LLC
    Inventors: Allan D. Pronovost, Michael E. Hickey
  • Publication number: 20150027953
    Abstract: The present invention discloses a silica particle having a diameter less than or equal to 2 ??, wherein the particle is spherical and comprises interconnected pores having a diameter in the range from 50 nm to 300 nm. The silica particle is preferably produced by spray pyrolysis (=spray drying) of a silica colloid. In the production process, porosity is introduced by means of an inorganic salt, such as NaCl, KCI, LiCl, NaNO3 or Ll NO3, which serves as a pore template. The silica particle may further be functionalized with proteins, peptides, nucleic acids, polysaccharides and proteoglycans, preferably concanavalin A or avidin. The present invention further discloses the use of the silica particle in chromatography, in particular in affinity chromatography.
    Type: Application
    Filed: January 9, 2013
    Publication date: January 29, 2015
    Inventors: Amanda K. Peterson Mann, Benjamin F. Mann, Sara E. Skrabalak, Milos V. Novotny
  • Patent number: 8906823
    Abstract: Sorbents for removal of mercury and other pollutants from gas streams, such as a flue gas stream from coal-fired utility plants, and methods for their manufacture and use are disclosed. Embodiments include brominated sorbent substrate particles having a carbon content of less than about 10%. Other embodiments include one or more oxidatively active halides of a nonoxidative metal dispersed on sorbent substrate particles mixed with activated carbon in an amount up to 30% by weight.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: December 9, 2014
    Assignee: BASF Corporation
    Inventors: Xiaolin David Yang, Pascaline Harrison Tran, Lawrence Shore
  • Publication number: 20140349839
    Abstract: The invention relates to a monolithic porous material based on amorphous silica or activated alumina or on one of their mixtures, the material comprising substantially rectilinear capillary ducts that lie parallel to one another, and being intended to be used as packing in a chromatography column, characterised in that: the ducts have, relative to one another, a substantially uniform cross section; the cross-section of each duct is uniform over its entire length; the ducts pass right through the material; the volume of micropores smaller than 0.3 nm is smaller than 50% of the total porous volume of the material.
    Type: Application
    Filed: September 17, 2012
    Publication date: November 27, 2014
    Inventor: Francois Parmentier
  • Publication number: 20140329673
    Abstract: Superficially porous silica particles are provided as well as a one-pot process for making the superficially porous particles, the process comprising hydrolyzing and condensing a silica precursor comprising a functional group to form superficially porous particles, the superficially porous particles comprising silica microparticles having silica nanoparticles bound to the surface of the microparticles. The nanoparticles provide a porous outer layer on the microparticles.
    Type: Application
    Filed: November 22, 2012
    Publication date: November 6, 2014
    Inventors: Harald Ritchie, Adham Ahmed, Peter Myers, Haifei Zhang
  • Patent number: 8876922
    Abstract: A process, adsorbent and apparatus for treating biofuel is disclosed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: November 4, 2014
    Assignee: Grace GmbH & Co. KG
    Inventors: Massoud Jalalpoor, Vasilios Zafirakis
  • Patent number: 8871669
    Abstract: A catalyst composition is provided comprising a homogeneous solid mixture having ordered directionally aligned tubular meso-channel pores having an average diameter in a range of about 1 nanometer to about 15 nanometers, wherein the homogeneous solid mixture is prepared from a gel formed in the presence of a solvent, modifier, an inorganic salt precursor of a catalytic metal, an inorganic precursor of a metal inorganic network, and a templating agent. The templating agent comprises an octylphenol ethoxylate having a structure [I]: wherein “n” is an integer having a value of about 8 to 20.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 28, 2014
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Ashish Balkrishna Mhadeshwar, Ming Yin
  • Patent number: 8871676
    Abstract: Porous composites of mullite and cordierite are formed by firing an acicular mullite body in the presence of a magnesium source and a silicon source. In some variations of the process, the magnesium and silicon sources are present when the acicular mullite body is formed. In other variations, the magnesium source and the silicon source are applied to a previously-formed acicular mullite body. Surprisingly, the composites have coefficients of linear thermal expansion that are intermediate to those of mullite and cordierite alone, and have higher fracture strengths than cordierite at a similar porosity. Some of the cordierite forms at grain boundaries and/or points of intersection between mullite needles, rather than merely coating the needles. The presence of magnesium and silicon sources during acicular mullite formation does not significantly affect the ability to produce a highly porous network of mullite needles.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: October 28, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Daniel Grohol, Chan Han, Aleksander J. Pyzik
  • Patent number: 8865020
    Abstract: Provided is an adsorbent having superior adsorption properties for use as a dehumidifying agent for desiccant air conditioning which exhibits high adsorption properties at mid and high humidity ranges, and for use as a gas adsorbent of carbon dioxide, ammonia, formaldehyde and the like. A precursor suspension having a Si/Al ratio of 0.70 to 1.0 is prepared, and the precursor suspension is subsequently heated at 110° C. or higher for 2 days to synthesize a complex of a layered low-crystalline clay mineral and an amorphous aluminum silicate. The obtained complex of the layered low-crystalline clay mineral and the amorphous aluminum silicate yields excellent water vapor adsorption performance of 45 wt % or more at a relative humidity of 60%, and therefore can be used as an adsorbent for desiccant air conditioning.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: October 21, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Masaya Suzuki, Katsuhiro Tsukimura, Sumiko Kawabata, Chieko Ikeda, Ryousuke Nakanishi, Koji Tajiri, Keiichi Inukai, Masaki Maeda
  • Patent number: 8865615
    Abstract: Ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O and leakage of ammonia. The ammonia oxidation catalyst (AMOX) removes surplus ammonia, in selectively reducing nitrogen oxides by adding urea or ammonia and using a selective catalytic reduction (SCR) catalyst, into exhaust gas, wherein the ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal element on a composite oxide (A) having titania and silica as main components, and a catalyst layer (upper layer) including a composite oxide (C) consisting of tungsten oxide, ceria, and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: October 21, 2014
    Assignee: N.E. Chemcat Corporation
    Inventors: Tomoaki Ito, Toshinori Okajima, Makoto Nagata
  • Publication number: 20140309106
    Abstract: The aluminum silicate of the invention has: an element ratio of Si and Al, represented by Si/Al, of from 0.3 to 1.0 by molar ratio; a peak at approximately 3 ppm in a 27Al-NMR spectrum; peak A at approximately ?78 ppm and peak B at approximately ?85 ppm in a 29Si-NMR spectrum; and a peak at approximately 2?=26.9° and a peak at approximately 2?=40.3° in a powder X-ray diffraction spectrum. The aluminum silicate has an area ratio of peak B with respect to peak A of from 2.0 to 9.0, or does not include a tubular substance having a length of 50 nm or more as observed in a transmission electron microscope (TEM) photograph of the aluminum silicate taken at a magnification of 100,000.
    Type: Application
    Filed: December 7, 2011
    Publication date: October 16, 2014
    Applicant: Hitachi Chemical Company, Ltd.
    Inventors: Hiroki Mikuni, Kiyoshi Kawai
  • Patent number: 8852322
    Abstract: A gas separation process uses a structured particulate bed of adsorbent coated shapes/particles laid down in the bed in an ordered manner to simulate a monolith by providing longitudinally extensive gas passages by which the gas mixture to be separated can access the adsorbent material along the length of the particles. The particles can be laid down either directly in the bed or in locally structured packages/bundles which themselves are similarly oriented such that the bed particles behave similarly to a monolith but without at least some disadvantages. The adsorbent particles can be formed with a solid, non-porous core with the adsorbent formed as a thin, adherent coating on the exposed exterior surface. Particles may be formed as cylinders/hollow shapes to provide ready access to the adsorbent. The separation may be operated as a kinetic or equilibrium controlled process.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 7, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Ramesh Gupta, Harry W. Deckman, Daniel P. Leta
  • Publication number: 20140261466
    Abstract: Provided is an absorbent including silica of which a raw material is a material originating from a plant which includes silicon, and a silane coupling agent which modifies a surface of the silica. A value of a specific surface area of the silica in accordance with a nitrogen BET method is 10 m2/g or more, and a pore volume of the silica in accordance with a BJH method is 0.1 cm3/g or more.
    Type: Application
    Filed: October 2, 2012
    Publication date: September 18, 2014
    Inventors: Shun Yamanoi, Hironori Iida, Seiichiro Tabata, Machiko Minatoya, Shinichiro Yamada
  • Publication number: 20140274659
    Abstract: Adsorbed natural gas (ANG) technology is an energy efficient approach for storing NG at room temperature and low pressure. ANG technology can be applied to several aspects of the NG industry. The usage of an adsorbent material in natural gas storage and transport may provide increased storage density of NG at a given pressure and decreased pressure of gaseous fuel at a given gas density. Such adsorbent materials have been shown to store substantial quantities of natural gas at relatively modest pressures. Because lower-pressure vessels can be far less expensive than comparable sized high-pressure vessels, ANG based storage can be used to lower the cost of storing natural gas in various applications.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: OSCOMP SYSTEMS INC.
    Inventors: Jimmy ROMANOS, Pedro T. SANTOS, Scott RACKEY
  • Patent number: 8834822
    Abstract: A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C12H28O4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: September 16, 2014
    Assignees: Georgia Tech Research Corporation, U.S. Department of Energy
    Inventors: McMahan Gay, Sunho Choi, Christopher W. Jones
  • Patent number: 8828904
    Abstract: The present invention is a process for making an inorganic/organic hybrid totally porous spherical silica particles by self assembly of surfactants that serve as organic templates via pseudomorphic transformation.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: September 9, 2014
    Assignee: Agilent Technologies, Inc.
    Inventors: Ta-Chen Wei, Wu Chen, William E. Barber
  • Patent number: 8821717
    Abstract: A process for upgrading hydrocarbon oil feedstreams employs a solid adsorption material to lower sulfur and nitrogen content by contacting the hydrocarbon oil, with a solid adsorbents in a mixing vessel; passing the slurry to a membrane separation zone to separate the solid adsorption material with the adsorbed sulfur and nitrogen compounds from the treated oil; recovering the upgraded hydrocarbon product having a significantly reduced nitrogen and sulfur content as the membrane permeate; mixing the solid adsorbent material with aromatic solvent to remove and stabilize the sulfur and nitrogen compounds; transferring the solvent mixture to a fractionation tower to recover the solvent, which can be recycled for use in the process; and recovering the hydrocarbons that are rich in sulfur and nitrogen for processing in a relatively small high-pressure hydrotreating unit or transferring them to a fuel oil pool for blending.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 2, 2014
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Publication number: 20140235435
    Abstract: To provide an affinity carrier with a low pressure loss and a large binding capacity even when the linear flow rate of a solution to be made to pass therethrough is high. Silica spheres, which satisfy the following conditions: (a) the average particle size is from 30 ?m to 40 ?m as measured by a laser light scattering method; (b) the ratio (D10/D90) of the particle size (D10) of smaller 10% cumulative volume to the particle size (D90) of 90% cumulative volume in a particle size distribution as measured by a Coulter counter method, is at most 1.50; and (c) the average pore size is from 85 nm to 115 nm and the pore volume is at least 1.5 mL/g, as measured by a mercury intrusion technique.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicant: AGC SI-TECH CO., LTD.
    Inventors: Hiroyoshi MIYAHARA, Ryou NAKASHIMA, Kenji HIGASHI
  • Patent number: 8809561
    Abstract: The present invention relates to new hybrid, organic-inorganic hybrid silicates and metal-silicates characterized by a crystalline structure containing structural units having formula (a), wherein R is an organic group possibly containing one or more element T selected from Group IIIB, IVB, VB and from transition metals. A process starting from cyclic trisilanes for the preparation of said materials, is also described. These materials can be used as molecular sieves, adsorbents, in the field of catalysis, in the field of electronics, in the field of sensors, in the area of nanotechnology.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: August 19, 2014
    Assignee: ENI S.p.A.
    Inventors: Giuseppe Bellussi, Angela Carati, Mariangela Cozzolino, Caterina Rizzo, Stefano Zanardi
  • Patent number: 8808655
    Abstract: Immobilized nitronyl nitroxide active sites on the surface of a porous inorganic oxide support act as efficient and rapid oxidants for NO, reacting with >99% of the NO under flow conditions through a packed bed; and, in a parallel configuration with nitroxyl radical active sites, act to remove >99% of both NO and NO2 from a gas mixture, with >95% of the active sites participating in NOx trapping.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: August 19, 2014
    Assignee: The Regents of the University of California
    Inventors: Andrew Solovyov, Alexander Katz, Enrique Iglesia
  • Patent number: 8791039
    Abstract: An agglomerated zeolite adsorbent which comprises 95-99.5 mass % of X zeolite and 0.5-5.0 mass % of binder, wherein the exchangeable cationic sites of said X zeolite are occupied by Group IIA metal and/or K, the total pore volume of said adsorbent is no less than 0.26 mL/g as measured by mercury porosimetry, the volume of pores with pore diameters from 100 to 500 nm is at least 60% based on the total pore volume. During shaping, a pore-forming agent is added to this adsorbent, and then the adsorbent is alkali treated for in-situ crystallization, followed by ion exchange. Said adsorbent has high adsorption capacity, fast mass transfer rate and good mechanical strength. Said adsorbent is suitable for liquid phase adsorptive separation of para-xylene from C8 aromatic hydrocarbons and is also suitable for adsorptive separation of other alkyl aromatic hydrocarbons isomers.
    Type: Grant
    Filed: January 24, 2009
    Date of Patent: July 29, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Huiguo Wang, Jianfeng Ma, Dehua Wang, Zhuo Yu
  • Patent number: 8785348
    Abstract: The present disclosure relates to a method and apparatus for separating nucleic acids. A carrier may include a porous microbead having cation-exchangeable groups attached to the surface of the porous microbead. Capturing chains modified with positively charged functional groups and having a base sequence complementary to a target nucleic acid chain sequence are immobilized on to the surface of the porous microbead. In various embodiments, capturing chains are immobilized on to the surface of the porous microbead through an ion exchange bond or a covalent bond with the cation-exchangeable groups of the porous microbead. In some cases, the porous microbead has a number of through pores adapted to permit a solution to pass rapidly through the through pores and a number of diffusive pores adapted to permit a solute of the solution to diffuse into the diffusive pores.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: July 22, 2014
    Assignee: Sony Corporation
    Inventors: Michihiro Ohnishi, Noriyuki Kishii, Takuya Kishimoto, Naoyuki Sasaki, Hidetoshi Watanabe
  • Patent number: 8747693
    Abstract: A silica having metal ions absorbed thereon and a fabricating method thereof are provided. The silica having metal ions absorbed thereon is a silica having metal ions absorbed thereon and being modified with persulfate salt. The method includes following steps. A solution is provided, and the solution includes silica and persulfate salt therein. The solution is heated to react the silica with the persulfate salt, so as to obtain silica modified with persulfate salt. Metal ion source is added in the solution, the metal ion source dissociates metal ions, and the silica modified with persulfate salt absorbs the metal ions to obtain the silica having metal ions absorbed thereon.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: June 10, 2014
    Assignee: UWIZ Technology Co., Ltd.
    Inventors: Yun-Lung Ho, Song-Yuan Chang, Ming-Hui Lu, Chung-Wei Chiang