Alumina (i.e., Dialuminum Trioxide) Patents (Class 502/415)
  • Patent number: 8580706
    Abstract: An exhaust gas-purifying catalyst according to the present invention includes a substrate, a first catalytic layer facing the substrate and includes at least one precious metal selected from the group consisting of palladium and platinum, and alumina doped with an alkaline-earth metal element, and a second catalytic layer facing the substrate with the first catalytic layer interposed therebetween or intervening between the substrate and the first catalytic layer, the second catalytic layer includes rhodium and alumina doped with the alkaline-earth metal element.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 12, 2013
    Assignee: Cataler Corporation
    Inventors: Satoshi Matsueda, Akimasa Hirai, Kenichi Taki, Yuji Yabuzaki
  • Patent number: 8575063
    Abstract: The present invention relates unique pore structures in nickel supported on alumina with the negligible formation of macropores. Incorporation of additional elements stabilizes the pore structure of the nickel supported on alumina. Additional element(s) were then further added into the nickel-supported materials. These additional element(s) further stabilize the pore structures under heating conditions. The improvements of pore structure stability under heating conditions and negligible presence of macropores limit the sintering of nickel metal to a mechanism of impeded diffusion. The negligible presence of macropores also limits the deposition of alkali metal hydroxide(s)/carbonate(s) on the outer shell of the catalyst pellet in the molten carbonate fuel cells. Both the negligible presence of macropores and improvement in pore structure stability allow for prolonging the catalyst life of these nickel supported on alumina catalysts of the present invention for reforming hydrocarbons.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: November 5, 2013
    Inventors: Wen-Qing Xu, David Beijia Xu
  • Publication number: 20130288055
    Abstract: Provided is a mesoporous particle having a flaky shape, having a single-layer structure, having a thickness of 0.1 ?m to 3 ?m, and having an average pore diameter of 10 nm or more. The mesoporous particle can be obtained by a production method including: feeding a metal oxide sol having a pH of 7 or higher and containing metal oxide colloidal particles as dispersoids and water as a dispersion medium, into a liquid containing a water-miscible solvent having a relative permittivity of 30 or lower (protic solvent) or of 40 or lower (aprotic solvent) at 20° C., and thereby forming a flaky aggregate of the metal oxide colloidal particles in the liquid; and subjecting the aggregate to treatment such as drying and heating, and thereby converting the aggregate into a flaky particle that is insoluble in water.
    Type: Application
    Filed: January 11, 2012
    Publication date: October 31, 2013
    Applicant: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Kazuhiro Doshita, Toshitaka Furuichi, Kosei Shimokawa
  • Patent number: 8569205
    Abstract: Sorption media for removal of contaminants from fluid streams are provided. The sorption media comprise an active compound bound or linked to a support substrate or matrix. Support substrates can include iron- and alumina-based materials. A method for making sorption media for the removal of contaminants from fluid streams is also described. The method includes selecting a support substrate, and, optionally, providing a doping mixture comprising an active compound. The selected support substrate can be contacted with the doping mixture to form a doped mixture. The doped mixture can be reacted at a predetermined temperature and atmospheric environment for a predetermined duration to form an active media, wherein the active compound is bound or linked to the support substrate.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: October 29, 2013
    Assignee: Mar Systems, Inc.
    Inventors: Anthony E. Kuhel, Harry A. Adams, Gina Sacco
  • Patent number: 8568675
    Abstract: Provided are catalyst composites that can be used in methods for treating exhaust gas from internal combustion engines, including diesel and gasoline engines, systems including such catalyst composites and methods of using the catalyst composites to treat internal combustion engine exhaust. The catalyst composites may provide diesel oxidation catalysts and three-way catalysts. A catalyst composite is provided which a catalytic material on a carrier, the catalytic material including a palladium component dispersed on a first support comprising at least 60% by weight of a zirconia component, and one or more rare earth oxides selected from the group consisting of lanthana, neodymia, praseodymia, yttria, the first support optionally containing no more than 15% by weight ceria, and being free of alumina. Layered catalyst composites having one or more washcoats on the carrier are also provided.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: October 29, 2013
    Assignee: BASF Corporation
    Inventors: Michel Deeba, Tian Luo, Josephine Ramos
  • Patent number: 8562926
    Abstract: A method and device for catchment of platinum group metals (PGM) in a gaseous steam, where the method comprises using a catalyst comprising a porous ceramic body in which at least a part of the surface area is covered by one or more PGM-catching metal(s)/alloy(s), and where the device comprises the porous ceramic body in which at least a part of the surface area is covered by one or more PGM-catching metal(s)/alloy(s). In a further aspect, the invention also relates to a method for producing the inventive device.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 22, 2013
    Assignee: Yara International ASA
    Inventors: David Waller, David M. Brackenbury, Ketil Evjedal
  • Patent number: 8557203
    Abstract: A device is described which provides thermally durable NO2 generation in conjunction with efficient heat-up performance for filter regeneration, and low temperature HC (hydrocarbon) and CO activity. Importantly, it provides both functions while minimizing PGM (platinum group metals) utilization and its associated impact on catalyst cost.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: October 15, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Owen Herman Bailey, Matthew Hedgecock, Frank-Walter Schuetze, Anke Woerz
  • Patent number: 8551431
    Abstract: A method for modifying the properties of a sorbent comprising washing a sorbent with a washing solution so as to achieve an exchange of ions between the sorbent and the washing solution, and applying a halogen compound to the sorbent that has been washed with the washing solution to achieve a predetermined concentration of the halogen on the sorbent.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 8, 2013
    Assignee: Cabot Corporation
    Inventors: Patton Adams, Dennis O. Rester, Misty Williams
  • Patent number: 8551900
    Abstract: Method for preparation of an adsorbent that comprises successive shaping stages by co-granulation of a faujasite-type zeolite powder A, with a powder B that consists of alumina, whereby the ratio per unit of mass of the powder A in the mixture of powders A and B is between 10 and 70%, for treatment under water vapor and drying. The invention also relates to a process for adsorption of organic contaminants that contain at least one heteroatom and that are present in an olefinic feedstock that comprises at least 50% by volume of hydrocarbons, whereby this process comprises the stage for bringing the olefinic feedstock into contact with the adsorbent that is obtained by the preparation method according to the invention.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: October 8, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Olivier Ducreux, Christophe Nedez, Catherine Pommier
  • Patent number: 8551908
    Abstract: An exhaust gas purification catalyst includes: a lower catalyst layer that contains a ceria-zirconia mixed oxide having 50 to 70 mass % of CeO2 and 5 mass % or more of Pr2O3 and carries at least one of Pt and Pd; and an upper catalyst layer that contains at least zirconia and carries at least Rh, wherein the total amount of CeO2 per liter of the carrier base is 15 to 30 g. Because the amount of CeO2 is small, formation of H2S is suppressed and a high capability of adsorbing and releasing oxygen is brought out in spite of the small amount of CeO2.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akemi Satou, Masahiko Takeuchi, Keizo Hiraku, Yusuke Kawamura, Takahiro Fujiwara, Tadashi Suzuki, Naoki Takahashi
  • Patent number: 8546298
    Abstract: An odor filtration media having a chemical reagent which removes odor causing fluid contaminants from a fluid stream through the use of granular or shaped media have a chemical composition including permanganate is provided. A method of producing the odor absorbing media having a chemical reagent is also provided and comprises the steps of mixing H2O, KMnO4, and at least one salt adding ions or ionic compounds selected from the group consisting of Na+, Li+, K+, NH4+, Cl?, SO42?, BO32?, CO32?, PO43?, NO3? and combinations thereof, or from the group consisting of Na+, Li+, K+, NH4+, Mg2+, Ca2+, Cl?, BO32?, NO3? and combinations thereof, forming an impregnating solution. The impregnating solution is heated and combined with a support material to form a coherent mass.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: October 1, 2013
    Assignee: AAF-McQuay Inc.
    Inventors: Michael W Osborne, Zhong C. He, Ng Cheah Wei
  • Patent number: 8546294
    Abstract: The present invention provides rhenium-promoted epoxidation catalysts based upon shaped porous bodies comprising a minimized percentage of their total pore volume being present in pores having diameters of less than one micron, and a surface area of at least about 1.0 m2/g. Processes of making the catalysts and using them in epoxidation processes are also provided.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 1, 2013
    Assignee: Dow Technology Investments, LLC
    Inventors: Albert C. Liu, Hwaili Soo
  • Patent number: 8535423
    Abstract: Methods of purifying hydrogen-containing materials are described. The methods may include the steps of providing a purifier material comprising silica. The silica may be heated at temperature of about 100° C. or more in a dry atmosphere to form activated silica. The activated silica may be contacted with a starting hydrogen-containing material, where the activated silica reduces a concentration of one or more impurity from the starting hydrogen-containing material to form the purified hydrogen-containing material, and where the activated silica does not decompose the purified hydrogen-containing material.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: September 17, 2013
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Tadaharu Watanabe, Mark Raynor, Ade Lau, Hirotaka Mangyo
  • Patent number: 8535632
    Abstract: The present invention relates to a catalyst-containing nanofiber composition, comprising a ceramic nanofiber having a plurality of metal catalysts wherein the metal catalysts exist as dispersed particles partially embedded in the nanofiber and cover from about 1% to about 90% of the surface area of the ceramic nanofiber.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 17, 2013
    Assignee: The University of Akron
    Inventors: George G. Chase, George R Newkome, Sphurti Bhargava, Soo-Jin Park, Sneha Swaminathan
  • Patent number: 8518846
    Abstract: In the present invention, slurry is formed by mixing noble metal-supported powder particles (3) and a binder (4) with each other in a liquid (Step S1), and the noble metal-supported powder particles (3) are dispersed by applying vibrations to the slurry (Step S2), and thereafter, the slurry is spray dried while keeping a state where the noble metal-supported powder particles (3) are dispersed (Step S3), whereby noble metal-supported powder (1) is produced. In the noble metal-supported powder (1) produced by such a method, pores through which exhaust gas flows are formed appropriately, and accordingly, exhaust gas purification performance can be enhanced.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: August 27, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Fumihiro Uchikawa, Yoshiaki Hiramoto, Haruhiko Shibayama, Keita Manyu
  • Patent number: 8518845
    Abstract: A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: August 27, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Michael J. Pellin, John N. Hryn, Jeffrey W. Elam
  • Patent number: 8518856
    Abstract: A solid-state hydrogen storage material and process for making the material more thoroughly rechargeable. The process entails forming a porous matrix material to contain atoms of a first element and hydrogen atoms, in which the atoms of the first element are capable of bonding with more than one hydrogen atom per atom of the first element, and the atoms of the first element are molecularly arranged within the porous matrix material so that different atoms of the first element are bonded to different numbers of hydrogen atoms at correspondingly different levels of bonding energy. At least some of the hydrogen atoms bonded to the atoms of the first element at the lowest bond energies are then removed without removing hydrogen atoms bonded at higher bond energies, after which atoms of a second element are bonded to those atoms of the first element from which hydrogen atoms were removed.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: August 27, 2013
    Assignee: Indiana University Research and Technology Corporation
    Inventor: Peter James Schubert
  • Patent number: 8513155
    Abstract: An exhaust aftertreatment system for a lean-burn engine may include a lean NOX trap that comprises a catalyst material. The catalyst material may remove NOX gases from the engine-out exhaust emitted from the lean-burn engine. The catalyst material may include a NOX oxidation catalyst that comprises a perovskite compound.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: August 20, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Wei Li, Chang H Kim, Gongshin Qi
  • Patent number: 8507720
    Abstract: A catalyst comprising palladium supported on a titania-alumina extrudate is disclosed. The extrudate comprises at least 80 wt % titania and 0.1 to 15 wt % alumina. A palladium catalyst prepared from the titania-alumina extrudate has significantly higher crush strength. Its catalytic performance in vinyl acetate production is improved.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 13, 2013
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Daniel Travis Shay
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Patent number: 8507404
    Abstract: Provided are improved regenerable SOx trap formulations for on-board vehicle applications. The regenerable sulfur trap formulations reduce the rate of sulfur poisoning of a downstream nitrogen storage reduction (NSR) catalyst trap in exhaust gas cleaning systems for combustion engines by adsorbing SOx as metal sulfate under lean exhaust conditions and desorbing the accumulated SOx under rich exhaust conditions. The regenerable sulfur oxides trap catalyst compositions include a metal (M) oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof and a metal (M)-La—Zr oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof. In addition, provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul J. Polini
  • Patent number: 8501133
    Abstract: A catalyst for treating exhaust gases containing nitrogen monoxide, carbon monoxide and volatile organic compounds includes a plurality of layers, an upper layer of which has an active component contained uniformly therein and a lower layer of which has no active component contained therein. The catalyst is obtained through the steps of: forming the lower layer by coating the surface of substrate with a slurry of a porous inorganic compound, followed by drying; and forming the upper layer, which is to be the top surface of the catalyst, by coating the surface of the lower layer with a slurry of a porous inorganic compound that has the active component composed of one or more precious metals supported thereon, followed by drying. The oxidation power of the resulting catalyst is enhanced without increasing the amount of precious metal supported thereon.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 6, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Masanao Yonemura, Yoshiaki Obayashi, Hitoshi Nakamura
  • Patent number: 8501132
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 8496899
    Abstract: An exhaust gas purifying catalyst 1 has a catalyst substrate 3 and catalyst coating layers 5, 7 that are formed on the catalyst substrate 3 and contain (a) Rh, (b) Pt, (c) an alkali metal or alkaline earth element, and (d) an inorganic oxide. The catalyst coating layers 5, 7 has a layered structure including an inside layer 5 where the component (a) is substantially locally existing, and an outside layer 7 where the component (b) is substantially locally existing. The inside layer 5 also contains a zirconia oxide.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: July 30, 2013
    Assignee: Cataler Corporation
    Inventor: Hiroto Imai
  • Patent number: 8492592
    Abstract: The invention provides a method of transaminating a reactant with a catalyst composition comprising support and catalyst portions. The support includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion. The method provides high activity and selectivity for reactant transamination to a desired product while minimizing the formation of unwanted cyclic products.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 23, 2013
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 8486853
    Abstract: An exhaust gas purifying catalyst (1) according to the present invention includes noble metal particles (6), a first compound (7) supporting the noble metal particles (6), and a second compound (9) disposed not in contact with the noble metal particles (6) and having an oxygen storage capacity. An average distance between the first compound (7) and the second compound (9) is between 5 nm and 300 nm.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 16, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hiroto Kikuchi, Tetsuro Naito, Jun Ikezawa
  • Patent number: 8486368
    Abstract: A process for producing the porous catalyst body for decomposing hydrocarbons, the body containing at least magnesium, aluminum and nickel, and has a pore volume of 0.01 to 0.5 cm3/g, an average pore diameter of not more than 300 ? and an average crushing strength of not less than 3 kgf. The process includes molding hydrotalcite containing at least magnesium, aluminum and nickel, and calcining the resulting molded product at a temperature of 700 to 1500° C.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: July 16, 2013
    Assignee: Toda Kogyo Corporation
    Inventors: Shinji Takahashi, Naoya Kobayashi
  • Patent number: 8480988
    Abstract: The present invention is a method for synthesizing non-zeolitic molecular sieves which have a three dimensional microporous framework comprising [AlO2] and [PO2] units. In preparing the reaction mixture, a surfactant is used, coupled with non-aqueous impregnation to prevent acid sites from being destroyed by water during Pt impregnation. The superior SAPO exhibits higher activity and selectivity especially in catalytic hydroisomerization of waxy feeds, due to the presence of medium-sized silica islands distributed throughout the SAPO.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: July 9, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen Joseph Miller
  • Patent number: 8481451
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins by using the same.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 9, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Patent number: 8476321
    Abstract: The present invention is directed to a catalyst suitable for catalyzing a Fischer-Tropsch reaction, said catalyst comprising cobalt metal supported on zinc-oxide and an amount of zirconium(IV)oxide and/or aluminum oxide of between 0.5 and 2.5 wt. % calculated as metal, based on the weight of the calcined catalyst.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 2, 2013
    Assignee: BASF Corporation
    Inventor: Cornelis Roeland Baijense
  • Patent number: 8475649
    Abstract: Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 2, 2013
    Assignee: Phillips 66 Company
    Inventors: Sundararajan Uppili, Donald R. Engelbert
  • Publication number: 20130152788
    Abstract: A process for removing mercury from a gas or liquid phase, wherein the gas or liquid phase containing mercury is placed in contact with a composition comprising a precipitated metal sulfide. The precipitated metal sulfide may be made by the process of combining a metal source, sulfide source, and modifier to form the precipitated metal sulfide. The metal source may comprise iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, silver, or gold salts. The metal salt may be selected from metal nitrate, metal sulfate, metal phosphate, metal acetate, metal carbonate, metal hydroxide, metal ammonium carbonate, and metal hydroxycarbonate. The sulfide source is selected from hydrogen sulfide (H2S), carbonyl sulfide (COS), salts of sulfide (S2?), salts of hydrosulfide (HS?), and salts of polysulfide (Sn2?). The modifier may be selected from alumina, silica, aluminosilicate, clay, zeolites, carbon, cement, titania, zirconia.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 20, 2013
    Applicant: SUD-CHEMIE INC.
    Inventor: SUD-CHEMIE INC.
  • Patent number: 8466082
    Abstract: A shell catalyst for the preparation of vinyl acetate monomer, comprising an oxidic porous catalyst support with an outer shell, containing metallic Pd and Au, wherein the framework structure of the porous catalyst support contains hafnium oxide units. This shell catalyst is suitable for the preparation of VAM and is characterized by a relatively high activity and VAM selectivity and maintains this activity and selectivity over relatively long service lives. Also, processes for the preparation and use of the shell catalyst.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: June 18, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck
  • Patent number: 8461373
    Abstract: Disclosed is a catalyst for use in production of carboxylic acid ester by reacting (a) aldehyde and alcohol, or (b) one or more types of alcohols, in the presence of oxygen; wherein oxidized nickel and X (wherein X represents at least one element selected from the group consisting of nickel, palladium, platinum, ruthenium, gold, silver and copper) are loaded onto a support within the range of the atomic ratio of Ni/(Ni+X) of from 0.20 to 0.99.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: June 11, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Ken Suzuki, Tatsuo Yamaguchi
  • Patent number: 8460937
    Abstract: A method of screening catalysts for liquid-phase selective hydrogenation by preparing a test catalyst by adding a promoter to a reference catalyst; preparing a liquid reactant stream comprising C2H2 dissolved in n-methyl-2-pyrrolidone; testing the test and reference catalysts by contacting the reactant stream and gas mixture comprising hydrogen and carbon monoxide in continuous flow with the test catalyst and reference catalyst, respectively, at selective hydrogenation reaction conditions to produce a product stream, condensing substantially all of the n-methyl-2-pyrrolidone from the product stream; measuring the concentrations of products comprising C2H2, C2H4, and C2H6 in the product stream at steady state; determining performance parameters for the test catalyst and the reference catalyst comprising the respective C2H2 conversion Sc and C2H4 selectivity relative to C2H6 Ss; and comparing the test catalyst performance parameters to those for the reference catalyst.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: June 11, 2013
    Assignee: Synfuels International, Inc.
    Inventors: Marvin M. Johnson, Edward R. Peterson, Sean C. Gattis
  • Patent number: 8455390
    Abstract: An exhaust gas purifying catalyst includes a monolithic substrate (2), and a transition metal oxide layer (3) formed in the monolithic substrate (2). The transition metal oxide layer (3) contains transition metal oxide powder including: transition metal oxide particles (10); a first compound (20) on which the transition metal oxide particles (10) are supported; and a second compound (30) that surrounds a single body or an aggregate of the transition metal oxide particles (10) and the first compound (20).
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 4, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroto Kikuchi, Masanori Nakamura, Hironori Wakamatsu, Katsuo Suga, Toshiharu Miyamura, Jun Ikezawa, Tetsuro Naito, Junji Ito
  • Patent number: 8450236
    Abstract: A process for making a catalyst having precious metal nanoparticles deposited on a support includes first providing an aqueous dispersion of support particles. A pre-treatment slurry is prepared by mixing the aqueous dispersion of support particles with a water-soluble precious metal precursor and a reducing agent. The pre-treatment slurry is hydrothermally treated at a temperature in the range of from about 40° C. to about 220° C. for a time sufficient to deposit precious metal nanoparticles on the surface of the support particles, the precious metal nanoparticles having an average particle size less about 50 nm.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: May 28, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Mark B. Watson, Charles B. Muehlberger
  • Patent number: 8450235
    Abstract: A supported composite particle material comprises: a composite particle formed of an oxidized nickel and X (wherein X represents at least one of elements selected from the group consisting of nickel, palladium, platinum, ruthenium, gold, silver and copper); and a support on which the composite particle is supported, the supported composite particle material having a supported layer in which the composite particle is localized.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: May 28, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Ken Suzuki, Tatsuo Yamaguchi
  • Patent number: 8449761
    Abstract: The present invention is a method for synthesizing non-zeolitic molecular sieves which have a three dimensional microporous framework comprising [AlO2] and [PO2] units. In preparing the reaction mixture, a surfactant is used, coupled with non-aqueous impregnation to prevent acid sites from being destroyed by water during Pt impregnation. The superior SAPO exhibits higher activity and selectivity especially in catalytic hydroisomerization of waxy feeds, due to the presence of medium-sized silica islands distributed throughout the SAPO.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: May 28, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen Joseph Miller
  • Patent number: 8449762
    Abstract: A sulfur reduction catalyst useful to reduce the levels of sulfur in a cracked gasoline product comprises a metal vanadate compound. The metal vanadate compound can be supported on a molecular sieve such as a zeolite in which the metal vanadate compound is primarily located on the exterior surface of the pore structure of the zeolite and on the surface of any matrix material used to bind or support the zeolite.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: May 28, 2013
    Assignee: BASF Corporation
    Inventors: Xingtao Gao, James Fu
  • Patent number: 8431506
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: April 30, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian Neltner, Angela Belcher
  • Patent number: 8420038
    Abstract: A method for removing at least one contaminant from a fluid stream includes filtering the fluid stream with a filtration medium. The filtration medium includes an impregnate. The impregnate includes an organic amine and an inorganic metal salt. The inorganic metal salt includes magnesium oxide, calcium oxide or combinations thereof. The medium has from about 0.1 to about 25% by weight of impregnate. The impregnate contains from about 0.1 to about 5% by weight organic amine, and the organic amine includes aqueous urea, solid urea, melamine or mixtures thereof. The impregnate contains from about 0.1 to about 5% by weight metal salt. The impregnate optionally further includes a surfactant such as polyacrylic acid. In some embodiments, the method includes removing at least two contaminants from the fluid stream.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: April 16, 2013
    Assignee: Purafil, Inc.
    Inventor: William G. England
  • Patent number: 8410014
    Abstract: Especially physically stable metal oxide catalyst supports are prepared by suspending a metal oxide in a continuous phase, activating by fine dispersion, coagulation to a viscoelastic mass, shaping, drying, and calcining. The catalyst support thus prepared may be treated with catalytic agents to produce supported catalysts for olefin oxidation.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: April 2, 2013
    Assignee: Wacker Chemie AG
    Inventors: Roland Heidenreich, Hans-Jurgen Eberle, Johann Weis
  • Patent number: 8409518
    Abstract: A sulfur tolerant oxidation catalyst with appreciable NO and HC oxidation capabilities has been developed for use in any component of an exhaust aftertreatment system for a lean-burn engine where the oxidation of at least NO is desired. Several non-exclusive examples of such components where the oxidation catalyst may be employed include a DOC and a LNT. The oxidation catalyst may comprise perovskite oxide particles that support palladium particles. The ability of the palladium supported perovskite oxide particles to concurrently oxidize NO and HC's can significantly diminish or altogether eliminate the use of platinum in the exhaust aftertreatment system for at least NO oxidation. The oxidation catalyst, moreover, may exhibit superior thermal durability and better NO and HC oxidation activities than platinum in some instances.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H Kim, Wei Li, Richard J. Blint
  • Publication number: 20130075317
    Abstract: The invention relates to a monolithic porous material made of amorphous silica or activated alumina, comprising substantially rectilinear capillary channels that are parallel to one another, wherein: the channels have a substantially uniform cross-section relative to each other, the cross-section of each channel is regular over its entire length, the channels pass through the material from end to end, the length of the channels is equal to or more than 10 mm. The invention also relates to an annular, radial or axial chromatographic apparatus, the packing of which consists of at least one said monolithic material. The invention also relates to processes for manufacturing such a monolithic material.
    Type: Application
    Filed: March 15, 2011
    Publication date: March 28, 2013
    Inventor: Francois Parmentier
  • Patent number: 8399376
    Abstract: The invention relates to a particle blend comprising mainly or consisting of an oxide phase of the pseudo-brookite type comprising at least titanium and aluminum, said blend being obtained from at least two particle size fractions, namely a coarse particle size fraction, the median diameter d50 of which is greater than 12 microns, and a fine particle size fraction, the median diameter d50 of which is between 0.5 and 3 microns, the mass ratio of said coarse fraction to said fine fraction being between 1.5 and 20, limits inclusive, and the ratio of the median diameter of the coarse fraction to that of the fine fraction being greater than 12.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: March 19, 2013
    Assignee: Saint-Gobain Centre de Recherches et D'etudes Europeen
    Inventors: Carine Dien-Barataud, Matthias Schumann
  • Publication number: 20130053234
    Abstract: A method for preparing a sorbent composition includes the steps of: (i) applying, from a solution or a slurry, a layer of a copper compound on the surface of a support material, and (ii) drying the coated support material, wherein the thickness of the copper compound layer on the dried support is in the range 1-200 ?m. The precursor may be converted to a sorbent suitable for removing heavy metals from liquids or gases by applying one or more sulphur compounds to sulphide the copper compound and form CuS.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 28, 2013
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Andrew Fish, Lucy Jane Challis, Matthew John Cousins, Mark Robert Feaviour, Alison Mary Wagland, Stephen David Pollington, Edmund Hugh Stitt
  • Patent number: 8382881
    Abstract: The invention provides a method for removing mercury from a liquid or gas hydrocarbon stream, mixtures thereof, including mixtures of liquid streams with a solid carbonaceous substance, by contacting the hydrocarbon stream with a composition comprising silver and a support material, wherein the composition as measured by ammonia chemisorption has a surface acidity in the range of 0.1-10.0 ?mole of irreversible NH3/g of the composition.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: February 26, 2013
    Inventors: Madan M. Bhasin, Mark K. Brayden, Foppe Dupius, Peter E. Groenendijk, Seyed R. Seyedmonir, Michael C. Smith, Fredrick W. Vance
  • Patent number: 8377842
    Abstract: The present invention relates to an adsorbent for separating carbon monoxide from a gas mixture including hydrogen gas and a method of preparing the same. The adsorbent for selectively separating monoxide includes a solid material, which is a solid support impregnated and dispersed with a cuprous salt by bringing the solid support into contact with a cuprous salt solution stabilized by dissolving a cuprous salt or a cuprous salt mixture in a solvent. The adsorbent is advantageous in that the selectivity for carbon monoxide is improved, so that the amount of carbon monoxide included in the gas mixture is decreased to infinitesimal quantities, thereby producing high-purity hydrogen products.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: February 19, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Soon Haeng Cho, Sodankoor Garadi Thirumaleshwara Bhat, Sang Sup Han, Jong Ho Park, Jong Nam Kim, Heon Jung
  • Patent number: 8378129
    Abstract: The invention relates to an improved process for producing a catalyst useful for the epoxidation of ethylene to ethylene oxide. In forming the catalyst, a silver-impregnated support is subjected to two calcinations. The support is subjected to a first calcination in a first atmosphere comprising air. Next the support is subjected to a second calcination in a second atmosphere which is substantially entirely comprised of inert gas, and which second atmosphere is substantially absent of hydrogen. This two-stage calcination produces an improved catalyst which contains fewer organics left over under standard conditions of air calcination alone, while costing less than calcination in an inert gas alone.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: February 19, 2013
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: Vijay S. Bhise, Arie Bortinger, Stephen R. Allen