In Form Of A Membrane Patents (Class 502/4)
  • Patent number: 8772564
    Abstract: This invention relates to a method wherein a high-purity paraxylene can be produced efficiently by using a catalyst having a molecular sieving action (or shape selectivity) and being excellent in the catalytic activity without isomerization and adsorption-separation steps. More particularly, it relates to a method of producing a high-purity paraxylene, characterized in that MFI type zeolite having a primary particle size of not more than 100 ?m, a structure defining agent and silica material having an average particle size of not less than 10 nm but less than 1.0 ?m are used as a starting material, and a synthetic zeolite catalyst produced by subjecting the MFI type zeolite to a coating treatment with an aqueous solution obtained by mixing so as to satisfy X×Y<0.05 (wherein X is a concentration of the silica material (mol %) and Y is a concentration of the structure defining agent (mol %)) is used in the alkylation or disproportionation of at least one of benzene and toluene as a starting material.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: July 8, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Koichi Matsushita, Chikanori Nakaoka, Norikazu Nishiyama
  • Patent number: 8765628
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an active catalyst component comprising a surface, and a metal oxide film coated on the surface of the active catalyst component. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as improved resistance to catalytic deactivation due to sulfur and nitrogen compounds present in the hydrocarbon feedstreams.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: July 1, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, William G. Borghard, Cody R. Cole
  • Patent number: 8753425
    Abstract: A method of preparing a supported gas separation membrane, comprising: preparing crystalline seeds from a synthesis mixture comprising an aluminum source, a phosphorous source, a silicon source, at least one organic templating agent and water; applying the seeds to a porous support to produce a seeded porous support; contacting the seeded porous support with a synthesis gel under hydrothermal synthesis conditions to produce a coated porous support; and calcining the coated porous support is described. A supported gas separation membrane made by this method is also described.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: June 17, 2014
    Assignee: Shell Oil Company
    Inventors: Brendan Dermot Murray, Paul Jason Williams
  • Patent number: 8747766
    Abstract: A hydrogen separation membrane comprising a palladium alloy that includes at least palladium, an added metal A, and an added metal B, the added metal A and the added metal B being two different metals other than palladium, each of the added metal A and the added metal B forming a complete solid solution with palladium, and the added metal A and the added metal B having a triple point in an equilibrium diagram and not forming an intermetallic compound. The hydrogen separation membrane exhibits excellent hydrogen permeability and durability.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 10, 2014
    Assignee: NGK Insulators, Ltd.
    Inventor: Kenichi Noda
  • Patent number: 8710173
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: April 29, 2014
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Patent number: 8685143
    Abstract: A method of making a supported gas separation molecular sieve membrane. In this method a porous support, which is preferably pretreated, is contacted with a molecular sieve synthesis mixture under hydrothermal synthesis conditions. The contacting step is conducted for a shortened crystallization time period. The resulting coated porous support is calcined to yield the supported gas separation molecular sieve membrane having particularly good gas separation characteristics.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: April 1, 2014
    Assignees: Shell Oil Company, The Regents of the University of Colorado, a Body Corporate
    Inventors: Moises Abraham Carreon, Zaida Diaz, John Lucien Falconer, Hans Heinrich Funke, Shiguang Li, Brendan Dermot Murray, Richard Daniel Noble, Paul Jason Williams
  • Patent number: 8679227
    Abstract: The present invention provides methods for making improved zeolite and crystalline silicoaluminophosphate (SAPO) membranes, in particular SAPO-34 membranes, on a porous support through improved removal of the organic structure-directing templating agent. A calcining step is performed in an oxygen free atmosphere, such as under a vacuum or inert gas, to remove the organic templating agent. By removing the templating agent in the absence of oxygen, the calcination step can remove a greater amount of the templating agent than comparable template removal steps conducted in the presence of oxygen and the calcination step can be conducted at significantly lower temperatures. The membranes of the present invention provide increased permeance while maintaining comparable selectivity for gas separations, particularly carbon dioxide (CO2) and methane (CH4) separations and separations at high temperatures.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 25, 2014
    Assignee: The Regents of the University of Colorado
    Inventors: John L. Falconer, Richard D. Noble, Begum Tokay, Yanfeng Zhang
  • Patent number: 8673057
    Abstract: DDR nanocrystals of uniform size and structure were synthesized using hydrothermal secondary growth and then used to make DDR zeolite membranes and for any other use where uniform, small DDR zeolite crystals are beneficial.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 18, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhengzhi Zhou, Sankar Nair
  • Patent number: 8647997
    Abstract: A free-standing zeolite membrane and a zeolite membrane supported on a support structure are disclosed. The free-standing zeolite membrane is fabricated by mixing zeolite particles and an optional inorganic binder, forming a green body, and sintering the green body at a sufficiently low temperature so as to prevent damage to the gas selectivity properties of the zeolite particles. The supported composite zeolite membrane is fabricated by mixing a sacrificial binder, an optional inorganic binder, boehmite sol and zeolite particles to form a slurry. The slurry is then coated onto a porous support structure, dried and sintered at a sufficiently low temperature so as to prevent damage to the gas selective properties of the zeolite particles. In both membranes, the zeolite particles span the entire thickness of the membrane to provide a high selectivity path for the flow of gas to pass therethrough.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: February 11, 2014
    Assignee: General Electric Company
    Inventors: Kevin Paul McEvoy, Hrishikesh Keshavan, Anthony Yu-Chung Ku, Steven Mitchell Kuznicki, Weizhu An, Lan Wu, Paul Donald Swenson
  • Patent number: 8637424
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprising a surface, with a metal oxide integrally synthesized and providing a coating on the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur and nitrogen reduction in hydrocarbon feedstreams.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: January 28, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Heather A. Elsen
  • Patent number: 8637416
    Abstract: There is provided a zeolite membrane which is thinner than a conventional membrane and which has improved permeability and a method for manufacturing the zeolite membrane. The method includes a surface layer forming step for forming a surface layer by attaching a low polar polymer on a first surface of a porous substrate to cover the surface, a filling step for filling a masking polymer into pores in the porous substrate from a surface different from the first surface of the porous substrate up to the surface layer by impregnating the porous substrate with the masking polymer and solidifying the masking polymer, and a surface layer removing step for removing the surface layer. After the surface layer removing step, a zeolite membrane is formed on the first surface of the porous substrate.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: January 28, 2014
    Assignees: NGK Insulators, Ltd., Nagaoka University of Technology
    Inventors: Shuji Himeno, Teruaki Takeuchi, Shuichi Yoshida, Kiyoshi Araki, Toshihiro Tomita
  • Patent number: 8614288
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: December 24, 2013
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Patent number: 8574344
    Abstract: The present invention relates to template-free clathrasils whose framework comprises essentially SiO2, wherein the crystals of the clathrasils have the platelet-like morphology of a sheet silicate. The present invention further relates to a process for preparing these template-free clathrasils and also to their use as absorbent, as seed crystals for the synthesis of clathrasil membranes of the same zeolite type and in the form of dense layers which function as gas separation membranes having a molecular sieving action.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: November 5, 2013
    Assignee: BASF SE
    Inventors: Hartwig Voβ, Jörg Therre, Hermann Gies, Bernd Marler
  • Publication number: 20130274087
    Abstract: MOF (metal organic framework)-modified materials and methods of making and methods of using same. The MOFs are covalently bound to the materials. Examples of suitable materials include fibers and thin films. The MOF-modified materials can be made by forming MOFs in situ such that they are covalently bound to the materials. The MOF-modified materials can be used in methods where gases and/or toxic chemicals are absorbed.
    Type: Application
    Filed: August 25, 2011
    Publication date: October 17, 2013
    Applicant: CORNELL UNIVERSITY
    Inventors: Marcia da Silva Pinto, Cesar Augusto Sierra Avilla, Juan Paulo Hinestroza
  • Patent number: 8540800
    Abstract: The present invention discloses microporous UZM-5 zeolite membranes, methods for making the same, and methods of separating gases, vapors, and liquids using the same. The small-pore microporous UZM-5 zeolite membrane is prepared by two different methods, including in-situ crystallization of one or more layers of UZM-5 zeolite crystals on a porous membrane support, and a seeding method by in-situ crystallization of a continuous second layer of UZM-5 zeolite crystals on a seed layer of UZM-5 zeolite crystals supported on a porous membrane support. The membranes in the form of disks, tubes, or hollow fibers have superior thermal and chemical stability, good erosion resistance, high CO2 plasticization resistance, and significantly improved selectivity over polymer membranes for gas, vapor, and liquid separations.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: September 24, 2013
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Jaime G. Moscoso, Stephen T. Wilson
  • Publication number: 20130244861
    Abstract: A composite catalytic membrane applied to catalytic esterification and preparation method thereof are provided. The composite catalytic membrane is porous, and includes nonwoven fabric as base membrane and catalytic coating which is formed on the surface of nonwoven fabric and in the pores and gaps between the nonwoven fabric fibers. The catalytic coating uses solid acid as catalyst and polymer or modified sulfonated polymer as membrane-forming material. The membrane is formed by coating or immersion method, and the composite catalytic membrane is obtained by cross-linking after forming. The greenization and high efficiency of catalytic esterification and preparation of biodiesel can be achieved owing to the microporous structure and huge specific surface area of the composite catalytic membrane. The composite catalytic membrane has high mechanical strength, good reproducibility and stability and easily enables continuous repetitive production of catalytic esterification.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 19, 2013
    Applicant: TIANJIN POLYTECHNIC UNIVERSITY
    Inventors: Jianxin Li, Benqiao He, Wenying Shi, Yu Cheng
  • Patent number: 8518845
    Abstract: A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: August 27, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Michael J. Pellin, John N. Hryn, Jeffrey W. Elam
  • Patent number: 8511483
    Abstract: A method of making a porous membrane is disclosed. One such method optionally includes: forming a plurality of pillars in an array form over a substrate; and forming a layer with a mixture of a porous material precursor and a surfactant over the substrate. The method optionally includes removing the pillars to leave cavities in the layer; filling the cavities in the layer with a cavity filler; and removing the surfactant from the layer. The porous membrane can be used as, for example, a sieve for separating molecules from a chemical reaction.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: August 20, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Publication number: 20130206002
    Abstract: A separation membrane including an alloy wherein the alloy includes at least one Group 5 element and at least one Group 14 element, wherein the at least one Group 5 element and the at least one Group 14 element of the alloy define a body centered cubic structure.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 15, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8497223
    Abstract: A process for production of a DDR-type zeolite membrane, which comprises: both a seed crystal-forming step of immersing a porous substrate in a seed crystal-forming raw material solution which contains a DDR-type zeolite powder dispersed therein and performing hydrothermal synthesis to form plural DDR-type zeolite crystal particles on surface of the porous substrate, and a membrane-forming step of immersing the resulting porous substrate with DDR-type zeolite crystal particles on the surface in a membrane-forming raw material solution which is free from DDR-type zeolite powder and performing hydrothermal synthesis to form a DDR-type zeolite membrane on the surface of the porous substrate. According to the process, a dense DDR-type zeolite membrane can be formed, and the vessel used in the synthesis can be prevented from being damaged.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: July 30, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makiko Niino, Kenji Yajima
  • Publication number: 20130184144
    Abstract: In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO2) nanocomposite thin films.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 18, 2013
    Applicant: NORTHWESTERN UNIVERSITY
    Inventor: Northwestern University
  • Publication number: 20130184145
    Abstract: The present invention provides a porous material which has continuous pores and comprises a polymethyl methacrylate as a main component, wherein the continuous pores have a diameter of 0.001 ?m to 500 ?m and at least one surface of the porous material has a porosity of 10% to 80%; a separation membrane composed of the same; an adsorbent composed of the same; and a method production of the same. A porous material whose surface porosity and pore diameter are each controlled in a specific range can be obtained. The porous material has a fine and uniform porous structure in which the pore diameter can be controlled in the order of nanometers to micrometers; therefore, it can be advantageously used as a separation membrane such as a blood component separation membrane of an artificial kidney or the like or as an adsorbent.
    Type: Application
    Filed: September 22, 2011
    Publication date: July 18, 2013
    Applicant: Toray Industries, Inc.
    Inventors: Hiroshi Takahashi, Sadayuki Kobayashi
  • Patent number: 8470075
    Abstract: Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: June 25, 2013
    Assignee: Northwestern University
    Inventors: Omar K. Farha, Joseph T. Hupp
  • Publication number: 20130143728
    Abstract: A crosslinked superabsorbent polymer can be formed on a nonwoven or woven substrate by a method comprising: a) providing an aqueous composition having a pH >7, e.g. ?pH 8, comprising a dispersion of a sodium or potassium salt of a hydrophilic organic polymer comprising carboxyl functionality and having a weight average molecular weight of at least 200,000 (according to ASTM D4001-93(2006)), a base having a boiling point no greater than the boiling point of water, and a water soluble crosslinking agent capable of crosslinking the polymer in the absence of the base; b) providing a nonwoven or woven substrate; c) coating said nonwoven or woven substrate with said aqueous composition; d) heating the coated substrate to a temperature above the boiling point of water to volatilize the base, initiate crosslinking of the polymer, and remove the water, so as to form the crosslinked superabsorbent polymer on the nonwoven or woven substrate.
    Type: Application
    Filed: January 26, 2011
    Publication date: June 6, 2013
    Applicant: H&R CHEMPHARM (UK) LTD.
    Inventors: Christopher Mark Lyons, Gavin Leslie Morland
  • Patent number: 8455382
    Abstract: Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: June 4, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Charles Leonard Kibby
  • Patent number: 8435327
    Abstract: A carbon dioxide permeable membrane is described. In some embodiments, the membrane includes a body having a first side and an opposite second side; a plurality of first regions formed from a molten carbonate having a temperature of about 400 degrees Celsius to about 1200 degrees Celsius, the plurality of first regions forming a portion of the body and the plurality of first regions extending from the first side of the body to the second side of the body; a plurality of second regions formed from an oxygen conductive solid oxide, the plurality of second regions combining with the plurality of first regions to form the body and the plurality of second regions extending from the first side of the body to the second side of the body; and the body is configured to allow carbon dioxide to pass from the first side to the second side.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: May 7, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Klaus S. Lackner, Alan C. West, Jennifer L. Wade
  • Patent number: 8426333
    Abstract: A process of producing a structure for molecular separations includes providing a plurality of template materials. The template materials are selected from biomolecules, biopolymers, polymers, or combinations thereof. A sieve material, suitable for producing a structure for molecular separations, is provided around the template materials. The template materials are positioned in an arrangement for leaving pores suitable for molecular separations. The template materials are removed to leave pores in the sieve material and produce the structure suitable for molecular separations. The structure so produced can be used for molecular separation. In some embodiments, methods for molecular separation include situating in a feed stream an array of pores each approximating a double-stranded DNA molecule; flowing the feed stream into the pores; and allowing the pores to transport therethrough molecules within the feed stream, so as to separate the molecules from the feed stream.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: April 23, 2013
    Assignee: Cerahelix, Inc.
    Inventors: Karl D. Bishop, Tyler J. Kirkmann
  • Patent number: 8415073
    Abstract: The present invention specifies the physical property valves of a catalytic layer correlating with the performance of a fuel cell, and provides the catalytic layer having the physical proper values and a fuel cell. Specifically, in a fuel cell having a membrane-electrode assembly provided with a catalytic layer 13 on each side of an electrolyte membrane 10, an electrode powder constituting the catalytic layer 13 shall have an amount of adsorbed water vapor in a range of 52 to 70 cm3(STP)/g by a value measured when the water-vapor partial pressure is 0.6, which is determined from the adsorption isotherm of water. The fuel cell having the catalytic layer with the use of the electrode powder having the amount of adsorbed water vapor in this range has the output performance of 0.6 A/cm2 or higher by current density at 0.6 V, in a less humidified condition and a more humidified condition.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 9, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuo Nagami, Sozaburo Ohashi, Yuichiro Sugiyama, Mikihiro Hori
  • Publication number: 20130064747
    Abstract: DDR nanocrystals of uniform size and structure were synthesized using hydrothermal secondary growth and then used to make DDR zeolite membranes and for any other use where uniform, small DDR zeolite crystals are beneficial.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 14, 2013
    Applicant: Georgia Tech Research Corporation
    Inventors: Zhengzhi Zhou, Sankar Nair
  • Publication number: 20130058862
    Abstract: It is provided that the catalyst shows a high activity in an ammonia decomposition reaction and can efficiently decompose ammonia into hydrogen and nitrogen. The catalyst for decomposing ammonia of the present invention comprises at least one element (component (A)) selected from the elements of groups 6 to 10 of the long-form periodic table, and an oxide and/or complex oxide of at least one element (component (B)) selected from the elements of groups 2 to 5 and groups 12 to 15 of the long-form periodic table, wherein the calculated specific surface area (S2) of the component (A) is 20 m2/g or larger, and the ratio (S2/S1) of the calculated specific surface area (S2) of the component (A) to the specific surface area (S1) of the catalyst per se is 0.15 to 0.85.
    Type: Application
    Filed: March 29, 2011
    Publication date: March 7, 2013
    Inventors: Junji Okamura, Toshitaka Horiuchi, Hideaki Tsuneki, Masanori Yoshimune, Masami Ichinose
  • Publication number: 20130059722
    Abstract: A method for making a pentasil zeolite material includes forming an aqueous solution that includes a structure directing agent and a silica precursor; and heating the solution at a sufficient temperature and for sufficient time to form a pentasil zeolite material from the silica precursor, wherein the structure directing agent includes a quaternary phosphonium ion.
    Type: Application
    Filed: November 3, 2011
    Publication date: March 7, 2013
    Applicant: Regents of the University of Minneapolis
    Inventors: Michael Tsapatsis, Xueyi Zhang
  • Patent number: 8377838
    Abstract: A method is provided for producing a DDR type zeolite membrane, including a membrane formation step of immersing a porous substrate having a DDR type zeolite seed crystal adhered thereon, in a raw material solution containing 1-adamantaneamine, silica (SiO2) and water, and conducting a hydrothermal synthesis of DDR type zeolite to form a 1-adamantaneamine-containing DDR type zeolite membrane on the porous substrate to produce a precursor of DDR type zeolite membrane-containing body, and a burning step of heating the precursor at 400° C. or above and at 550° C. or below to burn and remove the 1-adamantaneamine contained in the DDR type zeolite membrane.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: February 19, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Tetsuya Uchikawa, Kenji Yajima, Hisayoshi Nonaka, Toshihiro Tomita
  • Publication number: 20130040227
    Abstract: A Pt—Ni catalyst is provided which demonstrates an unusually high oxygen reduction mass activity. In some embodiments, the Pt—Ni catalyst is a Pt—Ni binary alloy. In some embodiments, the catalyst may be characterized as having a Pt fcc lattice parameter of less than 3.71 Angstroms or 0.371 nm. In some embodiments the catalyst has a Pt fcc lattice parameter of between 3.69 Angstroms (or 0.369 nm) and 3.73 Angstroms (or 0.373 nm). In some embodiments, the catalyst may be characterized as having a composition of close to PtxNi(1-x), where x is between 0.2 and 0.4. In some embodiments the catalyst comprises nanostructured elements comprising microstructured support whiskers bearing a thin film of nanoscopic catalyst particles comprising a catalyst material described above. The catalyst may be particularly useful as a fuel cell catalyst and more specifically as a fuel cell cathode catalyst.
    Type: Application
    Filed: April 26, 2011
    Publication date: February 14, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Mark K. Debe, George D. Vernstrom, Andrew J. L. Steinbach
  • Publication number: 20130035225
    Abstract: A low cost, viable and modular method to prepare new, highly selective catalytic materials, especially “catalytic membranes”, is described. A method for the engineering and use of various types of reactors based on these catalytic membranes, even in a one-pot procedure, is also disclosed. The catalytic membranes are versatile, in terms of variety of chemical reactions promoted, and can be easily reused with negligible catalysts leaching. They are particularly useful, but not limited to, the asymmetric hydrogenation of substituted ?,? unsaturated acids or esters.
    Type: Application
    Filed: March 31, 2010
    Publication date: February 7, 2013
    Applicant: NIPPON KODOSHI CORPORATION
    Inventors: Pierluigi Barbaro, Claudio Bianchini, Francesca Liguori, Haruo Sawa, Francesco Vizza
  • Patent number: 8357228
    Abstract: A gas purification method of the present invention uses a carbon membrane having a molecular sieving action to purify at least one selected from the group consisting of a hydride gas, a hydrogen halide gas, and a halogen gas, each gas containing an impurity at 10 ppm or less. The present invention can be used for a recovery unit that recoveries a used gas to reuse it as an ultrapure semiconductor material gas, and a unit or equipment that produces or charges an ultrapure semiconductor material gas.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: January 22, 2013
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Yuzuru Miyazawa, Yoshihiko Kobayashi, Kenji Haraya, Miki Yoshimune
  • Publication number: 20130005561
    Abstract: Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.
    Type: Application
    Filed: February 29, 2012
    Publication date: January 3, 2013
    Applicant: Synkera Technologies, Inc.
    Inventors: Dmitri Routkevitch, Oleg G. Polyakov
  • Patent number: 8337588
    Abstract: Supported zeolite Y membranes exhibiting exceptionally high CO2 selectivities when used in CO2/N2 gas separations are produced by a seeding/secondary (hypothermal) growth approach in which a structure directing agent such as tetramethylammonium hydroxide is included in the aqueous crystal-growing composition used for membrane formation.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: December 25, 2012
    Assignee: The Ohio State University Research Foundation
    Inventors: Krenar Shqau, Jeremy C. White, Prabir K. Dutta, Hendrik Verweij
  • Publication number: 20120322646
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Application
    Filed: October 21, 2011
    Publication date: December 20, 2012
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Patent number: 8298976
    Abstract: A pathogen-resistant fabric comprising one or more photocatalysts capable of generating singlet oxygen from ambient air. The pathogen-resistant fabric may optionally include one or more singlet oxygen traps.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: October 30, 2012
    Inventor: John L. Lombardi
  • Publication number: 20120264589
    Abstract: The invention provides a tetrazole-containing polymer of intrinsic microporosity comprising (10) or more subunits, wherein one or more of the subunits comprise one or more tetrazolyl moieties. In one embodiment, a polymer of intrinsic microporosity (PIM-1) was modified using a “click chemistry” [2+3] cycloaddition reaction with sodium azide and zinc chloride to yield new PIMs containing tetrazole units. Polymers of the present invention are useful as high-performance materials for membrane-based gas separation, materials for ion exchange resins, materials for chelating resins, materials for superabsorbents, materials for ion conductive matrixes, materials for catalyst supports or materials for nanoparticle stabilizers.
    Type: Application
    Filed: October 28, 2010
    Publication date: October 18, 2012
    Inventors: Naiying Du, Michael D. Guiver
  • Patent number: 8279435
    Abstract: Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: October 2, 2012
    Assignee: Los Alamos National Security, LLC
    Inventors: Hsing-Lin Wang, Wenguang Li, James A. Bailey, Yuan Gao
  • Publication number: 20120240763
    Abstract: The present invention discloses microporous UZM-5 zeolite membranes, methods for making the same, and methods of separating gases, vapors, and liquids using the same. The small-pore microporous UZM-5 zeolite membrane is prepared by two different methods, including in-situ crystallization of one or more layers of UZM-5 zeolite crystals on a porous membrane support, and a seeding method by in-situ crystallization of a continuous second layer of UZM-5 zeolite crystals on a seed layer of UZM-5 zeolite crystals supported on a porous membrane support. The membranes in the form of disks, tubes, or hollow fibers have superior thermal and chemical stability, good erosion resistance, high CO2 plasticization resistance, and significantly improved selectivity over polymer membranes for gas, vapor, and liquid separations.
    Type: Application
    Filed: March 21, 2011
    Publication date: September 27, 2012
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Jaime G. Moscoso, Stephen T. Wilson
  • Patent number: 8273922
    Abstract: A process utilising the gases carbon monoxide, carbon dioxide and hydrogen to produce alcohols directly, comprises the steps of bringing a fluid mixture comprising carbon monoxide, carbon dioxide and hydrogen into contact with the surfaces of a supported tubular porous catalyst membrane having a range of pore sizes including micropores, mesopores and macropores, controlling the temperature of the said catalyst membrane, maintaining a pressure over said catalyst membrane of from 88 to 600 kPa, and recovering alcohol containing product formed by contact of the fluid mixture with said catalyst membrane.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: September 25, 2012
    Assignee: The Robert Gordon University
    Inventors: Edward Gobina, Reuben Mfon Umoh
  • Patent number: 8262779
    Abstract: The present invention discloses microporous aluminophosphate (AlPO4) molecular sieve membranes and methods for making and using the same. The microporous AlPO4 molecular sieve membranes, particularly small pore microporous AlPO-14 and AlPO-18 molecular sieve membranes, are prepared by three different methods, including in-situ crystallization of a layer of AlPO4 molecular sieve crystals on a porous membrane support, coating a layer of polymer-bound AlPO4 molecular sieve crystals on a porous membrane support, and a seeding method by in-situ crystallization of a continuous second layer of AlPO4 molecular sieve crystals on a seed layer of AlPO4 molecular sieve crystals supported on a porous membrane support.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: September 11, 2012
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, David A. Lesch
  • Patent number: 8263516
    Abstract: A method for manufacturing a DDR zeolite membrane element including the steps of: immersing a porous substrate in a raw material solution, forming a DDR zeolite membrane containing 1-adamanthanamine on a surface of the porous substrate by subjecting a DDR zeolite to hydrothermal synthesis in the presence of DDR zeolite seed crystals, applying a glass paste onto the surface of the porous substrate so as to contact the membrane, and heating the membrane at 500 to 800° C., thereby burning away the 1-adamanthanamine contained in the membrane and melting the glass paste to form a membrane-like glass seal contacting the membrane on the surface of the porous substrate. The method for manufacturing a DDR zeolite membrane element can inhibit the permeation of the DDR zeolite membrane from being hindered in a contact portion between the membrane and the glass seal and inhibit poor seal of the glass seal.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: September 11, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenji Yajima, Hisayoshi Nonaka, Toshihiro Tomita
  • Patent number: 8262775
    Abstract: Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: September 11, 2012
    Assignee: Northwestern University
    Inventors: Omar K. Farha, Joseph T. Hupp
  • Patent number: 8258069
    Abstract: The invention provides a process for production of a zeolite separation membrane having a porous support and a zeolite layer formed on the porous support, the process comprising: a seed crystal attaching step in which zeolite seed crystals are attached to the porous support; a layer forming step in which: the porous support to which the zeolite seed crystals have been attached is contacted with a reaction solution containing zeolite raw material, and the temperature of the reaction solution is raised to a prescribed temperature to form a zeolite layer on the porous support; and a support separating step in which the porous support on which the zeolite layer has been formed is separated from the reaction solution; wherein in the layer forming step, after the start of contact between the porous support and reaction solution, the temperature of the reaction solution is held at or below 40° C. for at least 30 minutes before being raised to the prescribed temperature.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: September 4, 2012
    Assignee: Mitsubishi Chemical Corporation
    Inventor: Takehito Mizuno
  • Publication number: 20120219483
    Abstract: A carbon dioxide permeable membrane is described. In some embodiments, the membrane includes a body having a first side and an opposite second side; a plurality of first regions formed from a molten carbonate having a temperature of about 400 degrees Celsius to about 1200 degrees Celsius, the plurality of first regions forming a portion of the body and the plurality of first regions extending from the first side of the body to the second side of the body; a plurality of second regions formed from an oxygen conductive solid oxide, the plurality of second regions combining with the plurality of first regions to form the body and the plurality of second regions extending from the first side of the body to the second side of the body; and the body is configured to allow carbon dioxide to pass from the first side to the second side.
    Type: Application
    Filed: April 23, 2012
    Publication date: August 30, 2012
    Inventors: Klaus S. Lackner, Alan C. West, Jennifer L. Wade
  • Patent number: 8221525
    Abstract: A method of oxygen enrichment in which a gaseous mixture containing O2 molecules and N2 molecules is provided to a feed side of a SAPO molecular sieve, oxygen enrichment membrane having pore sizes suitable for discriminating between O2 molecules and N2 molecules, resulting in selective transport of the O2 molecules through the membrane to a permeate side of the membrane. Also disclosed is a method for producing the membrane.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: July 17, 2012
    Assignee: Gas Technology Institute
    Inventors: Shiguang Li, Qinbai Fan
  • Patent number: 8196755
    Abstract: A process for the production of a composite membrane, one or more microporous separation layers comprising a zeolite of the MFI type being produced by hydrothermal synthesis on a porous substrate, wherein one or more additives from the group consisting of linear (C1-C4)-alcohols, ammonia, primary, secondary and tertiary amines having in each case (C1-C4)-alkyl radicals, (C1-C4)-aminoalcohols and (C3-C4)-ketones are added to the synthesis solution for the hydrothermal synthesis.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: June 12, 2012
    Assignee: BASF SE
    Inventors: Armin Diefenbacher, Hartwig Voss, Gunter Schuch, Manfred Noack, Ingolf Voigt, Hannes Richter, Juergen Caro