Irradiation By, Or Application Of, Electrical, Magnetic Or Wave Energy Patents (Class 502/5)
  • Patent number: 10971775
    Abstract: A method for producing an air electrode includes a kneading step of kneading an oxygen reduction catalyst, a conductive auxiliary agent, and a water-repellent resin (binder) in a water solvent; and a rolling step of rolling with a roller the kneaded product produced in the kneading step. The rolling step includes rolling the kneaded product with the roller several times in many directions (at least two or more different rolling directions). In the formed air electrode, the water-repellent resin is fiberized in the air electrode, and the fibers thereof are oriented in many directions to form a netlike shape.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: April 6, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tomo Kitagawa, Hirotaka Mizuhata, Keigo Mitamura, Shinobu Takenaka, Shunsuke Sata
  • Patent number: 10933157
    Abstract: The present invention relates to an apparatus capable of purifying air and maintaining freshness inside a refrigerator while minimizing deformation of the structure of an existing refrigerator, and a method for controlling the same. The apparatus for air purification and freshness maintenance according to the present invention is formed separately from a storage space (12) of a refrigerator (10) and is installed on a cooling passage (14) which communicates with the storage space (12) through an inlet (13) and an outlet (15), wherein a photocatalyst filter (30) is installed in the vicinity of the outlet (15) within the cooling passage (14), and a plurality of cells (32) forming an air vent are formed in the photocatalyst filter (30) in the same direction as the air flow direction within the cooling passage (14), in which a UV LED (41) for radiating ultraviolet rays toward the cells (32) of the photocatalyst filter (30) is installed.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 2, 2021
    Assignee: SEOUL VIOSYS CO., LTD.
    Inventor: Kyo Young Seo
  • Patent number: 10906010
    Abstract: The present disclosure provides a method for producing a water permeable molecular sieve in which a porous substrate having micron-size pores has deposited on a surface thereof non-porous 2D platelets to seal, at the substrate surface, pores in the porous substrate to form a layer of 2D platelets. A curable sealing material is deposited onto the layer of 2D platelets and any remaining exposed areas of the surface of the porous substrate and curing the curable sealing material in order to form a sealed layer on the surface of the porous substrate to prevent water by-passing the non-porous 2D platelets and passing through the porous substrate. An array of sub-nanopores are then produced through the sealed layer with the array of sub-nanopores having a size to allow water to pass therethrough but not metal ions to give a water permeable molecular sieve characterized by water permeability at low di?erential pressures.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: February 2, 2021
    Assignee: THE UNIVERSITY OF WESTERN ONTARIO
    Inventors: Giovanni Fanchini, Jaewoo Park
  • Patent number: 10900109
    Abstract: To provide a titanium sheet excellent in formability and a method for manufacturing the same. A titanium sheet, wherein, when a carbon concentration of a base material is Cb (mass %) and a carbon concentration at a depth d ?m from a surface is Cd (mass %), the depth d (carbon concentrated layer thickness) satisfying Cd/Cb>1.5 is 1.0 ?m or more and less than 10.0 ?m or less, wherein a Vickers hardness HV0.025 at a load of 0.245 N in the surface is 200 or more, a Vickers hardness HV0.05 at a load of 0.49 N in the surface is lower than HV0.025, and a difference between HV0.025 and HV0.05 is 30 or more, wherein a Vickers hardness HV1 at a load of 9.8 N in the surface is 150 or less, and wherein an average interval between cracks generated in the surface when a strain of 25% is given in a rolling direction in a bulging forming process is less than 50 ?m and a depth thereof is 1 ?m or more and less than 10 ?m.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: January 26, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Koji Mitsuda, Kazuhiro Takahashi, Hideto Seto
  • Patent number: 10828622
    Abstract: A novel catalyst includes a plurality of nanoparticles, each nanoparticle including a core made of a catalytic metal and a porous shell surrounding the core, made of metal oxide, the porous shell preserving a catalytic function of the core and reducing reduction of the core and coalescence of the nanoparticles.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: November 10, 2020
    Assignee: OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY SCHOOL CORPORATION
    Inventors: Mukhles Ibrahim Sowwan, Cathal Cassidy, Vidya Dhar Singh
  • Patent number: 10811691
    Abstract: The invention relates to electrocatalysts comprising a carbonitride (CN) shell featuring good electrical conductivity, coordinating suitable catalytically active sites. In a preferred aspect of the invention, the aforesaid carbonitride shell coordinates nanoparticles or aggregates of nanoparticles, on which the active sites of the electrocatalyst are located. In a preferred form of the invention, said carbonitride shell covers suitable cores with good electrical conductivity. Said electrocatalysts are obtained through a process involving the pyrolysis of suitable precursors; in one aspect of the invention, the preparation process requires certain further steps. In one preferred aspect, the steps comprise one or more of the following: chemical treatments; electrochemical treatments; further pyrolysis processes.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: October 20, 2020
    Assignee: BRETON S.P.A.
    Inventors: Vito Di Noto, Enrico Negro, Keti Vezzu′, Federico Bertasi, Graeme Nawn, Luca Toncelli, Stefano Zeggio, Fabio Bassetto
  • Patent number: 10583419
    Abstract: A resin nanocomposite, including a resin skeleton structure and nanoparticles. The resin skeleton structure is an aminated polystyrene. The nanoparticles are dispersed in the resin skeleton structure. The specific area of the nanocomposite is between 50 and 300 m2/g, and the pore size thereof is between 5 and 40 nm. The invention also provides a method for preparing the resin nanocomposite, the method including: 1) mixing and dissolving a linear polyethylene with a chloromethyl polystyrene or a polyvinyl chloride to yield a polymer solution, and adding the nanoparticles to the polymer solution; 2) adding an alcohol solution to liquid nitrogen; adding the mixed solution dropwise to the liquid nitrogen to yield a mixture; allowing the mixture to stand; collecting, washing and drying resin beads to yield a composite material; and 3) adding the composite material to an amine solution for reaction, and washing and drying the resulting product.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: March 10, 2020
    Assignee: NANJING UNIVERSITY
    Inventors: Bingcai Pan, Xiaolin Zhang, Siyuan Pan, Cheng Cheng, Zefang Chen
  • Patent number: 10569253
    Abstract: The invention provides biocomposites alginate/chitosan beads integrated with magnetite nanoparticles and modified-surface magnetite derivate created and designed to remove from environmental waters and aquatic systems different types of organic persistent compounds such as benzophenone-3 (oxybenzone).
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: February 25, 2020
    Assignee: University of Puerto Rico
    Inventors: Felix Roman Velazquez, Victor Fernandez Alos, Oscar Perales Perez
  • Patent number: 10543482
    Abstract: The present invention relates to a stable palladium ion catalyst aqueous solution for electroless metal plating that does not use boric acid and can be used stably over a wide pH range. The catalyst solution for electroless plating of the present invention contains palladium ion, palladium ion complexing agent, and a specific amine compound and is alkaline.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: January 28, 2020
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Hiroki Okada, Shenghua Li, Shinjiro Hayashi
  • Patent number: 10391476
    Abstract: An organic nanofiber includes a fiber body containing multiple inorganic oxide particles selected from polycrystalline titanium dioxide particles and polycrystalline tin(IV) oxide particles, and having a particle size ranging from 15 to 75 nm. A method for manufacturing the inorganic nanofibers, including: mixing a metal precursor, an organic polymer and a solvent to obtain a solution, the metal precursor being a titanium-containing precursor or a tin-containing precursor; electrospinning the solution at a relative humidity ranging from 50 to 60% to form multiple nanofibers; and annealing the nanofibers at a temperature ranging from 600 to 800° C. to obtain multiple inorganic nanofibers.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: August 27, 2019
    Assignee: TAMKANG UNIVERSITY
    Inventors: Ping-Hung Yeh, Chun-Yen Lai, Yu-Ting Lin, Pin-Chun Pan
  • Patent number: 10226759
    Abstract: The invention provides a catalyst and method for producing hydrocarbons from a carbon dioxide source comprising carbides, in particular one or more metal carbides. The one or more metal carbides are formed with one or more elements selected from the group consisting of molybdenum, titanium, tungsten, iron, and tantalum. In one embodiment, the one or more metal carbides are nanostructures. In another embodiment, the one or more metal carbide nanostructures are supported by a carbon substrate. In a further embodiment, the one or more metal carbides nanostructures is dimolybdenum carbide. In still another embodiment, the carbon substrate is graphene or graphene oxide. In another embodiment, the dimolybdenum carbide nanostructures are supported by the graphene or graphene oxide substrate.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: March 12, 2019
    Assignee: Brown University
    Inventors: Andrew Peterson, Yin-Jia Zhang, Seok Ki Kim
  • Patent number: 10026970
    Abstract: The oxygen reduction reaction electrocatalyst is a Pt/N/C electrocatalyst that provides an efficient ORR catalyst suitable for use in polymer electrolyte membrane (PEM) fuel cells, for example. The oxygen reduction reaction electrocatalyst is in the form of platinum nanoparticles embedded in a nitrogen-enriched mesoporous carbon matrix, particularly a nitrogen-enriched graphite matrix. The nitrogen-enriched graphite matrix has an average surface area of 240.4 m2/g, and the platinum nanoparticles each have an average diameter between 10 nm and 12 nm.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: July 17, 2018
    Assignee: KING SAUD UNIVERSITY
    Inventors: Abdullah M. Al-Enizi, Tansir Ahamad, Saad M. Alshehri, Mu Naushad
  • Patent number: 10010866
    Abstract: The nitrogen and phosphorus co-doped crystalline carbon materials are prepared by a template-free method that includes pyrolizing a precursor mixture including a carbon source, a nitrogen source, and a phosphorus source. The method involves mixing known amounts of the precursor components, dissolving the precursor mixture in deionized water, distilling solvent from the aqueous mixture, and vacuum drying the residue to a dry solid mixture. The mixture is then carbonized by pyrolysis at 900° C. in an argon atmosphere to obtain a nitrogen and phosphorus co-doped crystalline carbon material. The principles of the method are illustrated by a precursor mixture of sucrose, urea, and ammonium dihydrogen phosphate (NH4H2PO4). The amount of ammonium salt in the precursor mixture plays a key role in controlling the crystallinity, morphology, and composition of the N/P co-doped crystalline carbon material.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: July 3, 2018
    Assignee: KING SAUD UNIVERSITY
    Inventors: Usman Ali Rana, Arfat Anis, Ayman Nafady, Saeed M. Al-Zahrani
  • Patent number: 9941521
    Abstract: The disclosure is to provide a method for producing a core-shell catalyst that is able to increase the power generation performance of a membrane electrode assembly. A dispersion is prepared, in which a palladium-containing particle support, in which palladium-containing particles are supported on an electroconductive support, is dispersed in water; hydrogen gas is bubbled into the dispersion; the palladium-containing particles are acid treated after the bubbling; copper is deposited on the surface of the palladium-containing particles by applying a potential that is nobler than the oxidation reduction potential of copper to the palladium-containing particles in a copper ion-containing electrolyte after the acid treatment; and then a shell is formed by substituting the copper deposited on the surface of the palladium-containing particles with platinum by bringing the copper deposited on the surface of the palladium-containing particles into contact with a platinum ion-containing solution.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: April 10, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noriyuki Kitao, Naoyuki Sasaki, Tsugio Fujisawa
  • Patent number: 9502717
    Abstract: This invention proposes metal complexes of polyphenylenediamines as the precursors of carbonized materials used as the air electrode catalysts. Method of production includes mixing phenylenediamine monomer with a catalyst carrier in a solvent, and adding an oxidant with metal salt to produce a metal complex of polyphenylenediamine. After drying the precursor is heat treated in the temperature range 400 C.°-1000 C.° in nitrogen. Then the catalyst is leached and heat treated once again. In a modified procedure the heat treatment is carried out in air while leaching and subsequent thermal treatment are eliminated. The catalyst has demonstrated high performance and stability as the component of the air electrode of a metal-air battery.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: November 22, 2016
    Assignee: PANISOLAR INC.
    Inventors: Iakov Kogan, Anna Khomenko
  • Patent number: 9433938
    Abstract: A nano-particle comprising: an interior region comprising a mixed-metal oxide; and an exterior surface comprising a pure metal. In some embodiments, the mixed-metal oxide comprises aluminum oxide and a metallic pinning agent, such as palladium, copper, molybdenum, or cobalt. In some embodiments, the pure metal at the exterior surface is the same as the metallic pinning agent in the mixed-metal oxide in the interior region. In some embodiments, a catalytic nano-particle is bonded to the pure metal at the exterior surface. In some embodiments, the interior region and the exterior surface are formed using a plasma gun. In some embodiments, the interior region and the exterior surface are formed using a wet chemistry process. In some embodiments, the catalytic nano-particle is bonded to the pure metal using a plasma gun. In some embodiments, the catalytic nano-particle is bonded to the pure metal using a wet chemistry process.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: September 6, 2016
    Assignee: SDCmaterials, Inc.
    Inventors: Willibrordus G. M. Van Den Hoek, Maximilian A. Biberger
  • Patent number: 9284639
    Abstract: An alkali-containing transition metal sputtering target, the method of making the same, and the method of manufacturing a solar cell using the same.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: March 15, 2016
    Assignee: APOLLO PRECISION KUNMING YUANHONG LIMITED
    Inventor: Daniel R. Juliano
  • Patent number: 9095839
    Abstract: A hybrid composite of Metal Organic Frameworks (MOF) encapsulated in nanocarbon material, wherein the MOFs are grown inside or outside or both side of nano carbon morphologies of the hybrid composite. Such composites may be prepared by a. dissolving and mixing a salt of the metal and a ligand in the ratio ranging between 1:1 to 1:4 (by w/w ratio) by sonicating them to form a precursor mixture; b. adding non-functionalized or functionalized nano-carbon material to the precursor mixture of step (a); c. sonicating the mixture of step (b) followed by heating; d. keeping the slurry obtained at elevated temperature followed by centrifugation.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: August 4, 2015
    Assignee: Council of Scientific and Industrial Research
    Inventors: Rahul Banerjee, Sreekumar Kurungot, Pradip Shashikant Pachfule, Beena Kalasaparambil Balan
  • Publication number: 20150147682
    Abstract: Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 28, 2015
    Inventors: Kurian Abraham Kuttiyiel, Kotaro Sasaki, Radoslav R. Adzic
  • Publication number: 20150148581
    Abstract: Activated carbon\nickel oxide\zinc oxide (AC\NiO\ZnO) and activated carbon\zinc oxide (AC\ZnO) were prepared and used as adsorbents for removal of thiophene, benzothiophene (BT) and dibenzothiophene (DBT) as sulfur compounds from hydrocarbon materials such as diesel fuel. The materials exhibited an efficient and economical way for removing sulfur compounds due to its low-energy consumption, ambient operation temperature and atmospheric pressure. A simple regeneration method of the spent adsorbents.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicants: King Abdulaziz City for Science and Technology, King Fahd University of Petroleum and Minerals
    Inventors: Khalid R. Alhooshani, Abdullah A. Al Swat, Tawfik A. Saleh, Mohammad N. Siddiqui
  • Publication number: 20150141236
    Abstract: Embodiments of present inventions are directed to an advanced catalyst. The advanced catalyst includes a honeycomb structure with an at least one nano-particle on the honeycomb structure. The advanced catalyst used in diesel engines is a two-way catalyst. The advanced catalyst used in gas engines is a three-way catalyst. In both the two-way catalyst and the three-way catalyst, the at least one nano-particle includes nano-active material and nano-support. The nano-support is typically alumina. In the two-way catalyst, the nano-active material is platinum. In the three-way catalyst, the nano-active material is platinum, palladium, rhodium, or an alloy. The alloy is of platinum, palladium, and rhodium.
    Type: Application
    Filed: September 12, 2014
    Publication date: May 21, 2015
    Inventors: Qinghua YIN, Xiwang QI, Maximilian A. BIBERGER
  • Patent number: 9029290
    Abstract: The present invention relates to a composite of a porous substrate and one-dimensional nanomaterial, which is manufactured by a hydrothermal method. The method for manufacturing the composite of the present invention is simple and low-cost, and the one-dimensional nanomaterial is homogeneously distributed on the porous substrate with tight binding at the interface. The present invention also relates to a surface-modified composite and a method for preparing the same. The composite of the present invention which is hydrophobically modified at the surface can adsorb organic solvents such as toluene, dichlorobenzene, petroleum ether and the like, and greases such as gasoline, lubricating oil, motor oil, crude oil and the like, with a weight adsorption ratio of >10.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: May 12, 2015
    Assignee: City University of Hong Kong
    Inventors: Chunsing Lee, Shuittong Lee, Yongbing Tang, Mankeung Fung, Chiuyee Chan
  • Publication number: 20150119231
    Abstract: Photo-initiated polymeric ionic liquids, methods of making and methods of using the same are disclosed. A preferred embodiment for making a photo-initiated polymeric ionic liquid (P-PIL) coated support, comprises: mixing at least one ionic liquid (IL) monomer with at least one photo-initiator; at least partially coating a support with the mixture; and exposing the coated support to UV light to form a photo-initiated polymeric ionic liquid (P-PIL) coated support.
    Type: Application
    Filed: May 30, 2013
    Publication date: April 30, 2015
    Applicant: THE UNIVERSITY OF TOLEDO
    Inventor: Jared L. Anderson
  • Patent number: 9012345
    Abstract: Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO?, H2CO, (HCO2)?, H2CO2, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO?, CH3COOH, C2H6, (COOH)2, or (COO?)2, and a specific device, namely, a CO2 sensor.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Dioxide Materials, Inc.
    Inventors: Richard I. Masel, Amin Salehi-Khojin
  • Publication number: 20150105235
    Abstract: Provided are: a photocatalyst comprising a porous first metal oxide film having pores, and a second metal particle or a second metal oxide particle formed inside the pores; a method for preparing the photocatalyst; and a photocatalyst apparatus using the photocatalyst.
    Type: Application
    Filed: December 28, 2012
    Publication date: April 16, 2015
    Applicant: LG Hausys, Ltd.
    Inventors: Dong Il Lee, Seong Moon Jung, Joo-Hwan Seo, Ju-Hyung Lee
  • Publication number: 20150099621
    Abstract: Provided is a photocatalyst including: a porous metal oxide film; and metal particles formed on a surface of the porous metal oxide film.
    Type: Application
    Filed: December 27, 2012
    Publication date: April 9, 2015
    Inventors: Dong Il Lee, Seong Moon Jung, Joo-Hwan Seo, Ju-Hyung Lee
  • Publication number: 20150094200
    Abstract: A method including the steps of combining a catalyst metal and a leachable metal to obtain a metallic alloy; and electrochemically removing at least a portion of the leachable metal from the metallic alloy to form a catalyst structure having nanometric pores.
    Type: Application
    Filed: November 10, 2014
    Publication date: April 2, 2015
    Inventors: Chi Paik, Lifeng Xu, Hungwen Jen, Karen Marie Adams, Mark S. Sulek, Sherry A. Mueller
  • Publication number: 20150093685
    Abstract: An oxygen reduction reaction catalyst and method for making the catalyst includes a graphitized carbon substrate with an amorphous metal oxide layer overlying the surface of the substrate. The amorphous metal oxide layer has a worm-like structure. A catalyst overlies the metal oxide layer.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Jun Yang, Patrick Pietrasz, Chunchuan Xu, Shinichi Hirano
  • Publication number: 20150090604
    Abstract: The present invention concerns a method for the preparation of a catalyst onto a solid support of a (semi-)conductive material consisting in depositing said catalyst onto said support from a near-neutral aqueous solution containing at least one nickel or cobalt organic complex and at least one basic oxoanion, by a method selected in the group consisting of reductive electrodeposition, photochemical electrodeposition and photoelectrochemical deposition. The present invention also concerns said catalyst and uses thereof.
    Type: Application
    Filed: April 4, 2013
    Publication date: April 2, 2015
    Inventors: Vincent Artero, Marc Fontecave, Saioa Cobo, Pierre-Andre Jacques, Holger Dau, Johathan Heikamp
  • Publication number: 20150087498
    Abstract: Microwave irradiation is used to synthesize graphene and metallic nanocatalysts supported on graphene either by solid or solution phase. In solid phase methods, no solvents or additional reducing agents are required so the methods are “environmentally friendly” and economical, and the graphene and nanocatalysts are substantially free of residual contaminants. Recyclable, high efficiency Pd nanocatalysts are prepared by these methods.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 26, 2015
    Applicant: Virginia Commonwealth University
    Inventors: M. Samy El-Shall, Victor Abdelsayed, Hassan M. A. Hassan, Abd El Rahman S. Khder, Khaled M. AbouZeid, Qilin Dai, Parichehr Afshani, Frank Gupton, Ali R. Siamaki, Zeid Abdullah M. Alothman, Hamad Zaid Alkhathlan
  • Publication number: 20150086727
    Abstract: A preparing method of a catalyst for a fuel cell includes mixing a nitrogen-containing compound, a metal-containing compound, a carbon support, and a solvent to form a first composition, so that the nitrogen-containing compound and the metal-containing compound are dispersed in the solvent; removing the solvent of the first composition to form a second composition; performing a microwave process on the second composition.
    Type: Application
    Filed: March 26, 2014
    Publication date: March 26, 2015
    Applicant: National Taiwan University of Science and Technology
    Inventors: Chen-Hao Wang, Sun-Tang Chang, Hsiao-Chien Wang
  • Patent number: 8986906
    Abstract: The present invention provides a method for preparing nanoporous Pt/TiO2 composite particles, nanoporous Pt/TiO2 composite particles prepared by the above preparation method, and a fuel cell comprising the nanoporous Pt/TiO2 composite particles. The nanoporous Pt/TiO2 composite particles according to the present invention have a catalytic effect similar to that of commercially available Pt/carbon black and, thus, can be applied to a fuel cell.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: March 24, 2015
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Hee Dong Jang, Han Kwon Chang, Kuk Cho
  • Publication number: 20150080208
    Abstract: Fabrication of oxide nanowire heterostructures with controlled morphology, interface and phase purity are desired for high-efficiency and low-cost photocatalysis. Disclosed herein is the formation of oxide nanowire heterostructures by sputtering and subsequent air annealing to result in oxide nanowires. This approach allows for fabrication of standing nanowire heterostructures with tunable compositions and morphologies.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 19, 2015
    Inventor: Nitin Chopra
  • Publication number: 20150072854
    Abstract: The catalytic composition for the electrochemical reduction of carbon dioxide is a metal oxide supported by multi-walled carbon nanotubes. The metal oxide may be nickel oxide (NiO) or tin dioxide (SnO2). The metal oxides form 20 wt % of the catalyst. In order to make the catalysts, a metal oxide precursor is first dissolved in deionized water to form a metal oxide precursor solution. The metal oxide precursor solution is then sonicated and the solution is impregnated in a support material composed of multi-walled carbon nanotubes to form a slurry. The slurry is then sonicated to form a homogeneous solid solution. Solids are removed from the homogeneous solid solution and dried in an oven for about 24 hours at a temperature of about 110° C. Drying is then followed by calcination in a tubular furnace under an argon atmosphere for about three hours at a temperature of 450° C.
    Type: Application
    Filed: November 12, 2014
    Publication date: March 12, 2015
    Inventors: SALEEM UR RAHMAN, SHAKEEL AHMED, MOHAMMAD MOZAHAR HOSSAIN, SHAHID MUHAMMAD BASHIR
  • Publication number: 20150071980
    Abstract: Methods directed to the synthesis of metal nanoparticles are described. A formation process can be carried out at ambient temperature and pressure and includes the deposition of metal ions on a titanate carrier according to a chemical deposition process followed by exposure of the metal ions to a reducing agent. Upon the exposure, nanoparticles of the reduced metal are formed that are adhered to the titanate carrier.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: Savannah River Nuclear Solutions, LLC
    Inventors: David T. Hobbs, Kathryn M.L. Taylor-Pashow, Mark C. Elvington
  • Publication number: 20150072853
    Abstract: The catalytic composition for the electrochemical reduction of carbon dioxide is a metal oxide supported by multi-walled carbon nanotubes. The metal oxide may be nickel oxide (NiO) or tin dioxide (SnO2). The metal oxides form 20 wt % of the catalyst. In order to make the catalysts, a metal oxide precursor is first dissolved in deionized water to form a metal oxide precursor solution. The metal oxide precursor solution is then sonicated and the solution is impregnated in a support material composed of multi-walled carbon nanotubes to form a slurry. The slurry is then sonicated to form a homogeneous solid solution. Solids are removed from the homogeneous solid solution and dried in an oven for about 24 hours at a temperature of about 110° C. Drying is then followed by calcination in a tubular furnace under an argon atmosphere for about three hours at a temperature of 450° C.
    Type: Application
    Filed: November 12, 2014
    Publication date: March 12, 2015
    Inventors: SALEEM UR RAHMAN, SHAKEEL AHMED, MOHAMMAD MOZAHAR HOSSAIN, SHAHID MUHAMMAD BASHIR
  • Patent number: 8969237
    Abstract: Disclosed are, inter alia, methods of forming coated substrates for use in catalytic converters, as well as washcoat compositions and methods suitable for using in preparation of the coated substrates, and the coated substrates formed thereby. The catalytic material is prepared by a plasma-based method, yielding catalytic material with a lower tendency to migrate on support at high temperatures, and thus less prone to catalyst aging after prolonged use. Also disclosed are catalytic converters using the coated substrates, which have favorable properties as compared to catalytic converters using catalysts deposited on substrates using solution chemistry. Also disclosed are exhaust treatment systems, and vehicles, such as diesel vehicles, particularly light-duty diesel vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: March 3, 2015
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger, Jayashir Sarkar
  • Publication number: 20150051062
    Abstract: A method for preparing composite sulfur-modified powdered activated carbon includes the following steps: providing a powdered activated carbon; proceeding a drying step on the powdered activated carbon; proceeding a liquid-phase sulfur modification step on the dried powdered activated carbon; proceeding a granulation step, so as to obtain a granular powdered activated carbon from the sulfur-modified powdered activated carbon; and proceeding a vapor-phase elemental sulfur heating step on the granular powdered activated carbon, so as to form the composite sulfur-modified powdered activated carbon.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 19, 2015
    Inventors: CHUNG-SHIN YUAN, IAU-REN IE, HUAZHEN SHEN
  • Publication number: 20150050583
    Abstract: The present invention refers to highly sinter-stable metal nanoparticles supported on mesoporous graphitic spheres, the so obtained metal-loaded mesoporous graphitic particles, processes for their preparation and the use thereof as catalysts, in particular for high temperature reactions in reducing atmosphere and cathode side oxygen reduction reaction (ORR) in PEM fuel cells.
    Type: Application
    Filed: February 8, 2013
    Publication date: February 19, 2015
    Applicant: STUDIENGESELLSCHAFT KOHLE MBH
    Inventors: Ferdi Schüth, Diana Carolina Galeano Nunez, Hans-Josef Bongard, Karl Mayrhofer, Josef C. Meier, Claudio Baldizzone, Stefano Mezzavilla
  • Publication number: 20150050494
    Abstract: A multi-walled titanium-based nanotube array containing metal or non-metal dopants is formed, in which the dopants are in the form of ions, compounds, clusters and particles located on at least one of a surface, inter-wall space and core of the nanotube. The structure can include multiple dopants, in the form of metal or non-metal ions, compounds, clusters or particles. The dopants can be located on one or more of on the surface of the nanotube, the inter-wall space (interlayer) of the nanotube and the core of the nanotube. The nanotubes may be formed by providing a titanium precursor, converting the titanium precursor into titanium-based layered materials to form titanium-based nanosheets, and transforming the titanium-based nanosheets to multi-walled titanium-based nanotubes.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 19, 2015
    Applicant: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Shammi Akter Ferdousi, Wei Han
  • Patent number: 8956990
    Abstract: Catalyst mixtures include at least one Catalytically Active Element and, as a separate constituent, one Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of chemical reactions. These catalysts are useful for a variety of chemical reactions including, in particular, the electrochemical conversion of CO2. Chemical processes employing these catalysts produce CO, OH?, HCO?, H2CO, (HCO2)?, H2CO2, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO?, CH3COOH, C2H6, O2, H2, (COOH)2, or (COO?)2. Devices using the catalysts include, for example, a CO2 sensor.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: February 17, 2015
    Assignee: Dioxide Materials, Inc.
    Inventors: Richard I. Masel, Brian Rosen
  • Publication number: 20150045205
    Abstract: A soft-landing (SL) instrument for depositing ions onto substrates using a laser ablation source is described herein. The instrument of the instant invention is designed with a custom drift tube and a split-ring ion optic for the isolation of selected ions. The drift tube allows for the separation and thermalization of ions formed after laser ablation through collisions with an inert bath gas that allow the ions to be landed at energies below 1 eV onto substrates. The split-ring ion optic is capable of directing ions toward the detector or a landing substrate for selected components. The inventors further performed atomic force microscopy (AFM) and drift tube measurements to characterize the performance characteristics of the instrument.
    Type: Application
    Filed: November 12, 2013
    Publication date: February 12, 2015
    Inventors: Guido Fridolin Verbeck, IV, Stephen Davila
  • Patent number: 8950392
    Abstract: A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 10, 2015
    Assignee: The Regents of the University of California
    Inventors: K. Peter C. Vollhardt, Rachel A. Segalman, Arunava Majumdar, Steven Meier
  • Publication number: 20150021194
    Abstract: Solution-phase (e.g., homogeneous) or surface-immobilized (e.g., heterogeneous) electrode-driven oxidation catalysts based on iridium coordination compounds which self-assemble upon chemical or electrochemical oxidation of suitable precursors and methods of making and using thereof are. Iridium species such as {[Ir(LX)x(H2O)y(?-O)]zm+}n wherein x, y, m are integers from 0-4, z and n from 1-4 and LX is an oxidation-resistant chelate ligand or ligands, such as such as 2(2-pyridyl)-2-propanolate, form upon oxidation of various molecular iridium complexes, for instance [Cp*Ir(LX)OH] or [(cod)Ir(LX)] (Cp*=pentamethylcyclopentadienyl, cod=cis-cis,1,5-cyclooctadiene) when exposed to oxidative conditions, such as sodium periodate (NaIO4) in aqueous solution at ambient conditions.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 22, 2015
    Inventors: Stafford Wheeler Sheehan, Ulrich Hintermair, Julianne M. Thomsen, Gary W. Brudvig, Robert H. Crabtree
  • Publication number: 20150024924
    Abstract: The present invention relates to a zeolite coating preparation assembly (1) and operation method wherein zeolite adsorbents are coated by crystallization process on various surfaces heated by induction. The objective of the present invention is to provide a zeolite coating preparation assembly (1) and operation method; by which time saving is achieved owing to heating by induction, material saving is achieved since large heating resistances and complicated reactors are not used; and which is thus more economical; and wherein thicker and more stable coatings with high diffusion coefficients are prepared by using a more practical reaction system in a shorter period of time in comparison to the known methods, and wherein mass production is enabled.
    Type: Application
    Filed: February 25, 2013
    Publication date: January 22, 2015
    Applicant: INVENTRAM FIKRI MULKIYET HAKLARI YONETIM TICARET VE YATIRIM ANONIM SIRKETI
    Inventors: Ayse Senatalar, Melkon Tatlier
  • Publication number: 20150010455
    Abstract: Provided is a microwave catalyst. The microwave catalyst comprises: i) an active catalyst component comprising a metal and/or a metal oxide; ii) a microwave-absorbing component comprising at least one of CuO, ferrite spinel, and active carbon; and iii) a support. The microwave catalyst can be used for denitration by microwave catalysis, and has advantages such as high denitration efficiency, low energy consumption, environmental friendliness, and low costs. Also provided is a process for preparing the microwave catalyst and the use thereof.
    Type: Application
    Filed: December 24, 2012
    Publication date: January 8, 2015
    Inventors: Jicheng Zhou, Zhe Wang, Hongli Wang, Meng Wang, Guiyue Mao, Zunfang Jiang, Lingfei Gao
  • Patent number: 8921251
    Abstract: The invention relates to the field of producing polymers and copolymers of olefin oligomers produced by a trimerization reaction of olefin monomers. There is disclosed a process which comprises producing olefin oligomers with the aid of a trimerization catalyst system prepared using UHF irradiation for activating individual components of the trimerization catalyst system. The use of the trimerization catalyst system thus improved and having increased activity provides for increased effectiveness in the production of olefin oligomers from ethylene or other olefin monomers, inter alia, at a low pressure of ethylene. The olefin oligomers thus produced are then polymerized or copolymerized using processes known in the art. The technical effect consists in increasing the effectiveness of the production of olefin oligomers which are then used in a polymerization or copolymerization reaction.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 30, 2014
    Assignee: Open Joint Stock Company “Sibur Holding”
    Inventors: Timur Mikhailovich Zilbershtein, Maxim Vladimirovich Lipskikh, Alexei Alexandrovich Nosikov, Georgy Viktorovich Nesyn
  • Publication number: 20140371052
    Abstract: A method of synthesizing tungsten carbide nanorods, the method comprising: mixing tungsten oxide (WO3) nanorods with a carbon source to obtain precursors; and calcining the precursors to obtain tungsten carbide nanorods, without use of any catalyst. A catalyst of metal nanostructures supported on tungsten carbide nanorods.
    Type: Application
    Filed: March 13, 2013
    Publication date: December 18, 2014
    Inventors: Xin Wang, Ya Yan
  • Publication number: 20140360917
    Abstract: This invention relates to a method of preparing an iron carbide/carbon nanocomposite catalyst containing potassium for high temperature Fischer-Tropsch (FT) synthesis reaction and the iron carbide/carbon nanocomposite catalyst prepared thereby, and a method of manufacturing a liquid hydrocarbon using the same and a liquid hydrocarbon manufactured thereby, wherein a porous carbon support is uniformly impregnated with an iron hydrate using melt infiltration, and potassium is also supported together via various addition processes, including a pre-addition process of a potassium salt which is ground upon impregnation with the iron hydrate, or a mid- or post-addition process of a potassium solution using incipient wetness impregnation after impregnation with the iron hydrate.
    Type: Application
    Filed: December 6, 2013
    Publication date: December 11, 2014
    Inventors: Ji Chan PARK, Heon Jung, Ho Tae Lee, Jung II Yang, Dong Hyun Chun, Sung Jun Hong
  • Publication number: 20140357470
    Abstract: The present invention is a metal colloid solution comprising: colloidal particles consisting of metal particles consisting of one or two or more metal(s) and a protective agent bonding to the metal particles; and a solvent as a dispersion medium of the colloidal particles, wherein: a chloride ion concentration per a metal concentration of 1 mass % is 25 ppm or less; and a nitrate ion concentration per a metal concentration of 1 mass % is 7500 ppm or less. In the present invention, adsorption performance can be improved with adjustment of the amount of the protective agent of the colloidal particles. It is preferable to bind the protective agent of 0.2 to 2.5 times the mass of the metal particles.
    Type: Application
    Filed: February 8, 2013
    Publication date: December 4, 2014
    Applicant: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Yuusuke Ohshima, Hitoshi Kubo, Tomoko Ishikawa, Noriaki Nakamura, Junichi Taniuchi, Yoshiteru Tsuchiya, Hiroaki Takahashi, Hidenori Takanezawa, Kenichi Inoue, Syunsuke Kato, Hirokazu Shiraishi