Irradiation By, Or Application Of, Electrical, Magnetic Or Wave Energy Patents (Class 502/5)
  • Patent number: 11969716
    Abstract: This application discloses a silicon carbide (SiC)-loaded graphene photocatalyst for hydrogen production under visible light irradiation and a preparation method thereof. Pure SiC and pure black carbon are respectively prepared and mixed to obtain a mixture with a resistance less than 100?. Then the mixture was vacuumized and processed with a current pulse with an increasing voltage until a breakdown occurs, and subjected to ultrasonic stirring, centrifugal washing and vacuum drying in turn to obtain the SiC-loaded graphene photocatalyst. By means of the current pulse, a heterojunction is formed between SiC and graphene to improve the catalytic activity of the photocatalyst; and the photocatalytic hydrogen production rate of SiC nanoparticles can be enhanced after loaded on the graphene.
    Type: Grant
    Filed: June 21, 2023
    Date of Patent: April 30, 2024
    Assignee: Guangdong University of Technology
    Inventors: Yun Chen, Shengbao Lai, Biao Li, Zuohui Liu, Guanhai Wen, Maoxiang Hou, Xin Chen
  • Patent number: 11702756
    Abstract: A synthetic methodology for robust, nanostructured films of cobalt oxide over metal evaporated gold or similar material layer of, e.g., 50 nm, directly onto glass or other substrates via aerosol assisted chemical vapor deposition (AACVD). This approach allows film growth rates in the range of, e.g., 0.8 nm/s, using a commercially available precursor, which is ˜10-fold the rate of electrochemical synthetic routes. Thus, 250 nm thick cobalt oxide films may be generated in only 5 minutes of deposition time. The water oxidation reaction for such films may start at ˜0.6 V vs Ag/AgCl with current density of 10 mA/cm2 and is achieved at ˜0.75 V corresponding to an overpotential of 484 mV. This current density is further increased to 60 mA/cm2 at ˜1.5 V (vs Ag/AgCl). Electrochemically active surface area (ECSA) calculations indicate that the synergy between a Au-film, acting as electron sink, and the cobalt oxide film(s), acting as catalytic layer(s), are more pronounced than the surface area effects.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: July 18, 2023
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Muhammad Ali Ehsan, Md. Abdul Aziz, Abbas Saeed Hakeem
  • Patent number: 11638910
    Abstract: A preparation method of a lanthanum-iron-loaded carbon nanotube film for environmental restoration is provided, it belongs to the technical field of composite materials. The preparation method includes: mixing carbon nanotubes with a lanthanum-iron mixed solution to obtain a suspension, then obtaining a first reaction solution by a constant temperature oscillation reaction; adding alkali liquor into the first reaction solution to obtain a second reaction solution by an oscillation reaction; carrying out a solid-liquid separation on the second reaction solution, adding the obtained solid after drying into an organic solution, and obtaining a third reaction solution by ultrasonic mixing; centrifuging the third reaction solution to obtain a supernatant; obtaining a lanthanum-iron-loaded carbon nanotube film by suction filtration.
    Type: Grant
    Filed: October 25, 2022
    Date of Patent: May 2, 2023
    Assignee: BEIJING NORMAL UNIVERSITY, ZHUHAI
    Inventors: Yi Yang, Yinuo Wang, Haowen Lin, Chenyang Zheng, Ruikun Xu, Huiqi Zhu, Xuhui Xu, Lulu Bao
  • Patent number: 11638892
    Abstract: A high-adsorption-performance nanofiber filter medium includes a support material and a composite nanofiber filtration layer that includes multiple nanometer composite nanofiber layers deposited and stacked on the support material. The nanometer composite nanofiber layer includes first, second, and third nano-powder composite nanofibers, which are uniformly mixed by means of an airflow or are sequentially laminated to form the nanometer composite nanofiber layer. The nanometer composite nanofiber layer formed through sequential lamination includes first, second, and third nanofiber layers. The first nanofiber layer includes multiple first nano-powder composite nanofibers. The second nanofiber layer is stacked on the first nanofiber layer and includes multiple second nano-powder composite nanofibers. The third nanofiber layer is stacked on the second nanofiber layer and includes multiple third nano-powder composite nanofibers.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: May 2, 2023
    Assignee: CHANG-FONG TEXTILE TECHNOLOGY CO., LTD.
    Inventor: Jin-Ding Chen
  • Patent number: 11491458
    Abstract: A method for producing a chemical reactor device based on a fluid flow comprises obtaining a substrate with a fluid channel defined by a channel wall, in which an ordered set of silicon pillar structures is positioned in the fluid channel and electrochemically anodising at least the silicon pillar structures to make the silicon pillar structures porous at least to a certain depth. After the anodising, the substrate and pillar structures are thermally treated, the treatment being carried out at a temperature, with a duration and in an atmosphere such that any silicon oxide layer formed has a thickness of less than 20 nm. The substrate and the pillar structures are further functionalized.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: November 8, 2022
    Assignee: PHARMAFLUIDICS NV
    Inventors: Wim De Malsche, Jeff Op De Beeck, Paul Jacobs, Bo Claerebout
  • Patent number: 11358125
    Abstract: The present invention discloses a bismuth oxide (Bi2O3)/bismuth subcarbonate ((BiO)2CO3)/bismuth molybdate (Bi2MoO6) composite photocatalyst, including a Bi2MoO6 photocatalyst, where Bi2O3 and (BiO)2CO3 nanosheets are introduced to a surface of the Bi2MoO6 through addition of Na2CO3 and roasting. The present invention also discloses a preparation method of the Bi2O3/(BiO)2CO3/Bi2MoO6 composite photocatalyst which is specifically implemented by the following steps: step 1: preparing a Bi2MoO6 photocatalyst; step 2: introducing Bi2O3 and (BiO)2CO3 nanosheets to a surface of the Bi2MoO6 photocatalyst obtained in step 1 through addition of Na2CO3 and roasting to obtain the Bi2O3/(BiO)2CO3/Bi2MoO6 composite photocatalyst. The photocatalyst of the present invention has no agglomeration, a wide responsive range of visible light, a significantly improved catalytic activity compared with a Bi2MoO6 alone, and excellent reusability.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: June 14, 2022
    Assignee: YAN'AN UNIVERSITY
    Inventors: Feng Fu, Huidong Shen, Danjun Wang, Yanzhong Zhen, Wenwen Xue, Long Yan
  • Patent number: 11219884
    Abstract: A method for producing a cluster-supporting catalyst, the cluster-supporting catalyst including porous carrier particles that has acid sites, and catalyst metal clusters supported within the pores of the porous carrier particles, includes the following steps: providing a dispersion liquid containing a dispersion medium and the porous carrier particles dispersed in the dispersion medium; and in the dispersion liquid, forming catalyst metal clusters having a positive charge, and supporting the catalyst metal clusters on the acid sites within the pores of the porous carrier particles through an electrostatic interaction.
    Type: Grant
    Filed: December 26, 2016
    Date of Patent: January 11, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Yoshihiro Takeda, Namiki Toyama, Kazuhiro Egashira, Toshiaki Tanaka, Seitoku Ito
  • Patent number: 11111147
    Abstract: A method for making a carbon nanotube composite structure includes the following steps: dispersing a plurality of carbon nanotubes in water, to form a carbon nanotube dispersion; adding an aniline solution into the carbon nanotube dispersion, to form a mixed solution; adding an initiator into the mixed solution, to form a carbon nanotube composite structure preform; freeze-drying the carbon nanotube composite structure preform in a vacuum environment; and carbonizing the carbon nanotube composite structure preform in a protective gas after freeze-drying. The present application also relates to the carbon nanotube composite structure.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: September 7, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yue-Gang Zhang, Lu-Jie Jia, Jian Wang, Yang Wu, Shou-Shan Fan
  • Patent number: 11066723
    Abstract: Disclosed herein are system and methods to effectively leach coal ash with hydrochloric acid and separate an insoluble silica product and then selectively precipitate, from the leachate, a number to value-added, strategic, marketable products using a hydroxide reagent. The resulting precipitated products include iron, aluminum, magnesium, calcium, and a mixture of rare earth elements and transition metals. These can be separated as hydroxides or converted to oxides or carbonates. Using hydrochloric acid for leaching and converting the chloride to sodium chloride in the final step results in practically no waste for this process. The silica can be further purified using sodium hydroxide fusion or caustic leach methods and some minor streams from this process are recycled to minimize any waste stream. These systems and methods can be applied to a number of other industrial waste products such as red mud from the aluminum process, slag from steel furnaces, mine tailings, and other metal-bearing waste streams.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: July 20, 2021
    Assignee: Elixsys, Inc.
    Inventors: Lucien Papouchado, Barry E. Scheetz, Joseph Preston
  • Patent number: 10975480
    Abstract: An electrocatalytic device for carbon dioxide conversion includes an electrochemical stack comprising a series of cells with a cathode with a Catalytically Active Element metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. The reaction products comprise at least one of CO, HCO?, H2CO, (HCOO)?, HCOOH, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO?, CH3COOH, C2H6, (COOH)2, (COO?)2, and CF3COOH.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: April 13, 2021
    Assignee: Dioxide Materials, Inc.
    Inventor: Richard I. Masel
  • Patent number: 10971775
    Abstract: A method for producing an air electrode includes a kneading step of kneading an oxygen reduction catalyst, a conductive auxiliary agent, and a water-repellent resin (binder) in a water solvent; and a rolling step of rolling with a roller the kneaded product produced in the kneading step. The rolling step includes rolling the kneaded product with the roller several times in many directions (at least two or more different rolling directions). In the formed air electrode, the water-repellent resin is fiberized in the air electrode, and the fibers thereof are oriented in many directions to form a netlike shape.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: April 6, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tomo Kitagawa, Hirotaka Mizuhata, Keigo Mitamura, Shinobu Takenaka, Shunsuke Sata
  • Patent number: 10933157
    Abstract: The present invention relates to an apparatus capable of purifying air and maintaining freshness inside a refrigerator while minimizing deformation of the structure of an existing refrigerator, and a method for controlling the same. The apparatus for air purification and freshness maintenance according to the present invention is formed separately from a storage space (12) of a refrigerator (10) and is installed on a cooling passage (14) which communicates with the storage space (12) through an inlet (13) and an outlet (15), wherein a photocatalyst filter (30) is installed in the vicinity of the outlet (15) within the cooling passage (14), and a plurality of cells (32) forming an air vent are formed in the photocatalyst filter (30) in the same direction as the air flow direction within the cooling passage (14), in which a UV LED (41) for radiating ultraviolet rays toward the cells (32) of the photocatalyst filter (30) is installed.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 2, 2021
    Assignee: SEOUL VIOSYS CO., LTD.
    Inventor: Kyo Young Seo
  • Patent number: 10906010
    Abstract: The present disclosure provides a method for producing a water permeable molecular sieve in which a porous substrate having micron-size pores has deposited on a surface thereof non-porous 2D platelets to seal, at the substrate surface, pores in the porous substrate to form a layer of 2D platelets. A curable sealing material is deposited onto the layer of 2D platelets and any remaining exposed areas of the surface of the porous substrate and curing the curable sealing material in order to form a sealed layer on the surface of the porous substrate to prevent water by-passing the non-porous 2D platelets and passing through the porous substrate. An array of sub-nanopores are then produced through the sealed layer with the array of sub-nanopores having a size to allow water to pass therethrough but not metal ions to give a water permeable molecular sieve characterized by water permeability at low di?erential pressures.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: February 2, 2021
    Assignee: THE UNIVERSITY OF WESTERN ONTARIO
    Inventors: Giovanni Fanchini, Jaewoo Park
  • Patent number: 10900109
    Abstract: To provide a titanium sheet excellent in formability and a method for manufacturing the same. A titanium sheet, wherein, when a carbon concentration of a base material is Cb (mass %) and a carbon concentration at a depth d ?m from a surface is Cd (mass %), the depth d (carbon concentrated layer thickness) satisfying Cd/Cb>1.5 is 1.0 ?m or more and less than 10.0 ?m or less, wherein a Vickers hardness HV0.025 at a load of 0.245 N in the surface is 200 or more, a Vickers hardness HV0.05 at a load of 0.49 N in the surface is lower than HV0.025, and a difference between HV0.025 and HV0.05 is 30 or more, wherein a Vickers hardness HV1 at a load of 9.8 N in the surface is 150 or less, and wherein an average interval between cracks generated in the surface when a strain of 25% is given in a rolling direction in a bulging forming process is less than 50 ?m and a depth thereof is 1 ?m or more and less than 10 ?m.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: January 26, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Koji Mitsuda, Kazuhiro Takahashi, Hideto Seto
  • Patent number: 10828622
    Abstract: A novel catalyst includes a plurality of nanoparticles, each nanoparticle including a core made of a catalytic metal and a porous shell surrounding the core, made of metal oxide, the porous shell preserving a catalytic function of the core and reducing reduction of the core and coalescence of the nanoparticles.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: November 10, 2020
    Assignee: OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY SCHOOL CORPORATION
    Inventors: Mukhles Ibrahim Sowwan, Cathal Cassidy, Vidya Dhar Singh
  • Patent number: 10811691
    Abstract: The invention relates to electrocatalysts comprising a carbonitride (CN) shell featuring good electrical conductivity, coordinating suitable catalytically active sites. In a preferred aspect of the invention, the aforesaid carbonitride shell coordinates nanoparticles or aggregates of nanoparticles, on which the active sites of the electrocatalyst are located. In a preferred form of the invention, said carbonitride shell covers suitable cores with good electrical conductivity. Said electrocatalysts are obtained through a process involving the pyrolysis of suitable precursors; in one aspect of the invention, the preparation process requires certain further steps. In one preferred aspect, the steps comprise one or more of the following: chemical treatments; electrochemical treatments; further pyrolysis processes.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: October 20, 2020
    Assignee: BRETON S.P.A.
    Inventors: Vito Di Noto, Enrico Negro, Keti Vezzu′, Federico Bertasi, Graeme Nawn, Luca Toncelli, Stefano Zeggio, Fabio Bassetto
  • Patent number: 10583419
    Abstract: A resin nanocomposite, including a resin skeleton structure and nanoparticles. The resin skeleton structure is an aminated polystyrene. The nanoparticles are dispersed in the resin skeleton structure. The specific area of the nanocomposite is between 50 and 300 m2/g, and the pore size thereof is between 5 and 40 nm. The invention also provides a method for preparing the resin nanocomposite, the method including: 1) mixing and dissolving a linear polyethylene with a chloromethyl polystyrene or a polyvinyl chloride to yield a polymer solution, and adding the nanoparticles to the polymer solution; 2) adding an alcohol solution to liquid nitrogen; adding the mixed solution dropwise to the liquid nitrogen to yield a mixture; allowing the mixture to stand; collecting, washing and drying resin beads to yield a composite material; and 3) adding the composite material to an amine solution for reaction, and washing and drying the resulting product.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: March 10, 2020
    Assignee: NANJING UNIVERSITY
    Inventors: Bingcai Pan, Xiaolin Zhang, Siyuan Pan, Cheng Cheng, Zefang Chen
  • Patent number: 10569253
    Abstract: The invention provides biocomposites alginate/chitosan beads integrated with magnetite nanoparticles and modified-surface magnetite derivate created and designed to remove from environmental waters and aquatic systems different types of organic persistent compounds such as benzophenone-3 (oxybenzone).
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: February 25, 2020
    Assignee: University of Puerto Rico
    Inventors: Felix Roman Velazquez, Victor Fernandez Alos, Oscar Perales Perez
  • Patent number: 10543482
    Abstract: The present invention relates to a stable palladium ion catalyst aqueous solution for electroless metal plating that does not use boric acid and can be used stably over a wide pH range. The catalyst solution for electroless plating of the present invention contains palladium ion, palladium ion complexing agent, and a specific amine compound and is alkaline.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: January 28, 2020
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Hiroki Okada, Shenghua Li, Shinjiro Hayashi
  • Patent number: 10391476
    Abstract: An organic nanofiber includes a fiber body containing multiple inorganic oxide particles selected from polycrystalline titanium dioxide particles and polycrystalline tin(IV) oxide particles, and having a particle size ranging from 15 to 75 nm. A method for manufacturing the inorganic nanofibers, including: mixing a metal precursor, an organic polymer and a solvent to obtain a solution, the metal precursor being a titanium-containing precursor or a tin-containing precursor; electrospinning the solution at a relative humidity ranging from 50 to 60% to form multiple nanofibers; and annealing the nanofibers at a temperature ranging from 600 to 800° C. to obtain multiple inorganic nanofibers.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: August 27, 2019
    Assignee: TAMKANG UNIVERSITY
    Inventors: Ping-Hung Yeh, Chun-Yen Lai, Yu-Ting Lin, Pin-Chun Pan
  • Patent number: 10226759
    Abstract: The invention provides a catalyst and method for producing hydrocarbons from a carbon dioxide source comprising carbides, in particular one or more metal carbides. The one or more metal carbides are formed with one or more elements selected from the group consisting of molybdenum, titanium, tungsten, iron, and tantalum. In one embodiment, the one or more metal carbides are nanostructures. In another embodiment, the one or more metal carbide nanostructures are supported by a carbon substrate. In a further embodiment, the one or more metal carbides nanostructures is dimolybdenum carbide. In still another embodiment, the carbon substrate is graphene or graphene oxide. In another embodiment, the dimolybdenum carbide nanostructures are supported by the graphene or graphene oxide substrate.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: March 12, 2019
    Assignee: Brown University
    Inventors: Andrew Peterson, Yin-Jia Zhang, Seok Ki Kim
  • Patent number: 10026970
    Abstract: The oxygen reduction reaction electrocatalyst is a Pt/N/C electrocatalyst that provides an efficient ORR catalyst suitable for use in polymer electrolyte membrane (PEM) fuel cells, for example. The oxygen reduction reaction electrocatalyst is in the form of platinum nanoparticles embedded in a nitrogen-enriched mesoporous carbon matrix, particularly a nitrogen-enriched graphite matrix. The nitrogen-enriched graphite matrix has an average surface area of 240.4 m2/g, and the platinum nanoparticles each have an average diameter between 10 nm and 12 nm.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: July 17, 2018
    Assignee: KING SAUD UNIVERSITY
    Inventors: Abdullah M. Al-Enizi, Tansir Ahamad, Saad M. Alshehri, Mu Naushad
  • Patent number: 10010866
    Abstract: The nitrogen and phosphorus co-doped crystalline carbon materials are prepared by a template-free method that includes pyrolizing a precursor mixture including a carbon source, a nitrogen source, and a phosphorus source. The method involves mixing known amounts of the precursor components, dissolving the precursor mixture in deionized water, distilling solvent from the aqueous mixture, and vacuum drying the residue to a dry solid mixture. The mixture is then carbonized by pyrolysis at 900° C. in an argon atmosphere to obtain a nitrogen and phosphorus co-doped crystalline carbon material. The principles of the method are illustrated by a precursor mixture of sucrose, urea, and ammonium dihydrogen phosphate (NH4H2PO4). The amount of ammonium salt in the precursor mixture plays a key role in controlling the crystallinity, morphology, and composition of the N/P co-doped crystalline carbon material.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: July 3, 2018
    Assignee: KING SAUD UNIVERSITY
    Inventors: Usman Ali Rana, Arfat Anis, Ayman Nafady, Saeed M. Al-Zahrani
  • Patent number: 9941521
    Abstract: The disclosure is to provide a method for producing a core-shell catalyst that is able to increase the power generation performance of a membrane electrode assembly. A dispersion is prepared, in which a palladium-containing particle support, in which palladium-containing particles are supported on an electroconductive support, is dispersed in water; hydrogen gas is bubbled into the dispersion; the palladium-containing particles are acid treated after the bubbling; copper is deposited on the surface of the palladium-containing particles by applying a potential that is nobler than the oxidation reduction potential of copper to the palladium-containing particles in a copper ion-containing electrolyte after the acid treatment; and then a shell is formed by substituting the copper deposited on the surface of the palladium-containing particles with platinum by bringing the copper deposited on the surface of the palladium-containing particles into contact with a platinum ion-containing solution.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: April 10, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noriyuki Kitao, Naoyuki Sasaki, Tsugio Fujisawa
  • Patent number: 9502717
    Abstract: This invention proposes metal complexes of polyphenylenediamines as the precursors of carbonized materials used as the air electrode catalysts. Method of production includes mixing phenylenediamine monomer with a catalyst carrier in a solvent, and adding an oxidant with metal salt to produce a metal complex of polyphenylenediamine. After drying the precursor is heat treated in the temperature range 400 C.°-1000 C.° in nitrogen. Then the catalyst is leached and heat treated once again. In a modified procedure the heat treatment is carried out in air while leaching and subsequent thermal treatment are eliminated. The catalyst has demonstrated high performance and stability as the component of the air electrode of a metal-air battery.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: November 22, 2016
    Assignee: PANISOLAR INC.
    Inventors: Iakov Kogan, Anna Khomenko
  • Patent number: 9433938
    Abstract: A nano-particle comprising: an interior region comprising a mixed-metal oxide; and an exterior surface comprising a pure metal. In some embodiments, the mixed-metal oxide comprises aluminum oxide and a metallic pinning agent, such as palladium, copper, molybdenum, or cobalt. In some embodiments, the pure metal at the exterior surface is the same as the metallic pinning agent in the mixed-metal oxide in the interior region. In some embodiments, a catalytic nano-particle is bonded to the pure metal at the exterior surface. In some embodiments, the interior region and the exterior surface are formed using a plasma gun. In some embodiments, the interior region and the exterior surface are formed using a wet chemistry process. In some embodiments, the catalytic nano-particle is bonded to the pure metal using a plasma gun. In some embodiments, the catalytic nano-particle is bonded to the pure metal using a wet chemistry process.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: September 6, 2016
    Assignee: SDCmaterials, Inc.
    Inventors: Willibrordus G. M. Van Den Hoek, Maximilian A. Biberger
  • Patent number: 9284639
    Abstract: An alkali-containing transition metal sputtering target, the method of making the same, and the method of manufacturing a solar cell using the same.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: March 15, 2016
    Assignee: APOLLO PRECISION KUNMING YUANHONG LIMITED
    Inventor: Daniel R. Juliano
  • Patent number: 9095839
    Abstract: A hybrid composite of Metal Organic Frameworks (MOF) encapsulated in nanocarbon material, wherein the MOFs are grown inside or outside or both side of nano carbon morphologies of the hybrid composite. Such composites may be prepared by a. dissolving and mixing a salt of the metal and a ligand in the ratio ranging between 1:1 to 1:4 (by w/w ratio) by sonicating them to form a precursor mixture; b. adding non-functionalized or functionalized nano-carbon material to the precursor mixture of step (a); c. sonicating the mixture of step (b) followed by heating; d. keeping the slurry obtained at elevated temperature followed by centrifugation.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: August 4, 2015
    Assignee: Council of Scientific and Industrial Research
    Inventors: Rahul Banerjee, Sreekumar Kurungot, Pradip Shashikant Pachfule, Beena Kalasaparambil Balan
  • Publication number: 20150148581
    Abstract: Activated carbon\nickel oxide\zinc oxide (AC\NiO\ZnO) and activated carbon\zinc oxide (AC\ZnO) were prepared and used as adsorbents for removal of thiophene, benzothiophene (BT) and dibenzothiophene (DBT) as sulfur compounds from hydrocarbon materials such as diesel fuel. The materials exhibited an efficient and economical way for removing sulfur compounds due to its low-energy consumption, ambient operation temperature and atmospheric pressure. A simple regeneration method of the spent adsorbents.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicants: King Abdulaziz City for Science and Technology, King Fahd University of Petroleum and Minerals
    Inventors: Khalid R. Alhooshani, Abdullah A. Al Swat, Tawfik A. Saleh, Mohammad N. Siddiqui
  • Publication number: 20150147682
    Abstract: Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 28, 2015
    Inventors: Kurian Abraham Kuttiyiel, Kotaro Sasaki, Radoslav R. Adzic
  • Publication number: 20150141236
    Abstract: Embodiments of present inventions are directed to an advanced catalyst. The advanced catalyst includes a honeycomb structure with an at least one nano-particle on the honeycomb structure. The advanced catalyst used in diesel engines is a two-way catalyst. The advanced catalyst used in gas engines is a three-way catalyst. In both the two-way catalyst and the three-way catalyst, the at least one nano-particle includes nano-active material and nano-support. The nano-support is typically alumina. In the two-way catalyst, the nano-active material is platinum. In the three-way catalyst, the nano-active material is platinum, palladium, rhodium, or an alloy. The alloy is of platinum, palladium, and rhodium.
    Type: Application
    Filed: September 12, 2014
    Publication date: May 21, 2015
    Inventors: Qinghua YIN, Xiwang QI, Maximilian A. BIBERGER
  • Patent number: 9029290
    Abstract: The present invention relates to a composite of a porous substrate and one-dimensional nanomaterial, which is manufactured by a hydrothermal method. The method for manufacturing the composite of the present invention is simple and low-cost, and the one-dimensional nanomaterial is homogeneously distributed on the porous substrate with tight binding at the interface. The present invention also relates to a surface-modified composite and a method for preparing the same. The composite of the present invention which is hydrophobically modified at the surface can adsorb organic solvents such as toluene, dichlorobenzene, petroleum ether and the like, and greases such as gasoline, lubricating oil, motor oil, crude oil and the like, with a weight adsorption ratio of >10.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: May 12, 2015
    Assignee: City University of Hong Kong
    Inventors: Chunsing Lee, Shuittong Lee, Yongbing Tang, Mankeung Fung, Chiuyee Chan
  • Publication number: 20150119231
    Abstract: Photo-initiated polymeric ionic liquids, methods of making and methods of using the same are disclosed. A preferred embodiment for making a photo-initiated polymeric ionic liquid (P-PIL) coated support, comprises: mixing at least one ionic liquid (IL) monomer with at least one photo-initiator; at least partially coating a support with the mixture; and exposing the coated support to UV light to form a photo-initiated polymeric ionic liquid (P-PIL) coated support.
    Type: Application
    Filed: May 30, 2013
    Publication date: April 30, 2015
    Applicant: THE UNIVERSITY OF TOLEDO
    Inventor: Jared L. Anderson
  • Patent number: 9012345
    Abstract: Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO?, H2CO, (HCO2)?, H2CO2, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO?, CH3COOH, C2H6, (COOH)2, or (COO?)2, and a specific device, namely, a CO2 sensor.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Dioxide Materials, Inc.
    Inventors: Richard I. Masel, Amin Salehi-Khojin
  • Publication number: 20150105235
    Abstract: Provided are: a photocatalyst comprising a porous first metal oxide film having pores, and a second metal particle or a second metal oxide particle formed inside the pores; a method for preparing the photocatalyst; and a photocatalyst apparatus using the photocatalyst.
    Type: Application
    Filed: December 28, 2012
    Publication date: April 16, 2015
    Applicant: LG Hausys, Ltd.
    Inventors: Dong Il Lee, Seong Moon Jung, Joo-Hwan Seo, Ju-Hyung Lee
  • Publication number: 20150099621
    Abstract: Provided is a photocatalyst including: a porous metal oxide film; and metal particles formed on a surface of the porous metal oxide film.
    Type: Application
    Filed: December 27, 2012
    Publication date: April 9, 2015
    Inventors: Dong Il Lee, Seong Moon Jung, Joo-Hwan Seo, Ju-Hyung Lee
  • Publication number: 20150093685
    Abstract: An oxygen reduction reaction catalyst and method for making the catalyst includes a graphitized carbon substrate with an amorphous metal oxide layer overlying the surface of the substrate. The amorphous metal oxide layer has a worm-like structure. A catalyst overlies the metal oxide layer.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Jun Yang, Patrick Pietrasz, Chunchuan Xu, Shinichi Hirano
  • Publication number: 20150094200
    Abstract: A method including the steps of combining a catalyst metal and a leachable metal to obtain a metallic alloy; and electrochemically removing at least a portion of the leachable metal from the metallic alloy to form a catalyst structure having nanometric pores.
    Type: Application
    Filed: November 10, 2014
    Publication date: April 2, 2015
    Inventors: Chi Paik, Lifeng Xu, Hungwen Jen, Karen Marie Adams, Mark S. Sulek, Sherry A. Mueller
  • Publication number: 20150090604
    Abstract: The present invention concerns a method for the preparation of a catalyst onto a solid support of a (semi-)conductive material consisting in depositing said catalyst onto said support from a near-neutral aqueous solution containing at least one nickel or cobalt organic complex and at least one basic oxoanion, by a method selected in the group consisting of reductive electrodeposition, photochemical electrodeposition and photoelectrochemical deposition. The present invention also concerns said catalyst and uses thereof.
    Type: Application
    Filed: April 4, 2013
    Publication date: April 2, 2015
    Inventors: Vincent Artero, Marc Fontecave, Saioa Cobo, Pierre-Andre Jacques, Holger Dau, Johathan Heikamp
  • Publication number: 20150087498
    Abstract: Microwave irradiation is used to synthesize graphene and metallic nanocatalysts supported on graphene either by solid or solution phase. In solid phase methods, no solvents or additional reducing agents are required so the methods are “environmentally friendly” and economical, and the graphene and nanocatalysts are substantially free of residual contaminants. Recyclable, high efficiency Pd nanocatalysts are prepared by these methods.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 26, 2015
    Applicant: Virginia Commonwealth University
    Inventors: M. Samy El-Shall, Victor Abdelsayed, Hassan M. A. Hassan, Abd El Rahman S. Khder, Khaled M. AbouZeid, Qilin Dai, Parichehr Afshani, Frank Gupton, Ali R. Siamaki, Zeid Abdullah M. Alothman, Hamad Zaid Alkhathlan
  • Publication number: 20150086727
    Abstract: A preparing method of a catalyst for a fuel cell includes mixing a nitrogen-containing compound, a metal-containing compound, a carbon support, and a solvent to form a first composition, so that the nitrogen-containing compound and the metal-containing compound are dispersed in the solvent; removing the solvent of the first composition to form a second composition; performing a microwave process on the second composition.
    Type: Application
    Filed: March 26, 2014
    Publication date: March 26, 2015
    Applicant: National Taiwan University of Science and Technology
    Inventors: Chen-Hao Wang, Sun-Tang Chang, Hsiao-Chien Wang
  • Patent number: 8986906
    Abstract: The present invention provides a method for preparing nanoporous Pt/TiO2 composite particles, nanoporous Pt/TiO2 composite particles prepared by the above preparation method, and a fuel cell comprising the nanoporous Pt/TiO2 composite particles. The nanoporous Pt/TiO2 composite particles according to the present invention have a catalytic effect similar to that of commercially available Pt/carbon black and, thus, can be applied to a fuel cell.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: March 24, 2015
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Hee Dong Jang, Han Kwon Chang, Kuk Cho
  • Publication number: 20150080208
    Abstract: Fabrication of oxide nanowire heterostructures with controlled morphology, interface and phase purity are desired for high-efficiency and low-cost photocatalysis. Disclosed herein is the formation of oxide nanowire heterostructures by sputtering and subsequent air annealing to result in oxide nanowires. This approach allows for fabrication of standing nanowire heterostructures with tunable compositions and morphologies.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 19, 2015
    Inventor: Nitin Chopra
  • Publication number: 20150072854
    Abstract: The catalytic composition for the electrochemical reduction of carbon dioxide is a metal oxide supported by multi-walled carbon nanotubes. The metal oxide may be nickel oxide (NiO) or tin dioxide (SnO2). The metal oxides form 20 wt % of the catalyst. In order to make the catalysts, a metal oxide precursor is first dissolved in deionized water to form a metal oxide precursor solution. The metal oxide precursor solution is then sonicated and the solution is impregnated in a support material composed of multi-walled carbon nanotubes to form a slurry. The slurry is then sonicated to form a homogeneous solid solution. Solids are removed from the homogeneous solid solution and dried in an oven for about 24 hours at a temperature of about 110° C. Drying is then followed by calcination in a tubular furnace under an argon atmosphere for about three hours at a temperature of 450° C.
    Type: Application
    Filed: November 12, 2014
    Publication date: March 12, 2015
    Inventors: SALEEM UR RAHMAN, SHAKEEL AHMED, MOHAMMAD MOZAHAR HOSSAIN, SHAHID MUHAMMAD BASHIR
  • Publication number: 20150071980
    Abstract: Methods directed to the synthesis of metal nanoparticles are described. A formation process can be carried out at ambient temperature and pressure and includes the deposition of metal ions on a titanate carrier according to a chemical deposition process followed by exposure of the metal ions to a reducing agent. Upon the exposure, nanoparticles of the reduced metal are formed that are adhered to the titanate carrier.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: Savannah River Nuclear Solutions, LLC
    Inventors: David T. Hobbs, Kathryn M.L. Taylor-Pashow, Mark C. Elvington
  • Publication number: 20150072853
    Abstract: The catalytic composition for the electrochemical reduction of carbon dioxide is a metal oxide supported by multi-walled carbon nanotubes. The metal oxide may be nickel oxide (NiO) or tin dioxide (SnO2). The metal oxides form 20 wt % of the catalyst. In order to make the catalysts, a metal oxide precursor is first dissolved in deionized water to form a metal oxide precursor solution. The metal oxide precursor solution is then sonicated and the solution is impregnated in a support material composed of multi-walled carbon nanotubes to form a slurry. The slurry is then sonicated to form a homogeneous solid solution. Solids are removed from the homogeneous solid solution and dried in an oven for about 24 hours at a temperature of about 110° C. Drying is then followed by calcination in a tubular furnace under an argon atmosphere for about three hours at a temperature of 450° C.
    Type: Application
    Filed: November 12, 2014
    Publication date: March 12, 2015
    Inventors: SALEEM UR RAHMAN, SHAKEEL AHMED, MOHAMMAD MOZAHAR HOSSAIN, SHAHID MUHAMMAD BASHIR
  • Patent number: 8969237
    Abstract: Disclosed are, inter alia, methods of forming coated substrates for use in catalytic converters, as well as washcoat compositions and methods suitable for using in preparation of the coated substrates, and the coated substrates formed thereby. The catalytic material is prepared by a plasma-based method, yielding catalytic material with a lower tendency to migrate on support at high temperatures, and thus less prone to catalyst aging after prolonged use. Also disclosed are catalytic converters using the coated substrates, which have favorable properties as compared to catalytic converters using catalysts deposited on substrates using solution chemistry. Also disclosed are exhaust treatment systems, and vehicles, such as diesel vehicles, particularly light-duty diesel vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: March 3, 2015
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger, Jayashir Sarkar
  • Publication number: 20150050583
    Abstract: The present invention refers to highly sinter-stable metal nanoparticles supported on mesoporous graphitic spheres, the so obtained metal-loaded mesoporous graphitic particles, processes for their preparation and the use thereof as catalysts, in particular for high temperature reactions in reducing atmosphere and cathode side oxygen reduction reaction (ORR) in PEM fuel cells.
    Type: Application
    Filed: February 8, 2013
    Publication date: February 19, 2015
    Applicant: STUDIENGESELLSCHAFT KOHLE MBH
    Inventors: Ferdi Schüth, Diana Carolina Galeano Nunez, Hans-Josef Bongard, Karl Mayrhofer, Josef C. Meier, Claudio Baldizzone, Stefano Mezzavilla
  • Publication number: 20150050494
    Abstract: A multi-walled titanium-based nanotube array containing metal or non-metal dopants is formed, in which the dopants are in the form of ions, compounds, clusters and particles located on at least one of a surface, inter-wall space and core of the nanotube. The structure can include multiple dopants, in the form of metal or non-metal ions, compounds, clusters or particles. The dopants can be located on one or more of on the surface of the nanotube, the inter-wall space (interlayer) of the nanotube and the core of the nanotube. The nanotubes may be formed by providing a titanium precursor, converting the titanium precursor into titanium-based layered materials to form titanium-based nanosheets, and transforming the titanium-based nanosheets to multi-walled titanium-based nanotubes.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 19, 2015
    Applicant: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Shammi Akter Ferdousi, Wei Han
  • Publication number: 20150051062
    Abstract: A method for preparing composite sulfur-modified powdered activated carbon includes the following steps: providing a powdered activated carbon; proceeding a drying step on the powdered activated carbon; proceeding a liquid-phase sulfur modification step on the dried powdered activated carbon; proceeding a granulation step, so as to obtain a granular powdered activated carbon from the sulfur-modified powdered activated carbon; and proceeding a vapor-phase elemental sulfur heating step on the granular powdered activated carbon, so as to form the composite sulfur-modified powdered activated carbon.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 19, 2015
    Inventors: CHUNG-SHIN YUAN, IAU-REN IE, HUAZHEN SHEN