And Group Viii (iron Group Or Platinum Group) Containing Patents (Class 502/74)
  • Patent number: 7473667
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method, a CO-containing gas, such as a syngas, contacts a platinum-free ruthenium-cobalt water gas shift (“WGS”) catalyst, in the presence of water and preferably at a temperature of less than about 450° C., to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a platinum-free ruthenium-cobalt water gas shift catalyst formulated from: a) Ru, its oxides or mixtures thereof, b) Co, Mo, their oxides or mixtures thereof, and c) at least one of Li, Na, K, Rb, Cs, Ti, Zr, Cr, Fe, La, Ce, Eu, their oxides and mixtures thereof. The WGS catalyst may be supported on a carrier, such as any one member or a combination of alumina, zirconia, titania, ceria, magnesia, lanthania, niobia, zeolite, perovskite, silica clay, yttria and iron oxide. Fuel processors containing such water gas shift catalysts are also disclosed.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: January 6, 2009
    Assignees: Honda Giken Koygo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Michael Herrmann, Andreas Lesik, Christopher James Brooks, Cory Bernard Phillips
  • Publication number: 20080319245
    Abstract: A catalyst for producing a liquefied petroleum gas according to the present invention comprises a methanol synthesis catalyst component in which an olefin-hydrogenation catalyst component is supported on a Zn—Cr-based methanol synthesis catalyst, and a zeolite catalyst component. It can be used in a reaction of carbon monoxide and hydrogen to give a hydrocarbon containing propane or butane as a main component, i.e., a liquefied petroleum gas, with high activity, high selectivity and high yield. Furthermore, the catalyst has a longer catalyst life with less deterioration.
    Type: Application
    Filed: May 30, 2005
    Publication date: December 25, 2008
    Inventors: Kaoru Fujimoto, Kenji Asami, Xiaohong Li, Sachio Asaoka, Qianwen Zhang
  • Publication number: 20080317653
    Abstract: A catalyst system comprises a gold catalyst capable of oxidizing CO; a hydrocarbon oxidation catalyst; and a hydrocarbon adsorbing material.
    Type: Application
    Filed: June 24, 2008
    Publication date: December 25, 2008
    Inventors: Boris L'vovich Moroz, Karl C. Kharas, Mikhail Yurievich Smirnov, Alexander Sergeevich Bobrin, Valerii Ivanovich Bukhtlyarov
  • Publication number: 20080305033
    Abstract: A catalyst effective for the direct reaction of hydrogen and oxygen to form hydrogen peroxide includes particles of gold, palladium or, preferably, gold and palladium deposited upon an acid-washed support. High selectivity to and production of hydrogen peroxide is observed, with low hydrogen peroxide decomposition. The catalysts have extended lifespan.
    Type: Application
    Filed: July 10, 2006
    Publication date: December 11, 2008
    Applicant: UNIVERSITY COLLEGE CARDIFF CONSULTANTS LIMITED
    Inventors: Albert Frederick Carley, Jennifer Kelly Edwards, Graham John Hutchings, Benjamin Eduardo Solsona Espriu
  • Patent number: 7462338
    Abstract: In one embodiment, an oxidation catalyst comprises a catalytic material disposed on a support. The support comprises boron modified alumina and about 10 wt % to about 50 wt % zeolite, based upon the total weight of the support. The boron is present in a sufficient amount up to less than or equal to about 7 wt %, based upon a total weight of the alumina, to selectively poison a portion of the alumina.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: December 9, 2008
    Assignee: Umicore AG & Co. Kg
    Inventor: Barry W. Southward
  • Patent number: 7459412
    Abstract: A catalyst for acid-catalyzed hydrocarbon conversions, in particular for the alkylation of olefins with isoparaffins, containing a crystalline zeolite with an SiO2—Al2O3 molar ratio of <10, the alkali cations of which are at least partially replaced by H+ ions and/or polyvalent cations, the residual concentration of alkali cations amounting to less than around 0.2% by weight, the concentration of the Bronsted centers, determined as a function of the pyridine chemisorbed on the catalyst surface, amounting to around 0.1 to 4 mmol/g of catalyst, and the ratio between the concentration of the acid centers of the Bronsted type (B) and of the Lewis type (L), expressed as the surface ratio of the absorption bands at 1540 ±5 cm?1 (B) and 1450 5 cm?1 (L) after heating to a temperature of 450° C amounting to around 1.4 or higher, is described.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: December 2, 2008
    Assignee: Sud-Chemie AG
    Inventors: Johannes A. Lercher, Andreas Feller, Stefan Gaab
  • Patent number: 7459135
    Abstract: The invention relates to a method for the catalytic reduction of NOx in an NOx containing gas using methane in the presence of a catalyst which comprises a palladium-containing zeolite. In this process one uses a zeolite based on rings of 12 oxygen atoms, wherein the zeolite also comprises scandium, yttrium, a lanthanide or a combination thereof. The invention also relates to the catalyst itself and the preparation thereof.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: December 2, 2008
    Assignee: Stichting Energieonderzoek Centrum Nederland
    Inventors: Johannis Alousius Zacharias Pieterse, Rudolf Willem Van Den Brink
  • Publication number: 20080293987
    Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst is a germanium zeolite, such as Ge-ZSM-5, on which at least two metals, platinum and at least one other metal selected from Group 7, Group 8, Group 9, Group 10 and tin, are deposited on the germanium zeolite. Examples of the other metal are iridium, rhenium, palladium, ruthenium, rhodium, iron, cobalt and tin. The catalyst is prepared by synthesizing a germanium zeolite; depositing platinum and at least one other metal on the germanium zeolite; and calcining after preparation of the zeolite, before depositing the metals or after depositing the metals. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with a hydrocarbon stream containing alkanes, olefins and mixtures thereof having 2 to 12 carbon atoms per molecule and recovering the product.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 27, 2008
    Inventors: Alla K. Khanmamedova, Scott F. Mitchell, Scott A. Stevenson, Gopalakrishnan G. Juttu
  • Publication number: 20080293990
    Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst is a medium pore germanium zeolite, a germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). At least one metal selected from Group 10 is deposited on the medium pore zeolite and, optionally on the germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). The catalyst is prepared by synthesizing a medium pore zeolite, an aluminophosphate (AlPO) or a silicoaluminophosphate (SAPO) with germanium incorporated into the framework and calcining the medium pore germanium zeolite, germanium aluminophosphate (AlPO) or germanium silicoaluminophosphate (SAPO). At least one metal may be deposited on the germanium zeolite, germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO).
    Type: Application
    Filed: May 22, 2008
    Publication date: November 27, 2008
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Scott A. Stevenson, Alla K. Khanmamedova, Dustin B. Farmer, Scott F. Mitchell, Jim Vartuli
  • Publication number: 20080293989
    Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite having germanium and at least one selected from the group consisting of tin and boron incorporated into the zeolite framework and at least one metal selected from Group 10 deposited on the zeolite. The catalyst is prepared by synthesizing a zeolite having germanium and at least one selected from the group consisting of tin and boron incorporated into the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 27, 2008
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Alla K. Khanmamedova, Scott A. Stevenson, Scott F. Mitchell, Dustin B. Farmer, Jim Vartuli
  • Publication number: 20080293988
    Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework. At least one Group 10 metal, such as platinum, is deposited on the zeolite. Examples of the elements in the framework are tin, boron, iron or titanium. The catalyst is prepared by synthesizing a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 27, 2008
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Scott F. Mitchell, Alla K. Khanmamedova, Scott A. Stevenson, Jim Vartuli
  • Publication number: 20080292519
    Abstract: Catalysts, methods, and systems for treating diesel engine exhaust streams are described. In one or more embodiments, the catalyst comprises platinum, a second metal from one of the groups VB, VIIB, VIIB, VIIIB, IB, or IIB of the periodic table, a refractory metal oxide, and a zeolite, the oxidation catalyst already being effective to remove ammonia at temperatures less than about 300° C. and exhibiting no significant decrease in ammonia oxidation efficiency upon hydrothermal aging. A method aspect includes first passing a vehicle's engine exhaust stream through a NOx abatement catalyst; and passing the exhaust stream exiting the NOx abatement catalyst and containing ammonia through the ammonia oxidation catalyst. Systems including such catalysts are also provided.
    Type: Application
    Filed: February 27, 2008
    Publication date: November 27, 2008
    Inventors: Matthew T. Caudle, Martin Deiterle, Stanley A. Roth, Wen-Mei Xue
  • Patent number: 7456124
    Abstract: Transalkylation catalysts containing rhenium and a molecular sieve component comprising an acidic MFI molecular sieve having a Si/Al2 molar ratio of less than about 80 and mordenite provide a transalkylation product with a low content of benzene co-boilers. The invention encompasses sulfided catalyst embodiments and methods of making the catalysts.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: November 25, 2008
    Assignee: UOP LLC
    Inventors: Edwin P. Boldingh, Antoine Negiz, James E. Rekoske, Eric J. Baker, Robert B. Larson, Terrence E. Deak, Sergey V. Gurevich
  • Publication number: 20080287284
    Abstract: The present invention relates to a catalyst composition comprising rhodium supported on an anionic clay. This catalyst composition is suitable as CO combustion additive in fluid catalytic cracking units. Compared to prior art CO combustion additives, the formation of NOx is minimized.
    Type: Application
    Filed: March 8, 2006
    Publication date: November 20, 2008
    Inventors: Julie Ann Francis, Lin Luo, Darrell Ray Rainer
  • Publication number: 20080286184
    Abstract: The present invention relates to a technology to purify nitrogen oxides contained in exhaust gas exhausted from lean combustion engines such as diesel engine with ammonia and a selective catalytic reduction type catalyst, and an object of the present invention is to provide a selective catalytic reduction type catalyst which can effectively purify nitrogen oxides even at a low temperature as well as inhibit leak of ammonia, and an exhaust gas purification equipment and a purifying process of exhaust gas using the same.
    Type: Application
    Filed: May 5, 2008
    Publication date: November 20, 2008
    Applicant: N.E CHEMCAT CORPORATION
    Inventors: Ryuji Ando, Takashi Hihara, Yasuharu Kanno, Makoto Nagata
  • Publication number: 20080287707
    Abstract: A method for adsorbing volatile organic compounds (VOCs) derived from organic matter comprises adsorbing the VOCs onto palladium doped ZSM-5, optionally at ambient temperature. The organic matter can be perishable organic goods such as food, including fruit and/or vegetables, horticultural produce, including plants and/or cut flowers, or refuse. The palladium doped ZSM-5 has a Si:Al ratio of less than or equal to 100:1 and preferably has a palladium content of from 0.1 wt % to 10.0 wt % based on the total weight of the doped ZSM-5.
    Type: Application
    Filed: October 26, 2006
    Publication date: November 20, 2008
    Applicant: Johnson Matthey Public Limited Company
    Inventors: Thomas Ilkenhans, Stephen Poulston, Andrew William John Smith
  • Patent number: 7452844
    Abstract: The Fischer-Tropsch catalyst of the present invention is a transition metal-based catalyst having a high surface area, a smooth, homogeneous surface morphology, an essentially uniform distribution of cobalt throughout the support, and a small metal crystallite size. In a first embodiment, the catalyst has a surface area of from about 100 m2/g to about 250 m2/g; an essentially smooth, homogeneous surface morphology; an essentially uniform distribution of metal throughout an essentially inert support; and a metal oxide crystallite size of from about 40 ? to about 200 ?. In a second embodiment, the Fischer-Tropsch catalyst is a cobalt-based catalyst with a first precious metal promoter and a second metal promoter on an aluminum oxide support, the catalyst having from about 5 wt % to about 60 wt % cobalt; from about 0.0001 wt % to about 1 wt % of the first promoter, and from about 0.01 wt % to about 5 wt % of the second promoter.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: November 18, 2008
    Assignee: Süd-Chemie Inc
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Publication number: 20080280750
    Abstract: Catalysts for treating acid gases and halogen gases and the production methods thereof. The acid and halogen gases include HCl, HF, HBr, HI, F2, Cl2, Br2, I2, ClF3, PH3, PCl3, PCl5, POCl3, P2O5, AsH3, SiH4, SiF4, SiCl4, SiHCl3, SiH2Cl2, BF3, BCl3, GeCl4, GeH4, NO, NO2, SO2, SO3 and SF6, etc. The catalysts comprise one or more carrier materials selected from activated carbon, argil, diatomite, cement, silica and ceramic materials; and one or more metal compounds selected from: alkali metal hydroxides, oxides, carbonates and bicarbonates, alkaline earth metal hydroxides, oxides, carbonates and bicarbonates, Group IIIA metal oxides, Group IVA metal oxides, and transition metal oxides, oxide hydrates, sulfates and carbonates.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 13, 2008
    Inventor: Pao-Chu Liu
  • Publication number: 20080279738
    Abstract: Catalyst containing tin oxide, palladium and one or more zeolites as carrier oxide, in which the zeolite preferably has a silicon/aluminum ratio of >4. Said catalyst is utilized for the removal of harmful substances from lean combustion engines and exhaust airs, preferably for the simultaneous removal of carbon monoxide and hydrocarbons and sooty particles from diesel exhaust gases.
    Type: Application
    Filed: October 4, 2005
    Publication date: November 13, 2008
    Applicant: HTE AKTIENGESELLSCHAFT THE HIGH THROUGHPUT EXPERIM
    Inventors: Wolfgang Strehlau, Olga Gerlach, Jurgen Maier, Tamara Gabriel
  • Publication number: 20080281138
    Abstract: A catalyst is described which comprises at least one modified EU-1 zeolite containing silicon atoms and aluminium atoms, at least one matrix and at least one metal from group VIII of the periodic table of the elements, the modified zeolite having a number of hexacoordinated aluminium atoms representing more than 20% by weight of the total number of aluminium atoms present in said modified EU-1 zeolite. Said catalyst is used in a process for the isomerization of an aromatic feed comprising at least one compound containing eight carbon atoms per molecule.
    Type: Application
    Filed: April 22, 2008
    Publication date: November 13, 2008
    Inventors: Emmanuelle GUILLON, Erie Sanchez
  • Patent number: 7449425
    Abstract: The invention relates to a catalyst composition, a method of making the same and its use in a process for converting synthesis gas to alcohols. The catalyst composition comprises an anionic clay hydrotalcite and a catalytically active metal component, such as rhodium, manganese, cobalt, copper, and a mixture thereof.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: November 11, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Raymond A. Cook
  • Patent number: 7449421
    Abstract: A catalyst comprising at least one zeolite (molecular sieve) chosen from the group formed by the TON structure type zeolites (Theta-1, ZSM-22, ISI-1, NU-10 and KZ-2) and at least one zeolite chosen from the group formed by the zeolites (ZSM-48, EU-2, EU-11 and ZBM-30), at least one porous mineral matrix, at least one hydro-dehydrogenating element, preferably chosen from the elements of Group VIB and Group VIII of the periodic table, is used for the conversion of hydrocarbons, in particular for the reduction of the pour point of charges containing long (more than 10 carbon atoms) linear and/or slightly branched paraffins, in particular in order to convert, with a good yield, charges having high pour points to at least one cut having a low pour point and a high viscosity index for oil bases.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: November 11, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Emmanuelle Guillon, Johan Martens
  • Publication number: 20080261091
    Abstract: An oxidizer assembly provided with a housing having a plurality of inlets each for receiving a different gas and a plurality of outlets each corresponding to a different one of the inlets and outputting gas resulting from the gas received from its corresponding inlet. A catalyst assembly able to support gas flow therethrough is disposed within the housing and includes a catalyst able to oxidize carbon monoxide gas and to be regenerated. The catalyst assembly is further adapted to be movable such that successive parts of the assembly are able to be brought repeatedly in communication with a first inlet and its corresponding first outlet and then a second inlet and its corresponding second outlet of the housing.
    Type: Application
    Filed: June 2, 2008
    Publication date: October 23, 2008
    Inventors: Sai P. Katikaneni, Pinakin Patel
  • Publication number: 20080261803
    Abstract: A modified zeolite beta having an anhydrous chemical formula, by weight % of the oxides, of (0-0.3)Na2O.(0.5-10)Al2O3.(1.3-10)P2O5.(0.7-15)MxOy.(70-97)SiO2, wherein M is one or more transition metal(s) selected from the group consisting of Fe, Co, Ni, Cu, Mn, Zn and Sn, x is the number of the atoms of said transition metal M, and y is a number that meets with the requirement of the oxidation state of said transition metal M, is disclosed. The modified zeolite beta can be used as an active component of a cracking catalyst or additive for catalytic cracking of petroleum hydrocarbons.
    Type: Application
    Filed: May 31, 2006
    Publication date: October 23, 2008
    Applicant: China Petroleum & Chemical Corporation
    Inventors: Yibin Luo, Zhijian Da, Ying Ouyang, Li Zhuang, Jun Long, Xingtian Shu, Baoning Zong
  • Patent number: 7439204
    Abstract: A process for controlling the hydrogenation activity of a catalyst comprised of a crystalline molecular sieve and at least one hydrogenation metal selected from the group consisting of a Group VIIB metal, a Group VIII metal, and mixtures thereof. The process is carried out by contacting the catalyst with hydrogen under sufficient conditions of temperature and pressure and for sufficient time to reduce the hydrogenolysis activity of the catalyst. The catalyst prepared by the process finds application in the catalytic conversion of organic compounds, such as ethylbenzene dealkylation, xylenes isomerization, and the transalkylation of polyalkylaromatic hydrocarbons.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: October 21, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy E. McMinn, Ronald J. Cimini, Robert A. Crane, Andrew M. Hiester, Teresa A. Jurgens-Kowal, Gary D. Mohr
  • Publication number: 20080254969
    Abstract: The present invention relates to a method for preparing substrate-molecular sieve layer complex by vising ultra-sound and apparatuses used therein, more particularly to a method for preparing substrate-molecular sieve layer complex by combining substrate, coupling compound and molecular sieve particle, wherein covalent, ionic, coordinate or hydrogen bond between a substrate and a coupling compound; molecular sieve particle and coupling compound; coupling compounds; coupling compound and intermediate coupling compound is induced by using 15 KHz-100 MHz of ultrasound instead of simple reflux to combine substrate and molecular sieve particles by various processes, further to reduce time and energy, to retain high binding velocity, binding strength, binding intensity and density remarkably, to attach molecular sieve particle uniformly onto all substrates combined with coupling compound selectively, even though substrate with coupling compound and substrate without coupling compound exist together; and apparatuses
    Type: Application
    Filed: June 23, 2005
    Publication date: October 16, 2008
    Inventors: Kyung Byung Yoon, Jin Seok Lee, Kwang Ha, Yun-Jo Lee, Yong Chang
  • Publication number: 20080249340
    Abstract: A process and hydro-oxidation catalyst for the hydro-oxidation of a hydrocarbon, preferably a C3-8 olefin, such as propylene, by oxigen in the presence of hydrogen to the corresponding partially-oxidized hydrocarbon, preferably, a C3-8 olefin oxide, preferably, propylene oxide. The catalyst comprises gold, silver, one or more platinum group metals, one or more lanthanide rare earth metals, or a mixture thereof, deposited on a titanosilicate, preferably TS-1 characterized in that titanosilicate is prepared by microwave heating.
    Type: Application
    Filed: March 4, 2005
    Publication date: October 9, 2008
    Inventors: Susan J. Siler, Joseph D. Henry
  • Patent number: 7429550
    Abstract: A hydrogenation catalyst for a hydrocarbon oil, includes an inorganic porous support composed of at least the oxides of aluminum, phosphorus, and silicon, and supporting at least one active metal selected from the metals of Group 8 of the periodic table, at least one active metal selected from the metals of Group 6 of the periodic table, and phosphorus, the phosphorus chemical shift value of the inorganic support determined by 31P-CPMAS-NMR having the peak within the range of 0 to ?20 ppm. The catalyst can achieve an extremely high level of hydrogenation wherein the hydrocarbon is decreased in sulfur content to 10 ppm by mass or less and in nitrogen content to 3 ppm by mass or less.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 30, 2008
    Assignee: Nippon Oil Corporation
    Inventors: Hideshi Iki, Kazuaki Hayasaka, Kazuo Fukazawa
  • Publication number: 20080233039
    Abstract: The present invention is directed to carbon monoxide oxidation reactions in the presence of an O2 containing gas, nitrogen oxide conversion reactions, volatile organic compound conversion reactions in the presence of an O2 containing gas, and combinations thereof, and catalysts for use in those reactions. The catalyst comprises cobalt, its oxides or mixtures thereof and ruthenium, its oxides or mixtures thereof.
    Type: Application
    Filed: June 1, 2006
    Publication date: September 25, 2008
    Applicant: SYMYX TECHNOLOGIES, INC.
    Inventors: Alfred Hagemeyer, Anthony F. Volpe, Valery Sokolovskii, Andreas Lesik, Guido Streukens
  • Publication number: 20080227627
    Abstract: Catalyst characterized in that it contains a composition comprising palladium, tin oxide and a carrier oxide and optionally a promoter and a zeolite which is doped with a dopant, processes for producing the same, its use for the removal of harmful substances from lean combustion engines and exhaust airs as well as methods for the removal of harmful substances from exhaust gases from lean combustion engines by using said catalysts by oxidizing carbon monoxide and hydrocarbons and simultaneously removing soot particulate by oxidation.
    Type: Application
    Filed: May 12, 2006
    Publication date: September 18, 2008
    Inventors: Wolfgang Strehlau, Olga Gerlach, Juergen Maier, Tamara Gabriel
  • Publication number: 20080227629
    Abstract: The present invention relates to an oxidation catalyst comprising a substrate and an oxidation coating of platinum (Pt), palladium (Pd), cobalt (Co), iron (Fe) and cerium (Ce) applied to the substrate. Furthermore the invention relates to a method for producing such an oxidation catalyst and an internal combustion engine using such an oxidation catalyst.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 18, 2008
    Inventors: Albert N. Chigapov, Brendan Patrick Carberry
  • Publication number: 20080227628
    Abstract: Disclosed herein are mesoporous material derived from a parent zeolite. In an embodiment of the invention, the mesoporous material derived from a parent zeolite, has an internal volume greater than about 0.35 cc/g and a surface area greater than about 250 m2/g, the mesoporous material comprises micropores having a surface area and mesopores, wherein the surface area of the micropores in the mesoporous material is less than about 25% of that in the parent zeolite, wherein less than about 3% of the internal volume of the mesoporous material is provided by micropores and wherein the mesopores are essentially homogeneously distributed and form an essentially interconnected network. In another embodiment of the invention, the mesoporous material derived from an alumina-rich parent zeolite has an internal volume greater than about 0.
    Type: Application
    Filed: October 12, 2006
    Publication date: September 18, 2008
    Inventor: Raymond Le Van Mao
  • Patent number: 7422993
    Abstract: The present invention provides an adsorbent for adsorption heat pump and humidity-control air conditioner, which is capable of adsorbing an adsorbate therein and desorbing the adsorbate therefrom in a narrow relative vapor pressure range, and can be regenerated (desorption) at a low temperature. Also, the present invention provides an adsorption heat pump and humidity-control air conditioner using the adsorbent which can be effectively operated even by a low-temperature heat source, as well as methods of operating the adsorption heat pump and humidity-control air conditioner by effectively utilizing low-temperature exhaust heat. The absorbent of the present invention comprises zeolite containing (i) aluminum, (ii) phosphorus and (iii) iron and/or gallium in a skeletal structure thereof, which is substantially free from change in structure upon subjecting the adsorbent to adsorption and desorption of water vapor.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: September 9, 2008
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takahiko Takewaki, Masanori Yamazaki, Hiromu Watanabe, Hiroyuki Kakiuchi, Eri Kanamori, Shigeru Terada, Miki Iwade
  • Publication number: 20080213154
    Abstract: This invention relates to a solid divided composition comprising grains whose mean size is greater than 25 ?m and less than 2.5 mm, wherein each grain is provided with a solid porous core and a homogeneous continuous metal layer consisting of at least one type of transition non-oxidised metal and extending along a gangue coating the core in such a way that pores are inaccessible. A method for the production of said composition and for the use thereof in the form of a solid catalyst is also disclosed.
    Type: Application
    Filed: June 21, 2005
    Publication date: September 4, 2008
    Inventors: Philippe Kalck, Philippe Serp, Massimiliano Corrias
  • Publication number: 20080207435
    Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.
    Type: Application
    Filed: April 16, 2008
    Publication date: August 28, 2008
    Applicant: Advanced Refining Technologies LLC
    Inventor: Darryl P. Klein
  • Patent number: 7407908
    Abstract: This invention presents preparation, characterization and evaluation of an efficient heterogeneous Fe (III)-HY catalyst for photo-assisted Fenton reaction. Fe (III) ions are immobilized on HY zeolite using different loadings by impregnation, calcination and the activity of the catalyst is evaluated by the degradation of phenol. The effect of Fe loadings, H2O2 concentration, pH and quenching on photo-Fenton reaction are studied. The results obtained clearly show that Fe (III)-HY is efficient in the degradation of phenol and it is compared with that of a homogeneous photo-Fenton reaction. The increased rate of reaction on Fe (III)-HY highlights the synergistic role of zeolite. Heterogeneous Fe (III)-HY in photo-Fenton reaction allows a wide range of pH for reaction against the narrow pH range in homogeneous system. The system is further subjected to evaluate its stability in solid state. The stability of the catalyst is further established by recycling studies.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: August 5, 2008
    Assignee: Council of Scientific and Industrial Research
    Inventors: Subrahmanyam Machiraju, Durga K. Valluri, Mohammed Noorjahan
  • Patent number: 7407907
    Abstract: A catalyst for selectively opening cyclic paraffins has been developed. The catalyst comprises a Group VIII metal, such as platinum, a modifier component, such as niobium or ytterbium, a molecular sieve, such as UZM-16 and a refractory inorganic oxide such as alumina. The Group VIII metal and modifier component are preferably deposited on the refractory inorganic oxide. A process for using the catalyst is also disclosed.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: August 5, 2008
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Irina Galperin, legal representative, Michael J. McCall, Joseph A. Kocal
  • Patent number: 7407909
    Abstract: A method of ex-situ activation and dry passivation of supported noble metal catalysts including the steps of reducing in the presence of hydrogen and dry passivation by cooling in an inert atmosphere and exposing to air or by filling the pores of the catalyst with a low sulfur oil before exposing to air.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: August 5, 2008
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Jean W. Beeckman, William G. Borghard, Sylvain Hantzer
  • Patent number: 7405177
    Abstract: A catalyst and process for opening aliphatic cyclic hydrocarbons have been developed. The catalyst comprises a catalytic metal component, a molecular sieve and refractory inorganic oxide component. The molecular sieve is selected from the group consisting of MAPSOs, SAPOs, UZM-8, UZM-8HS, UZM-15, UZM-15HS, UZM-16, UZM-16HS and mixtures thereof. Preferred catalytic metals include platinum, palladium and rhodium. The catalyst may also contain a modifier such as niobium, titanium, or rare earth metals.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: July 29, 2008
    Assignee: UOP LLC
    Inventors: Irina Galperin, legal representative, Deng-Yang Jan, Michael J. McCall, Joseph A. Kocal, Leonid B. Galperin
  • Patent number: 7402544
    Abstract: The present invention is related to a mesoporous carbon molecular sieve, which can be used as a catalyst carrier capable of improving the activity of a supported catalyst and a method of preparing the same. Additionally, the invention is related to a supported catalyst employing the mesoporous carbon molecular sieve as a carrier, and a fuel cell employing the supported catalyst. The mesoporous carbon molecular sieve has an average primary particle size of less than about 500 nm, an average mesopore size in the range of about 3 nm to about 6 nm, and a surface area in the range of about 500 m2/g to about 2000 m2/g.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: July 22, 2008
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chan-Ho Pak, Hyuk Chang, Ji-Man Kim
  • Patent number: 7402545
    Abstract: This invention relates to a catalyst that contains at least one BOG-structured zeolite that comprises silicon and at least one Element T that is selected from the group that is formed by aluminum, iron, gallium and boron. The catalyst contains at least one metal that is selected from the group that is formed by the non-noble elements of groups VIB, VIIB and VIII of the periodic table. Said catalyst is used in a process for transalkylation of alkyl-aromatic hydrocarbons such as toluene and the alkyl-aromatic compounds with at least 9 carbon atoms.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: July 22, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Sylvie Lacombe, Emmanuelle Guillon
  • Patent number: 7399726
    Abstract: Large crystals of titanium silicalite or intergrowths of intergrown smaller crystals, having a mean particle size greater than 2 ?m, have been found catalytically effective at commercially reasonable rates for the epoxidation of olefins in the presence of hydrogen peroxide. Crystals synthesized with a silica source having a low sodium content exhibit high levels of production and selectivity. The crystals have a low attrition rate and are easily filterable from a product stream.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: July 15, 2008
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Bernard Cooker, Wilson H. Onimus, Jennifer D. Jewson, Ralph M. Dessau
  • Publication number: 20080167178
    Abstract: A catalyst and a method for selectively reducing nitrogen oxides (“NOx”) with ammonia are provided. The catalyst includes a first component comprising a zeolite or mixture of zeolites selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolites, mordenite, faujasite, ferrierite, zeolite beta, and mixtures thereof; a second component comprising at least one member selected from the group consisting of cerium, iron, copper, gallium, manganese, chromium, cobalt, molybdenum, tin, rhenium, tantalum, osmium, barium, boron, calcium, strontium, potassium, vanadium, nickel, tungsten, an actinide, mixtures of actinides, a lanthanide, mixtures of lanthanides, and mixtures thereof; optionally an oxygen storage material and optionally an inorganic oxide. The catalyst selectively reduces nitrogen oxides to nitrogen with ammonia at high temperatures. The catalyst has high hydrothermal stability. The catalyst has high activity for conversion of low levels of nitrogen oxides in exhaust streams.
    Type: Application
    Filed: March 29, 2007
    Publication date: July 10, 2008
    Inventors: Rajashekharam Malyala, Svetlana Iretskaya, Eric Deguns, Stephen J. Golden
  • Patent number: 7396522
    Abstract: The present invention relates to a catalyst useful for removal of hydrogen sulphide from gas streams and its conversion to sulphur, a process for preparing such catalyst and a method for removing of hydrogen sulphide using said catalyst.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: July 8, 2008
    Inventors: Jayalekshmy Ayyer, Pradipkumar Maheshchandra Shah, Virendra Bhikhabhai Patel
  • Patent number: 7393805
    Abstract: A process for preparing a transalkylation catalyst, the catalyst itself, and a transalkylation process for using the catalyst are herein disclosed. The catalyst comprises rhenium metal on a solid-acid support such as mordenite, which has been treated with a sulfur-based agent. Such treatment reduces the amount of methane produced by metal hydrogenolysis in a transalkylation process wherein heavy aromatics like A9+ are reacted with toluene to produce xylenes. Reduced methane production relative to total light ends gas production results in lower hydrogen consumption and lower reactor exotherms.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: July 1, 2008
    Assignee: UOP LLC
    Inventors: Edwin P. Boldingh, Antoine Negiz, Gregory F. Maher, Paula L. Bogdan, Dean E. Rende
  • Publication number: 20080152979
    Abstract: The cathode catalyst includes a zeolite-containing carrier, and a ruthenium (Ru)-M-tellurium (Te) alloy supported on the carrier, where M is selected from the group consisting of tungsten (W), molybdenum (Mo), and combinations thereof. The cathode catalyst has a high activity and selectivity for a reduction reaction of an oxidant, and is highly stable under an acidic atmosphere thereby being capable of improving performances of a membrane-electrode assembly and fuel cell system.
    Type: Application
    Filed: April 30, 2007
    Publication date: June 26, 2008
    Inventors: Alexey Alexandrovichserov, Chan Kwak, Si-Hyun Lee
  • Patent number: 7390347
    Abstract: Methods and apparatus are taught for selectively oxidizing carbon monoxide in a source of gas containing carbon monoxide and hydrogen. A gas containing carbon monoxide and hydrogen is fed into a membrane reactor (10, 50, 60) capable of selectively absorbing the carbon monoxide. Preferably, the reactor comprises a substantially defect-free zeolite membrane (4) having at one metal that acts as an oxidation catalyst. The zeolite membrane (4) may be supported on a porous ceramic support (2, 52, 61) and the average pore diameter is preferably between about 0.3 nm and about 1.0 nm. Moreover, the substantially defect-free zeolite membrane (4) preferably has a thickness between about 0.1 micron and about 50.0 microns. The at least one metal is preferably capable of selectively oxidizing the carbon monoxide and is preferably platinum. Preferably, the temperature of reactor housing is maintained at about 200-300° C.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: June 24, 2008
    Assignee: Noritake Co., Ltd.
    Inventors: Katsuki Kusakabe, Yasuhisa Hasegawa, Shigeharu Morooka, Yasunori Ando
  • Patent number: 7390766
    Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: June 24, 2008
    Inventor: Darryl P. Klein
  • Publication number: 20080146826
    Abstract: A catalyst comprising a transition metal zeolite and a noble metal is disclosed. The catalyst is prepared by an extrusion method using a comb-branched polymer as an extrusion aid. The catalyst is used in a reaction to produce epoxide from an olefin, hydrogen, and oxygen. The comb-branched polymer improves the mechanical properties of the extrudate.
    Type: Application
    Filed: December 19, 2006
    Publication date: June 19, 2008
    Inventors: Mark P. Kaminsky, Edward T. Shawl, Steven M. Augustine
  • Publication number: 20080146437
    Abstract: Fischer-Tropsch hydrocarbon synthesis using a noncobalt catalyst is used to produce waxy fuel and lubricant oil hydrocarbons from synthesis gas derived from natural gas. The waxy hydrocarbons are hydrodewaxed, with reduced conversion to lower boiling hydrocarbons, by contacting the waxy hydrocarbons, in the presence of hydrogen, with an unsulfided hydrodewaxing catalyst that has been reduced and then treated by contacting it with a stream containing one or more oxygenates.
    Type: Application
    Filed: February 20, 2008
    Publication date: June 19, 2008
    Inventors: Adeana Richelle Bishop, William Berlin Genetti, Jack Wayne Johnson, Loren Leon Ansell, Nancy Marie Page