Abstract: A family of new crystalline molecular sieves designated SSZ-91 is disclosed, as are methods for making SSZ-91 and uses for SSZ-91. Molecular sieve SSZ-91 is structurally similar to sieves falling within the ZSM-48 family of molecular sieves, and is characterized as: (1) having a low degree of faulting, (2) a low aspect ratio that inhibits hydrocracking as compared to conventional ZSM-48 materials having an aspect ratio of greater than 8, and (3) is substantially phase pure.
Type:
Grant
Filed:
May 11, 2021
Date of Patent:
June 20, 2023
Assignee:
CHEVRON U.S.A. INC.
Inventors:
Adeola Florence Ojo, Dan Xie, Yihua Zhang, Guan-Dao Lei
Abstract: Catalysts and method of preparing the catalysts are disclosed. One of the catalysts includes a zeolite support, a Group VIII metal on the zeolite support, and at least two halides bound to the zeolite support, to the Group VIII metal, or to both, and can have an average crush strength greater than 11.25 lb based on at least two samples of pellets of the catalyst measured in accordance with ASTM D4179.
Abstract: The invention provides a method for the production of a zeolite particle composition which has optimized characteristics, such as enhanced adsorption and specific ion exchange properties. A method and an apparatus for producing improved zeolite particle compositions are provided, where the particles are treated with an oxygen-containing gas during micronisation. The zeolite particle compositions can be used in a method for treatment of the human or animal body by therapy and/or prophylaxis, and specifically in a method of treating or preventing conditions of the human or animal body or symptoms of these conditions that are related to heavy metals, endotoxins, exotoxins, and/or bacterial, viral or parasitic intoxications in or of the digestive system, mucosal surfaces or the skin. Also, new zeolite particle compositions can be used as food additive, as filter for purification of water, in packaging materials, or as cosmetic ingredient.
Abstract: According to one or more embodiments, non-agglomerated, nano-sized ZSM-22 zeolites may be synthesized by methods comprising operating a mechanical rotation drum unit at a first temperature of from 40° C. to 60° C. and a first speed of from 200 rpm to 1000 rpm for a first time period of from 1.3 hours to 2.7 hours; operating the mechanical rotation drum unit at a second speed of from 30 rpm to 90 rpm for a second time period of from 0.05 hours to 0.4 hours; heating the mechanical rotation drum unit at a ramping temperature of from 8° C./minute to 12° C./minute to a second temperature of from 115° C. to 185° C. at the second speed; operating the mechanical rotation drum unit at the second temperature and the second speed for a third time period of from 30 hours to 90 hours; and cooling the mechanical rotation drum unit at a fourth speed of 0 rpm.
Type:
Grant
Filed:
March 19, 2021
Date of Patent:
April 4, 2023
Assignees:
Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
Inventors:
Emad Al-Shafei, Oki Muraza, Anas Karrar Jamil, Ki-Hyouk Choi, Ashok K. Punetha, Zain Hassan Yamani
Abstract: A method for isomerising dehydration in the presence of a specific catalyst, to produce at least one alkene, carried out on a feedstock containing a non-linear primary monoalcohol, where the catalyst includes a zeolite having a series of 8MR channels and a binder having certain pore volume, which catalyst is multilobe-shaped and has characteristics including certain average mesopore volume Vm, and mesopores having a certain diameter, an average certain macropore volume VM, the macropores having a certain diameter, and certain average micropore volume V?, the micropores having a certain diameter, and the catalyst has a certain exposed geometric area.
Type:
Grant
Filed:
April 4, 2019
Date of Patent:
April 4, 2023
Assignees:
IFP Energies Nouvelles, TOTAL RESEARCH & TECHNOLOGY FELUY
Inventors:
Sylvie Maury, Vincent Coupard, Delphine Bazer-Bachi, Joseph Lopez, Nikolai Nesterenko, Guillaume Duplan, Colin Dupont
Abstract: A method of producing a acid/metal bifunctional catalyst may include: mixing an acid catalyst, a metal catalyst, and a fluid to produce a slurry, wherein the acid catalyst is present at 50 wt % or less relative to a total catalyst weight in the slurry; heating the slurry; producing a powder from the slurry; and calcining the powder to produce the acid/metal bifunctional catalyst. Such acid/metal bifunctional catalyst would be useful in the direct conversion of syngas to dimethyl ether as well as other reactions.
Type:
Grant
Filed:
August 13, 2020
Date of Patent:
March 14, 2023
Assignee:
EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
Inventors:
Chuansheng Bai, Majosefina Cunningham, Jihad M. Dakka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
Abstract: Disclosed in the present invention is a tail gas treatment catalyst. The catalyst consists of a carrier, a first catalyst, and a second catalyst. The first catalyst and the second catalyst are provided on both ends of the carrier. The first catalyst can purify pollutants in tail gas. The second catalyst can purify a byproduct, ammonia, obtained by the purification by the first catalyst and pollutants that are not completely purified by the first catalyst. The second catalyst is of a double-layer structure; the lower layer consists of an oxygen storage material, aluminum oxide, and a second active component; the second active component is a composition of Pt and Pd, or a composition of Ce, Fe, Ni and Cu; the upper layer consists of a molecular sieve and a third active component; the third active component is Cu or a composition of Cu and Fe.
Abstract: Provided is a catalytic washcoat having a catalyst component and an alumina binder, wherein the catalyst component includes an aluminosilicate molecular sieve having a beta (BEA) and/or chabazite (CHA) framework, and about 1 to about 10 weight percent of a base metal component comprising iron and/or copper, wherein said weight percent is based on the weight of the aluminosilicate molecular sieve.
Type:
Grant
Filed:
March 11, 2019
Date of Patent:
February 28, 2023
Assignee:
Johnson Matthey Public Limited Company
Inventors:
Stuart David Reid, Alexander Nicholas Michael Green, Guy Richard Chandler
Abstract: A novel synthetic crystalline aluminogermanosilicate molecular sieve material, designated SSZ-116, is provided. SSZ-116 can be synthesized using 3-[(3,5-di-tert-butylphenyl)methyl]-1,2-dimethyl-1H-imidazolium cations as a structure directing agent. SSZ-116 may be used in organic compound conversion reactions and/or sorptive processes.
Type:
Grant
Filed:
September 17, 2020
Date of Patent:
February 7, 2023
Assignee:
CHEVRON U.S.A. INC.
Inventors:
Stacey Ian Zones, Jesus Pascual, Dan Xie, Cong-Yan Chen
Abstract: A method of preparing hydrodesulfurization catalysts having cobalt and molybdenum sulfide deposited on a support material containing mesoporous silica. The method utilizes a sulfur-containing silane that dually functions as a silica source and a sulfur precursor. The method involves an one-pot strategy for hydrothermal treatment and a single-step calcination and sulfidation procedure. The application of the hydrodesulfurization catalysts in treating a hydrocarbon feedstock containing sulfur compounds to produce a desulfurized hydrocarbon stream is also specified.
Type:
Grant
Filed:
August 9, 2021
Date of Patent:
January 10, 2023
Assignee:
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Inventors:
Khalid R. Alhooshani, Saheed Adewale Ganiyu, Abdulkadir Tanimu
Abstract: The structured catalyst for oxidation for exhaust gas purification includes a support having a porous structure constituted by a zeolite-type compound, and at least one type of oxidation catalyst that is present in the support and selected from the group consisting of metal and metal oxide, the support having channels that communicate with each other, and the oxidation catalyst being present in at least the channels of the support.
Abstract: A method of preparing hydrodesulfurization catalysts having cobalt and molybdenum sulfide deposited on a support material containing mesoporous silica. The method utilizes a sulfur-containing silane that dually functions as a silica source and a sulfur precursor. The method involves an one-pot strategy for hydrothermal treatment and a single-step calcination and sulfidation procedure. The application of the hydrodesulfurization catalysts in treating a hydrocarbon feedstock containing sulfur compounds to produce a desulfurized hydrocarbon stream is also specified.
Type:
Grant
Filed:
August 9, 2021
Date of Patent:
January 10, 2023
Assignee:
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Inventors:
Khalid R. Alhooshani, Saheed Adewale Ganiyu, Abdulkadir Tanimu
Abstract: A method of preparing a mesoporous Fe—Cu—SSZ-13 molecular sieve includes activating an aluminum source, a silicon source, an iron source and a copper source respectively; mixing the activated minerals with sodium hydroxide, water and a seed crystal at 25-90° C., while controlling feeding amounts of respective raw materials so that molar ratios of respective materials in a synthesis system are as follows: SiO2/Al2O3=10-100, SiO2/Fe2O3=30-3000, SiO2/CuO=1-100, Na2O/SiO2=0.1-0.5, H2O/SiO2=10-50, template/SiO2=0.01-0.5; adding an acid source to adjust pH of the system for first aging; and adding the acid source again to adjust the pH of the system for second aging to obtain aged gel; pouring an aged mixture into a kettle; cooling a crystallized product and filtering to remove a liquor; washing a filter cake; drying to obtain a solid; performing ion exchange; and filtering, washing and drying the solid to obtain powder; and placing the powder in a muffle furnace.
Type:
Grant
Filed:
December 27, 2018
Date of Patent:
November 15, 2022
Inventors:
Yuanyuan Yue, Ben Liu, Nangui Lv, Xiaojun Bao, Jie Liu, Tinhai Wang, Pei Yuan, Haibo Zhu, Zhengshuai Bai, Qingyan Cui
Abstract: Process for the preparation of a catalyst and a catalyst comprising more than one silica is provided herein. Thus, in one embodiment, the invention provides a particulate FCC catalyst comprising about 5 to about 60 wt % one or more zeolites, about 10 to about 45 wt % quasicrystalline boehmite (QCB), about 0 to about 35 wt % microcrystalline boehmite (MCB), greater than about 0 to about 15 wt % silica from sodium stabilized colloidal silica, greater than about 0 to about 30 wt % silica from ammonia stabilized or lower sodium colloidal silica, and the balance clay and the process for making the same. This process results in attrition resistant catalysts with good performance.
Type:
Grant
Filed:
January 11, 2019
Date of Patent:
October 4, 2022
Assignee:
Albemarle Corporation
Inventors:
Amir Sabahi, Andrew Loebl, Sandra Gavalda, Julie Francis, Eswaramoorthi Iyyamperumal, Min Li, Andrea Marcinkova
Abstract: The invention is to provide a method for producing a metal-supported zeolite for alcoholic beverages capable of efficiently removing unwanted components contained in alcoholic beverages to thereby reduce silver release, and the metal-supported zeolite for alcoholic beverages, and to provide a method for producing alcoholic beverages using the metal-supported zeolite for alcoholic beverages.
Abstract: Process for the preparation of a catalyst and a catalyst comprising the use of more than one silica source is provided herein. Thus, in one embodiment, the invention provides a particulate FCC catalyst comprising about 5 to about 60 wt % one or more zeolites, about 15 to about 35 wt % quasicrystalline boehmite (QCB), about 0 to about 35 wt % microcrystalline boehmite (MCB), greater than about 0 to about 15 wt % silica from sodium stabilized basic colloidal silica, greater than about 0 to about 30 wt % silica from acidic colloidal silica or polysilicic acid, and the balance clay and the process for making the same. This process results in attrition resistant catalysts with a good accessibility.
Type:
Grant
Filed:
August 4, 2017
Date of Patent:
August 30, 2022
Assignee:
Albemarle Corporation
Inventors:
Amir Sabahi, Andrew J Loebl, Sandra Gavalda, Julie A Francis, Eswaramoorthi Iyyamperumal
Abstract: In production of a zeolite membrane complex, a starting material solution containing at least a structure-directing agent and FAU-type zeolite particles having an average particle diameter of 50 to 500 nm is prepared. Then, a support is immersed in the starting material solution to form a zeolite membrane on the support by hydrothermal synthesis, the zeolite membrane being composed of AFX-type zeolite. After that, the structure-directing agent in the zeolite membrane is removed.
Abstract: Methods for producing supported catalysts containing a transition metal and a bound zeolite base are disclosed. These methods employ a step of impregnating the bound zeolite base with the transition metal, fluorine, and high loadings of chlorine. The resultant high chlorine content supported catalysts have improved catalyst activity in aromatization reactions.
Abstract: According to the subject matter of the present disclosure, a method of producing an aromatization catalyst may comprise producing a plurality of uncalcined ZSM-5 nanoparticles via a dry-gel method, directly mixing the plurality of uncalcined ZSM-5 nanoparticles with large pore alumina and a binder to form a ZSM-5/alumina mixture, and calcining the ZSM-5/alumina mixture to form the aromatization catalyst. The plurality of uncalcined ZSM-5 nanoparticles may have an average diameter of less than 80 nm.
Type:
Grant
Filed:
July 16, 2020
Date of Patent:
March 22, 2022
Assignee:
Saudi Arabian Oil Company
Inventors:
Manal Al-Eid, Lianhui Ding, Essa Alnaimi
Abstract: A monolithic separation membrane structure according to the present invention includes a porous support body and a separation membrane. The porous support body has a plurality of filtration cells opening at both end surfaces, a plurality of water collecting cells closed on the both end surfaces, a plurality of discharge flow paths running through the plurality of water collecting cells and opening on an outer peripheral surface, and a monolithic base body including the outer peripheral surface. The separation membrane is formed on inside surfaces of the plurality of filtration cells. The plurality of filtration cells includes a first filtration cell and a second filtration cell which are adjacent to each other. The plurality of water collecting cells include water collecting cell which is adjacent to the first filtration cell and are separated from the second filtration cells.
Abstract: A particulate material and a process for the production thereof are provided, which particulate material comprises zeolitic particles having a crystalline structure, which contain as the main component a zeolite material having a zeolitic framework structure formed from Si, O and optionally Al, and/or a zeolite-like material having a zeolitic framework structure which is formed not only from Si, O and optionally Al, wherein the zeolitic particles are in the form of essentially spherical particles with nanometer dimensions.
Abstract: The present invention provides a method of stabilizing a nitrate-based explosive through the use of a NOx scavenger. The present invention further provides a blasting agent including ammonium nitrate and a NOx scavenger. The present invention further provides for a method of blasting adapted for use in reactive and/or elevated temperature ground.
Type:
Grant
Filed:
September 1, 2016
Date of Patent:
December 21, 2021
Inventors:
James Kenneth Beattie, Alex Masato Djerdjev, Brian Stanley Hawkett, Chiara Neto, Pramith Priyananda
Abstract: This exhaust gas purifying catalyst is provided with a substrate 10 and a catalyst layer 20 formed on a surface of the substrate 10. The catalyst layer 20 contains zeolite particles 22 that support a metal, and a rare earth element-containing compound 24 that contains a rare earth element. The rare earth element-containing compound 24 is added in such an amount that the molar ratio of the rare earth element relative to Si contained in the zeolite 22 is 0.001 to 0.014 in terms of oxides.
Type:
Grant
Filed:
February 19, 2018
Date of Patent:
December 21, 2021
Assignee:
Cataler Corporation
Inventors:
Shu Miyasaka, Eriko Tanaka, Norihiko Aono, Mai Huong Tran, Keigo Hori, Daisuke Sugioka
Abstract: A catalyst includes a zeolite, wherein the zeolite has: a CHA framework; a particle size less than or equal to 100 nanometers; and a silica to alumina mole ratio in the range of about 50:1 to about 150:1. The catalyst can include a metal dopant. The catalyst can be used for purifying a product by flowing a reactant across the catalyst to form the product; and condensing or separating the product. The product can be an olefin or alkenes with an increased carbon chain. The catalyst can be used for selective catalytic reduction of nitrogen oxide or a gas to liquid reaction. A method of producing the catalyst can include selecting the concentration of a crystal growth inhibitor based on the ratio of the silica precursor and an alumina precursor such that the zeolite crystals have a mean particle size less than or equal to 100 nanometers.
Abstract: Composite catalysts includes zeolite particles at least partially embedded in a catalyst support material and at least one catalytically active compound deposited on the outer surfaces and pore surfaces of the catalyst support material, zeolite particles, or both. A method of making the composite catalysts may include preparing a catalyst precursor mixture that includes the zeolite, catalyst support material, triblock copolymer surfactant, and the catalytically active compound precursor and spray drying the catalyst precursor mixture. The composite catalysts may be used as a single catalyst for conducting olefin metathesis and cracking reactions. A method for producing propene may include contacting a butene-containing feed with the composite catalysts.
Type:
Grant
Filed:
December 2, 2019
Date of Patent:
November 30, 2021
Assignee:
Saudi Arabian Oil Company
Inventors:
Munir D. Khokhar, Zahra Almisbaa, Sohel K. Shaikh, Raed Abudawoud
Abstract: A modified Y-type molecular sieve contains 0.5-2 wt. % of Na2O based on the total amount of the modified Y-type molecular sieve. In the modified Y-type molecular sieve, the ratio between the total acid amount measured by pyridine and infrared spectrometry and total acid amount measured by n-butyl pyridine and infrared spectrometry is 1-1.2. The total acid amount measured by pyridine and infrared spectrometry of the modified Y-type molecular sieve is 0.1-1.2 mmol/g. The acid center sites of the molecular sieve of the modified Y-type molecular sieve are distributed in the large pore channels. The molecular sieve is used in the hydrocracking reaction process of a wax oil.
Type:
Grant
Filed:
November 29, 2017
Date of Patent:
November 23, 2021
Assignees:
CHINA PETROLEUM & CHEMICAL CORPORATION, DALIAN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC CORP.
Inventors:
Wei Liu, Minghua Guan, Yanze Du, Fenglai Wang, Bo Qin, Hang Gao
Abstract: This exhaust gas purifying catalyst is provided with a substrate 10 and a catalyst layer 20 formed on a surface of the substrate 10. The catalyst layer 20 contains zeolite particles 22 that support a metal, and a rare earth element-containing compound 24 that contains a rare earth element. The rare earth element-containing compound 24 is added in such an amount that the molar ratio of the rare earth element relative to Si contained in the zeolite 22 is 0.001 to 0.014 in terms of oxides.
Type:
Grant
Filed:
February 19, 2018
Date of Patent:
November 9, 2021
Assignee:
Cataler Corporation
Inventors:
Shu Miyasaka, Eriko Tanaka, Norihiko Aono, Mai Huong Tran, Keigo Hori, Daisuke Sugioka
Abstract: A nanomaterial catalyst comprising a partially crystalline porous magnesium silicate support and gold nanoparticles, the catalyst being useful for oxidative cracking of hydrocarbons, specifically the production of light olefins from propane. Methods of producing the nanomaterial catalyst as well as a method of oxidative cracking of a hydrocarbon to produce light olefins are provided.
Abstract: Provided is a beta zeolite also having exceptional catalytic activity as a catalyst other than an olefin epoxidation catalyst. This beta zeolite is synthesized without using an organic structure-directing agent and has titanium in the structural skeleton thereof, the Ti content being 0.10 mmol/g or higher. This beta zeolite preferably has an Si/Ti molar ratio of 20-200. Also, the Si/Al molar ratio is preferably 100 or higher.
Type:
Grant
Filed:
October 25, 2018
Date of Patent:
October 12, 2021
Assignees:
Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
Abstract: The present invention discloses a catalyst for preparing pyridine base from syngas. The catalyst includes a carrier, an active component, a first auxiliary and a second auxiliary. The carrier is molecular sieves. The active component is Rh. The first auxiliary is one or more of Mn, Fe, Na and La. The second auxiliary is one or more of Zn, Co, Cr, Bi and Cu. The active component Rh is 0.5-3% of a mass of the carrier. The first auxiliary is 0.05-5% of the mass of the carrier. The second auxiliary is 0.5-15% of the mass of the carrier. The present invention further discloses application of the catalyst to preparation of pyridine base by catalyzing syngas, where the syngas and an ammonia donor are used as reaction raw materials for reaction to generate pyridine base products.
Type:
Grant
Filed:
August 3, 2018
Date of Patent:
September 7, 2021
Assignee:
NANJING REDSUN BIOCHEMISTRY CO., LTD
Inventors:
Xiaopan Liu, Chaoran Luo, Yi Xue, Wenkui Wang, Xiang Du
Abstract: A method for preparing a hydrocracking catalyst comprising: (i) providing a shaped body comprising a zeolite and a binder, wherein the shaped body has been obtained by shaping, calcination and cooling, wherein the zeolite is ZSM-5 having a silica (SiO2) to alumina (Al2O3) molar ratio of 25-75; (ii) optionally drying the shaped body at a temperature of 100-300° C. for a period of at least 1 hour; (iii) depositing a hydrogenation metal on the shaped body by an impregnation for a period of at most 2 hours such that the amount of the hydrogenation metal is 0.010-0.30 wt % with respect to the total catalyst; (iv) optionally rinsing the metal deposited shaped body with water; and (v) heat-treating the metal deposited shaped body in air at a temperature of 250-300° C. for a period of 1-5 hours; wherein the catalyst comprises a total of less than 0.05 wt % sodium and cesium.
Type:
Grant
Filed:
October 17, 2017
Date of Patent:
August 17, 2021
Assignee:
SABIC GLOBAL TECHNOLOGIES B.V.
Inventors:
Ashim Kumar Ghosh, Alla Khanmamedova, Scott A. Stevenson
Abstract: A method of making a multifunctional catalyst for upgrading pyrolysis oil includes contacting a zeolite support with a solution including at least a first metal catalyst precursor and a second metal catalyst precursor, the first metal catalyst precursor, the second metal catalyst precursor, or both, including a heteropolyacid. Contacting the zeolite support with the solution deposits or adsorbs the first metal catalyst precursor and the second catalyst precursor onto outer surfaces and pore surfaces of the zeolite support to produce a multifunctional catalyst precursor. The method further includes removing excess solution from the multifunctional catalyst precursor and calcining the multifunctional catalyst precursor to produce the multifunctional catalyst comprising at least a first metal catalyst and a second metal catalyst deposited on the outer surfaces and pore surfaces of the zeolite support.
Abstract: The present disclosure features a high metal cation content zeolite-based binary catalyst (e.g., a high copper and/or iron content zeolite-based binary catalyst, where the zeolite can be a chabazite) for NOx reduction, having relatively low N2O make, and having low corresponding metal oxide content; where the metal in the metal oxide corresponds to the metal of the metal cation. The present disclosure also describes the synthesis of the zeolite-based binary catalyst having high metal cation content.
Abstract: The present invention is directed towards the use of an ion-exchanged zeolite containing ASC as a trap for volatile vanadium compounds in a downstream position of a vanadium containing SCR-catalyst.
Type:
Grant
Filed:
July 14, 2016
Date of Patent:
May 4, 2021
Assignee:
UMICORE AG & CO. KG
Inventors:
Matthias Duisberg, Alain Ristori, Stephan Malmberg, Marcus Pfeifer
Abstract: A package for storing or containing at least one ethylene response manipulation agent such as 1-methylcyclopropene is disclosed. The package can have multiple film layers, but preferably the outer layer comprises a polymer at least partially soluble when contacted with an aqueous media, and the inner layer comprising an ethylene response manipulation agent permeable film structure. Aerosols comprising the ethylene response manipulation agents are also disclosed.
Abstract: A method of making a xylene isomerization catalyst comprises the steps of (i) contacting a ZSM-5 zeolite starting material having a silica to alumina molar ratio of 20 to 50 and having a mesopore surface area in the range of 50 m2/gram to 200 m2/gram in a reactor with a base to provide an intermediate zeolite material; (ii) recovering the intermediate ZSM-5 zeolite material of step (i); (iii) contacting the intermediate zeolite material with an acid to provide an acid treated ZSM-5 zeolite product; (iv) recovering the acid treated ZSM-5 zeolite material; and (v) calcining the acid treated ZSM-5 zeolite material to provide a desilicated ZSM-5 zeolite product having a silica to alumina molar ratio of 20 to 150 and having a mesopore surface area in the range of 100 m2/gram to 400 m2/gram.
Abstract: A catalyst includes LTA zeolite including copper ions, wherein a Si/Al ratio of the LTA zeolite is 2 to 50. The catalyst is coated on a honeycomb carrier or a filter. The catalyst removes NOx from a reaction gas at 100° C. or above. The catalyst has an NOx conversion rate of 80% at 450° C. or above.
Type:
Grant
Filed:
November 19, 2019
Date of Patent:
April 20, 2021
Assignees:
HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, POSTECH ACADEMY-INDUSTRY FOUNDATION
Inventors:
Suk Bong Hong, Donghui Jo, Taekyung Ryu, Gi Tae Park, In-Sik Nam, Pyung Soon Kim, Chang Hwan Kim
Abstract: Direct conversion of syngas to light olefins is carried out in a fixed bed or a moving bed reactor with a composite catalyst A+B. The active ingredient of catalyst A is active metal oxide; and catalyst B is one or more than one of zeolite of CHA and AEI structures or metal modified CHA and/or AEI zeolite. A spacing between geometric centers of the active metal oxide of the catalyst A and the particle of the catalyst B is 5 ?m-40 mm. A spacing between axes of the particles is preferably 100 ?m-5 mm, and more preferably 200 ?m-4 mm. A weight ratio of the active ingredients in the catalyst A and the catalyst B is within a range of 0.1-20 times, and preferably 0.3-5.
Type:
Grant
Filed:
December 4, 2017
Date of Patent:
March 30, 2021
Assignee:
DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
Abstract: A method for producing Metal Organic Framework (MOF) having a framework that encapsulates a bio-molecule, the method comprising combining in a solution the bio-molecule and MOF precursors, wherein the bio-molecule promotes formation of the encapsulating framework. The method stems from a surprising effect that a bio-molecule can promote or trigger the formation of MOF when combined together in a solution with MOF precursors. That is, it has now been found that a bio-molecule can effectively act as a seed around which the framework forms, with the resulting framework encapsulating the bio-molecule.
Type:
Grant
Filed:
May 19, 2015
Date of Patent:
March 16, 2021
Assignee:
Commonwealth Scientific and Industrial Research Organisation
Inventors:
Kang Liang, Raffaele Ricco, Cara Maxwell Doherty, Paolo Falcaro
Abstract: A method for hydrocracking a hydrocarbon feedstock, the method comprising: contacting the hydrocarbon feedstock with a catalyst containing a nano-sized mesoporous zeolite composition under reaction conditions to produce a product stream containing at least 20 weight percent of hydrocarbons with 1-4 carbon atoms, wherein the nano-sized mesoporous zeolite composition is produced by a method that includes: mixing silica, a source of aluminum, and tetraethylammonium hydroxide to form an aluminosilicate fluid gel; drying the aluminosilicate fluid gel to form a dried gel mixture; subjecting the dried gel mixture to hydrothermal treatment to produce a zeolite precursor; adding cetyltrimethylammonium bromide (CTAB) to the zeolite precursor to form a templated mixture; subjecting the templated mixture to hydrothermal treatment to prepare a CTAB-templated zeolite; washing the CTAB-templated zeolite with distilled water; separating the CTAB-templated zeolite by centrifugation; and drying and calcining the CTAB-templated
Abstract: A method of making BTX (benzene, toluene, xylene) compounds by feeding a heavy reformate stream to a reactor, where the reactor includes a composite zeolite catalyst, that contains a mixture of a desilicated mesoporous mordenite and ZSM-5, and in which the desilicated mesoporous mordenite, the ZSM-5, or both, comprise one or more impregnated metals. The composite zeolite catalyst is able to catalyze the transalkylation reaction and the dealkylation reaction simultaneously to produce the BTX compounds.
Type:
Grant
Filed:
March 12, 2019
Date of Patent:
February 23, 2021
Assignees:
Saudi Arabian Oil Company, Universitat Politecnica De Valencia, Consejo Superior De Investigaciones Cientificas
Inventors:
Veera Venkata Ramakrishna Tammana, Raed Abudawoud, Avelino Corma Canos, M. Teresa Portilla Ovejero, M. Cristina Martinez Sanchez, Ibrahim M. Al-Zahrani
Abstract: A process for the preparation of a zeolitic material having a FAU-type framework structure comprising YO2 and X2O3, comprising: (a) preparing a mixture comprising one or more sources of YO2, one or more sources of X2O3, and one or more structure directing agents (SDA); (b) crystallizing the zeolitic material from the mixture obtained in (a); wherein Y is a tetravalent element and X is a bivalent element, and wherein the one or more structure directing agents comprise one or more isomers of diaminomethylcyclohexane. A zeolitic material having an FAU-type framework structure obtained according to the inventive process; processes for preparing a coated substrate and a shaped body, respectively, from the zeolitic material having a FAU-type framework structure obtained according to the inventive process and, a method for selectively reducing nitrogen oxides NOx employing said zeolitic material.
Type:
Grant
Filed:
July 28, 2017
Date of Patent:
December 29, 2020
Assignee:
BASF Corporation
Inventors:
Natalia Trukhan, Alexander Panchenko, Ulrich Mueller
Abstract: A catalyst includes LTA zeolite including copper ions, wherein a Si/Al ratio of the LTA zeolite is 2 to 50. The catalyst is coated on a honeycomb carrier or a filter. The catalyst removes NOx from a reaction gas at 100° C. or above. The catalyst has an NOx conversion rate of 80% at 450° C. or above.
Type:
Grant
Filed:
November 19, 2019
Date of Patent:
December 1, 2020
Assignees:
HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, POSTECH ACADEMY-INDUSTRY FOUNDATION
Inventors:
Suk Bong Hong, Donghui Jo, Taekyung Ryu, Gi Tae Park, In-Sik Nam, Pyung Soon Kim, Chang Hwan Kim
Abstract: The present invention relates to a catalyst composition and a process for preparing thereof, wherein the catalyst composition is specifically active for hydro-conversion of LCO involving mainly the partial ring opening of multi-ring aromatics leading to the production of petrochemical feedstock. The catalyst composition comprises of a carrier comprising ultra-stable Y zeolite and binder alumina, group VIB and VIIIB metal species, and organic additives. The carrier is impregnated with metal solution to form active sites of WS2 slabs of dimensions in the range of 35-45 ?.
Type:
Grant
Filed:
March 12, 2019
Date of Patent:
November 24, 2020
Assignee:
Indian Oil Corporation Limited
Inventors:
Ramasubramanian Kanthasamy, Kochappilly Ouseph Xavier, Alex Cheru Pulikottil, Madhusudan Sau, Sanjiv Kumar Mazumdar, Sankara Sri Venkata Ramakumar
Abstract: A method for synthesizing a nano-sized mesoporous zeolite composition, comprising: mixing silica, a source of aluminum, and tetraethylammonium hydroxide to form an aluminosilicate fluid gel; drying the aluminosilicate fluid gel to form a dried gel mixture; subjecting the dried gel mixture to hydrothermal treatment to produce a zeolite precursor; adding cetyltrimethylammonium bromide (CTAB) to the zeolite precursor to form a templated mixture; subjecting the templated mixture to hydrothermal treatment to prepare a CTAB-templated zeolite.
Abstract: Embodiments of the present disclosure describe a zeolite-like metal-organic framework composition comprising a metal-organic framework composition with ana topology characterized by the formula [MIII(4, 5-imidazole dicarboxylic acid)2X(solvent)a]n wherein MIII comprises a trivalent cation of a rare earth element, X comprises an alkali metal element or alkaline earth metal element, and solvent comprises a guest molecule occupying pores. Embodiments of the present disclosure describe a method of separating paraffins comprising contacting a zeolite-like metal-organic framework with ana topology with a flow of paraffins, and separating the paraffins by size.
Type:
Grant
Filed:
April 13, 2018
Date of Patent:
September 1, 2020
Assignee:
KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
Abstract: A catalytic proppant and methods for making and using same are disclosed herein. The catalytic proppant can include a proppant support containing silica and alumina. The proppant support can have a macropore concentration of about 15% to about 45%, a mesopore concentration of about 20% to 50%, and a micropore concentration of about 8% to about 30% based on the total pore volume of the proppant support. The proppant support can also have a surface area of about 0.5 m2/g to about 50 m2/g. The catalytic proppant can have a long term permeability at 7,500 psi of at least about 10 D in accordance with ISO 13503-5.
Type:
Grant
Filed:
March 14, 2018
Date of Patent:
August 25, 2020
Assignee:
CARBO CERAMICS INC.
Inventors:
Steve Savoy, Daniel R. Mitchell, Byron Zollars, Chad Cannan, Todd Roper
Abstract: The invention relates to a catalyst composition which comprises a carrier material component and at least one metal component that is supported on the carrier material component. The carrier material component comprises a ZSM-12 type zeolite, a EU-1 type zeolite, and an inorganic binder. The metal component may include a Group VIII metal. The invention further relates to a process for preparing the catalyst and using it in a process for the isomerisation of alkylaromatics.
Type:
Grant
Filed:
December 8, 2016
Date of Patent:
July 28, 2020
Assignee:
Shell Oil Company
Inventors:
Menno Feico Van Der Hauw, Richard Berend Mauer
Abstract: Disclosed herein are novel RHO zeolites useful as kinetically selective adsorbents for oxygen and/or nitrogen. The adsorbents can be used in pressure swing adsorption processes for selectively adsorbing oxygen and/or nitrogen from feed streams such as an air stream or crude argon stream. Also disclosed are novel methods of preparing RHO zeolites, including in particular mixed-cation RHO zeolites.
Type:
Grant
Filed:
September 28, 2017
Date of Patent:
May 12, 2020
Assignee:
Air Products and Chemicals, Inc.
Inventors:
Magdalena M. Lozinska, Paul A. Wright, Elliott L. Bruce, William Jack Casteel, Jr., Shubhra Jyoti Bhadra, Robert Quinn, Garret Chi-Ho Lau, Erin Marie Sorensen, Roger Dean Whitley, Timothy Christopher Golden, Mohammad Ali Kalbassi
Abstract: An object of the present invention is to provide a chabazite zeolite which does not easily peel from a substrate such as a honeycomb body even when the substrate has been coated therewith, while exhibiting excellent durability. The present invention relates to a chabazite zeolite for substrate coating, which includes (i) to (iv) below. (i) Si and Al are contained, (ii) an SiO2/Al2O3 molar ratio is in a range of 5<SiO2/Al2O3<10, (iii) an average crystal size is in a range of 0.05 ?m<average crystal size<1 ?m, and (iv) in a spectrum measured by 27Al-NMR, a ratio (ANFA/ATotal) between an area (ATotal) of all peaks in the spectrum and an area (ANFA) of peaks assigned to Al other than tetracoordinated Al is in a range of 20%?(ANFA/ATotal)?70%.