Halogen [i.e., Fluorine (fl), Chlorine (cl), Bromine (br), Iodine (i), Astatine (at)] Containing Patents (Class 505/123)
  • Patent number: 8703651
    Abstract: A composition of matter for a layered ionic superconductor comprising a plurality of layers of ions and electronic interaction charges, and having a substantially improved superconducting transition temperature is described. An aspect of the composition includes a first layer comprising a plurality of alkali ions and cesium ions in particular that is adjacent to a second layer comprising a plurality of halogen ions and fluorine ions in particular. The first and second layers contain electronic interaction charges and are separated by a predetermined perpendicular distance. Crystalline structure, ionic properties, superconducting transition temperature, and superfluid density for several embodiments including companion ionic species are described and illustrated. Methods for preparing the several embodiments are provided.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 22, 2014
    Inventors: Dale Richard Harshman, Anthony Thomas Fiory
  • Patent number: 8389045
    Abstract: An oxide superconductor film formed on a substrate includes an oxide containing at least one metal M selected from the group consisting of yttrium and lanthanoid metals, provided that cerium, praseodymium, promethium and ruthenium are excluded, and barium and copper, in which the film has an average thickness of 350 nm or more, an average amount of residual carbon of 3×1019 atoms/cc or more, and an amount of residual fluorine in a range of 5×1017 to 1×1019 atoms/cc, and in which, when divided the film into a plurality of regions from a surface of the film or from an interface between the film and the substrate, each region having a thickness of 10 nm, atomic ratios of copper, fluorine, oxygen and carbon between two adjacent regions are in a range of ? times to 5 times.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: March 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takeshi Araki
  • Patent number: 8288321
    Abstract: Provides a new non-oxide system compound material superconductor as an alternative of the perovskite type copper oxides superconductor. Layered compounds which are represented by chemical formula AF(TM)Pn (wherein, A is at least one selected from a group consisting of the second family elements in the long form periodic table, F is a fluorine ion, TM is at least one selected from a group of transition metal elements consisting of Fe, Ru, Os, Ni, Pd, and Pt, and Pn is at least one selected from a group consisting of the fifteenth family elements in the long form periodic table), having a crystal structure of ZrCuSiAs type (space group P4/nmm) and which become superconductors by doping trivalent cations or divalent anions.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: October 16, 2012
    Assignee: Japan Science and Technology Agency
    Inventors: Hideo Hosono, Hiroshi Yanagi, Toshio Kamiya, Satoru Matsuishi, Sungwng Kim, Seok Gyu Yoon, Hidenori Hiramatsu, Masahiro Hirano, Takatoshi Nomura, Yoichi Kamihara
  • Patent number: 8124568
    Abstract: An oxide superconductor with superconduction properties being improved by effectively introducing a pinning center thereinto and its fabrication method are disclosed. The superconductor has a high-crystallinity oxide superconductor film which is formed on a substrate with a <001> direction of crystal grain being oriented almost perpendicularly to the substrate and with (100) planes of neighboring crystal grains being oriented to form an oblique angle ranging from 0 to 4 degrees or 86 to 90 degrees. The film has a multilayer structure including a plurality of high-density magnetic field trap layers stacked in almost parallel to the substrate and a low-density magnetic field trap layer sandwiched therebetween. An average grain boundary width of the high-density trap layers in a cross-section horizontal to the substrate is 80 nm or less. The width is less than an average grain boundary width of the low-density trap layer in its cross-section horizontal to the substrate.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: February 28, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mariko Hayashi, Takeshi Araki
  • Publication number: 20110237440
    Abstract: Disclosed is a composition for forming a thick oxide superconductor film, the oxide being an RE-BA-Cu based oxide, wherein RE is at least one element selected from the group consisting of Y, Nd, Sm, Gd, Eu, Yb, Pr, and Ho. The composition contains an RE salt of a keto acid having 4 to 8 carbon atoms as an RE component, barium trifluoroacetate as a Ba component, at least one copper salt selected from the group consisting of a copper salt of a branched saturated aliphatic carboxylic acid having 6 to 16 carbon atoms and a copper salt of an alicyclic carboxylic acid having 6 to 16 carbon atoms as a Cu component, and an organic solvent dissolving these metal salt components. In the composition, the RE to Ba to Cu molar ratio is 1:1.3 to 2.2:2.4 to 3.
    Type: Application
    Filed: January 6, 2010
    Publication date: September 29, 2011
    Applicant: ADEKA CORPORATION
    Inventors: Tomotaka Goto, Atsuya Yoshinaka, Akimasa Yajima
  • Publication number: 20110172103
    Abstract: An oxide superconductor film formed on a substrate includes an oxide containing at least one metal M selected from the group consisting of yttrium and lanthanoid metals, provided that cerium, praseodymium, promethium and ruthenium are excluded, and barium and copper, in which the film has an average thickness of 350 nm or more, an average amount of residual carbon of 3×1019 atoms/cc or more, and an amount of residual fluorine in a range of 5×1017 to 1×1019 atoms/cc, and in which, when divided the film into a plurality of regions from a surface of the film or from an interface between the film and the substrate, each region having a thickness of 10 nm, atomic ratios of copper, fluorine, oxygen and carbon between two adjacent regions are in a range of ? times to 5 times.
    Type: Application
    Filed: October 7, 2010
    Publication date: July 14, 2011
    Inventor: Takeshi Araki
  • Publication number: 20110136670
    Abstract: Compositions are disclosed of a matrix of a high temperature superconductive oxide such as YBCO, with non-superconductive particles distributed in the matrix. The non-superconductive particles comprise at least one rare earth element (RE) and at least one of tantalum (Ta) and niobium (Nb). Of particular interest are non-superconductive particles of composition RE-Ta3O7 (RTO), where RE is Yb, Er, Gd or Sm, disposed in a YBCO superconductive matrix.
    Type: Application
    Filed: August 5, 2009
    Publication date: June 9, 2011
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Sophie-Ann Harrington, Judith Macmanus-Driscoll
  • Publication number: 20110111965
    Abstract: Provides a new non-oxide system compound material superconductor as an alternative of the perovskite type copper oxides superconductor. Layered compounds which are represented by chemical formula AF(TM)Pn (wherein, A is at least one selected from a group consisting of the second family elements in the long form periodic table, F is a fluorine ion, TM is at least one selected from a group of transition metal elements consisting of Fe, Ru, Os, Ni, Pd, and Pt, and Pn is at least one selected from a group consisting of the fifteenth family elements in the long form periodic table), having a crystal structure of ZrCuSiAs type (space group P4/nmm) and which become superconductors by doping trivalent cations or divalent anions.
    Type: Application
    Filed: July 9, 2009
    Publication date: May 12, 2011
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Hiroshi Yanagi, Toshio Kamiya, Satoru Matsuishi, Sungwng Kim, Seok Gyu Yoon, Hidenori Hiramatsu, Masahiro Hirano, Takatoshi Nomura, Yoichi Kamihara
  • Patent number: 7833941
    Abstract: An oxide superconductor film formed on a substrate includes an oxide containing at least one metal M selected from the group consisting of yttrium and lanthanoid metals, provided that cerium, praseodymium, and promethium are excluded, and barium and copper, in which the film has an average thickness of 350 nm or more, an average amount of residual carbon of 3×1019 atoms/cc or more, and an amount of residual fluorine in a range of 5×1017 to 1×1019 atoms/cc, and in which, when divided the film into a plurality of regions from a surface of the film or from an interface between the film and the substrate, each region having a thickness of 10 nm, atomic ratios of copper, fluorine, oxygen and carbon between two adjacent regions are in a range of ? times to 5 times.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: November 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takeshi Araki
  • Patent number: 7732376
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: June 8, 2010
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 7691786
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: April 6, 2010
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 7622424
    Abstract: A method for producing a thick film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt, and wherein the ratio of the transition metal to the alkaline earth metal is greater than 1.5. The precursor solution is treated to form a rare earth-alkaline earth-metal transition metal oxide superconductor film having a thickness greater than 0.8 ?m. precursor solution.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 24, 2009
    Assignee: American Superconductor Corporation
    Inventors: Xiaoping Li, Thomas Kodenkandath, Edward J. Siegal, Wei Zhang, Martin W. Rupich, Yibing Huang
  • Patent number: 7615515
    Abstract: An oxide superconductor includes a main component represented by the following formula: LnBa2Cu3O7-x, where Ln comprises two or more types of elements selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, and Y, and a content of each element is 10 to 90 mol %, and fluorine at a molar ratio of 10?2 to 10?6 with respect to copper.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: November 10, 2009
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Publication number: 20080274895
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Application
    Filed: March 3, 2008
    Publication date: November 6, 2008
    Inventors: Takeshi ARAKI, Koichi Nakao, Izumi Hirabayashi
  • Publication number: 20080191561
    Abstract: A superconducting electrical cable system is configured to be included within a utility power grid. The superconducting electrical cable system includes a superconducting electrical path interconnected between a first and a second node within the utility power grid. A non-superconducting electrical path is interconnected between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path are electrically connected in parallel. The superconducting electrical path has a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path has a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 14, 2008
    Inventors: DOUGLAS C. FOLTS, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Publication number: 20080139393
    Abstract: An oxide superconductor film formed on a substrate includes an oxide containing at least one metal M selected from the group consisting of yttrium and lanthanoid metals, provided that cerium, praseodymium, promethium and ruthenium are excluded, and barium and copper, in which the film has an average thickness of 350 nm or more, an average amount of residual carbon of 3×1019 atoms/cc or more, and an amount of residual fluorine in a range of 5×1017 to 1×1019 atoms/cc, and in which, when divided the film into a plurality of regions from a surface of the film or from an interface between the film and the substrate, each region having a thickness of 10 nm, atomic ratios of copper, fluorine, oxygen and carbon between two adjacent regions are in a range of 1/5 times to 5 times.
    Type: Application
    Filed: September 18, 2007
    Publication date: June 12, 2008
    Inventor: Takeshi ARAKI
  • Patent number: 6673387
    Abstract: A process is described for formation of oxide films independent of thickness from precursor films comprising metals, metal oxides, and metal fluorides with properties and structures similar to those previously only obtained in thin films, for example less than about 0.4 microns.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: January 6, 2004
    Assignee: American Superconductor Corporation
    Inventors: Wei Zhang, Qi Li, Martin W. Rupich
  • Publication number: 20020132739
    Abstract: A superconducting magnesium diboride (MgB2) thin film having c-axial orientation and a method and apparatus for fabricating the same are provided. The fabrication method includes forming a boron thin film on a substrate and thermally processing the substrate on which the boron thin film is formed along with a magnesium source and cooling the resulting structure. The superconducting magnesium diboride thin film can be used in a variety of electronic devices employing superconducting thin films, such as precision medical diagnosis equipment using superconducting quantum interface devices (SQUIDs) capable of sensing weak magnetic fields, microwave communications equipment used for satellite communications, and Josephson devices. Computer systems with 100 times greater computing speed can be implemented with the superconducting magnesium diboride thin film.
    Type: Application
    Filed: March 15, 2002
    Publication date: September 19, 2002
    Inventors: Won nam Kang, Sung-Ik Lee, Eun-Mi Choi, Hyeong-Jin Kim
  • Patent number: 6426320
    Abstract: A method for fabricating superconductor articles with an epitaxial layer is described. The method can be performed under conditions of relatively high pressure and low substrate surface temperature. The resulting epitaxial layers can demonstrate various advantageous features, including low pore density and/or inclusions with small average particle size diameter.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: July 30, 2002
    Assignee: American Superconductors Corporation
    Inventors: Leslie G. Fritzemeier, David M. Buczek
  • Patent number: 6027564
    Abstract: A method for fabricating composite articles with an epitaxial layer is described. The method can be performed under conditions of relatively high pressure and low substrate surface temperature. The resulting epitaxial layers can demonstrate various advantageous properties, such as low pore density and/or inclusions with small average particle size diameter.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: February 22, 2000
    Assignee: American Superconductor Corporation
    Inventors: Leslie G. Fritzemeier, David M. Buczek
  • Patent number: 6022832
    Abstract: A method for fabricating superconductor articles with an epitaxial layer is described. The method can be performed under conditions of relatively high pressure and low substrate surface temperature. The resulting epitaxial layers can demonstrate various advantageous features, including low pore density and/or inclusions with small average particle size diameter.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: February 8, 2000
    Assignee: American Superconductor Corporation
    Inventors: Leslie G. Fritzemeier, David M. Buczek
  • Patent number: 5858926
    Abstract: The present invention is directed to a process for preparing a HgBaCaCuO superconductor by annealing a precursor mixture comprising a lower member of the homologous HgBaCaCuO superconductor series, a source of calcium and a source of copper. The precursor mixture may further comprise a source of oxygen, a source of rhenium, and, if desired, a source of an additional element selected from the group consisting of halogens and metals other than mercury, barium, calcium, copper and rhenium. The process is particularly effective for preparing (Hg.sub.1-x,Re.sub.x)Ba.sub.2 Ca.sub.2 Cu.sub.3 O.sub.8-y by annealing a precursor mixture containing (Hg.sub.1-x,Re.sub.x)Ba.sub.2 Ca.sub.1 Cu.sub.2 O.sub.6-y at a temperature below about 850.degree. C., wherein x ranges up to about 0.25 and y is a rational number ranging from about negative 1 to about positive 1.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: January 12, 1999
    Assignee: Florida State University
    Inventors: Justin Schwartz, Christian H. Wolters, Kathleen M. Amm
  • Patent number: 5777032
    Abstract: An ocular lens obtained by reacting a hydroxyl group-containing polymer shaped to have an ocular lens shape, with a silicon-containing compound of the formula (I):O.dbd.C.dbd.N--R.sup.1 --Si.sub.n O.sub.n-1 (CH.sub.3).sub.2n+1 (I)wherein R.sup.1 is a C.sub.1-6 linear or branched alkylene group, and n is an integer of from 1 to 15.
    Type: Grant
    Filed: February 25, 1997
    Date of Patent: July 7, 1998
    Assignee: Menicon Co., Ltd.
    Inventors: Yasuhiro Yokoyama, Yuriko Watanabe, Sadayasu Tanikawa, Shoji Ichinohe, Toshio Yamazaki
  • Patent number: 5716907
    Abstract: The present invention is an oxide superconductor containing alkaline earth metal M (where M is at least one element of Ba, Sr, and Ca) and having a crystalline structure in which a portion based on two rock-salt structures including the alkaline earth metal M, oxygen, and chlorine, and a 2n-1 piece of infinite layer structure portion are alternately layered on each other, said 2n-1 piece of infinite layer structure portion having an atom layer including copper atoms and oxygen atoms in a ratio of 1 to 2 and of an atom layer including only M atoms layered on each other (where n is an integer of 1 or more and where copper atoms and oxygen atom are contained in a ratio of 1 to 2 if n is 1).
    Type: Grant
    Filed: March 20, 1996
    Date of Patent: February 10, 1998
    Assignees: International Superconductivity Technology Center, The Furukawa Electric Co., Ltd., Tohoku Electric Power
    Inventors: Tadashi Tatsuki, Seiji Adachi, Makoto Itoh, Toshiyuki Tamura, Changqin Jin, Xiao-Jing Wu, Hisao Yamauchi
  • Patent number: 5614471
    Abstract: A superconductive material is in composition expressed as Y.sub.0.33 Ba.sub.0.67).sub.a Cu.sub.b (OF).sub.c. The usual a, b and c are so selected as to satisfy a relation expression ax (mix valence of A)+bx (mix valence of B)=cx (mix valence of C).
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: March 25, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kengo Ohkura, Hajime Hitotsuyanagi, Hiromi Takei
  • Patent number: 5607658
    Abstract: A metal oxide manufacturing method includes the steps of preparing the metal oxide expressed by a general formula of AXBYCZDn, (where A represents at least one element selected from a group consisting of a rare earth element, yttrium and an element obtained either by substituting part of rare earth elements with alkali metals or alkali earth metals or by substituting part of yttrium with alkali metals or alkali earth metals, B represents an alkali earth metal, C represents copper or an element obtained by substituting part of copper with transition metals, and D represents oxygen, and where when X=1, Y=2 to 4, Z=2.7 to 6 and n=6 to 13), reducing the metal oxide expressed by the general formula, and halogenating the reduced metal oxide. Part of oxygen (D) of the metal oxide expressed by the general formula is substituted with the halogen elements.
    Type: Grant
    Filed: September 5, 1995
    Date of Patent: March 4, 1997
    Assignee: Canon Kabushiki Kaisha
    Inventors: Norio Kaneko, Tamaki Kobayashi
  • Patent number: 5565414
    Abstract: A metal oxide is provided which is represented by the compositional formula :(Bi.sub.1-x A.sup.I.sub.x).sub.2 (Sr.sub.y Ca.sub.1-y-z A.sup.II.sub.z).sub.p (Cu.sub.1-r A.sup.III.sub.r).sub.q O.sub..delta.wherein 0.ltoreq.x.ltoreq.0.5, 0.3.ltoreq.y.ltoreq.0.7, 0.ltoreq.z.ltoreq.0.5, 0.ltoreq.r.ltoreq.0.1, 1>y+z, 2>p>11, 1.ltoreq.q.ltoreq.10 and 5.4.ltoreq..delta..ltoreq.24 with the exclusion of x=z=r=0, A.sup.I is at least one element selected from In, Sb, Pb and Sn; A.sup.II is at least one element selected from Na, K, Mg, Ba, and Sn and A.sup.III is at least one element selected from Ti, V, Cu, Ni, Zr, Nb, Ta, Fe and Ru. The metal oxide may further comprise an element selected from lanthanoids and yttrium. The metal oxide material shows superconductivity at a temperature not lower than the boiling point of liquid helium.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: October 15, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jun Akimitsu, Tohru Den, Fumio Kishi, Norio Kaneko, Masatake Akaike, Kiyozumi Niizuma, Atsuko Tanaka
  • Patent number: 5561102
    Abstract: A superconductive fullerene and a process for making such superconductive fullerene are provided. The process involves contacting a quantity of fullerene with the vapor of an interhalogen compound such as ICl. The halogen doped fullerenes exhibited a transition temperature above 60 K.
    Type: Grant
    Filed: December 14, 1994
    Date of Patent: October 1, 1996
    Assignee: The Research Foundation of State University of New York at Buffalo
    Inventors: Yi-Han Kao, Liwei Song, Deborah D. L. Chung, Kevin T. Fredette
  • Patent number: 5482917
    Abstract: A superconducting composition having the nominal formula TlM.sub.2 CuO.sub.5-x F.sub.x wherein M is Ba and x is from about 0.10 to about 0.65, or M is Sr and x is from about 0.35 to about 0.75 is disclosed.
    Type: Grant
    Filed: September 21, 1993
    Date of Patent: January 9, 1996
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Munirpallam A. Subramanian
  • Patent number: 5426092
    Abstract: A thin film, high T.sub.c fluorinated, superconducting having a lattice structure differing from the lattice structure of the material substrate, such as sapphire or stainless steel, upon which it is grown. The superconducting material is characterized by basal plane alignment of the unit cells thereof even though the substrate does not possess a perovskite lattice structure. A laser ablation technique is used to evaporate material from a fluorinated pellet of target material to deposit the fluorinated superconducting material on the substrate. The instant invention provides for a low pressure and relatively low temperature method of depositing a superconducting film which is characterized by (1) a minimal number of high angle grain boundaries typically associated with polycrystalline films, and (2) aligned a, b, and c axes of the unit cells thereof so as to provide for enhanced current carrying capacities.
    Type: Grant
    Filed: June 25, 1992
    Date of Patent: June 20, 1995
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa Young
  • Patent number: 5340792
    Abstract: A method of substantially aligning the superconducting grains of a multi-grained perovskite defect oxide type material, which material includes at least one superconducting phase. In the superconducting phase of such perovskite materials, the unit cells thereof include a plurality of substantially parallel metal oxide planes spacedly disposed along the c axis thereof. The aforementioned alignment of discrete grains of the multi-grained superconducting material occurs along the c axis.
    Type: Grant
    Filed: November 28, 1989
    Date of Patent: August 23, 1994
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa Young
  • Patent number: 5244871
    Abstract: An oxide superconductor comprises a composition represented by the composition formula: (Nd.sub.x --Ce.sub.y --L.sub.z).sub.2 CuO.sub.4-d (wherein L is an element selected from Ca and Mg, and x+y+z=1). The compositions of Nd, Ce and L of the oxide superconductor corresponds to a point falling inside an area of Nd--Ce--L ternary diagram surrounded by straight lines (A-B), (B-C), (C-D) and (D-A) connecting point (A) with point (B), point (B) with point (C), point (C) with point (D) and point (D) with point (A), respectively, the points (A), (B), (C) and (D) being points (x=1, y=0, z=0), (x=0.4, y=0.6, z=0), (x=0.4, y=0.3, z=0.3) and (x=0.1, y=0, z=0.9), respectively, in the Nd--Ce--L ternary diagram. Above-described Nd--Ce--L--Cu--O oxides can exhibit superconductivity within a wide range of composition when heat-treated in an atmosphere of nitrogen.
    Type: Grant
    Filed: October 9, 1991
    Date of Patent: September 14, 1993
    Assignees: Mitsubishi Metal Corporation, Hitachi, Ltd., International Superconductivity Technology Center
    Inventors: Takeshi Sakurai, Toru Yamashita, Hisao Yamauchi, Shoji Tanaka