Free Metal Containing Patents (Class 505/124)
  • Patent number: 9662749
    Abstract: A method for producing a weldable titanium alloy and/or composite wire. The method includes: a) forming a green object by blending particulates of titanium sponge with one or more powdered alloying additions and cold compacting the blended mixture and subjecting the blended mixture including lubricant to pressure; b) forming a work body of alloyed titanium by heating the green object in a protected atmosphere and holding the temperature for a period of at least 4 hours, and then hot working the green object at a temperature of less than 200° C. apart from the beta transition temperature of the titanium alloy and shaping the green object to obtain an elongated profile; and c) forming the welding wire by placing the elongated profile of the work body in a rolling mill having one or more rolls disposed in series.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: May 30, 2017
    Assignee: NORSK TITANIUM AS
    Inventors: Ola Jensrud, Arne Kolbu, Sverre Gulbrandsen-Dahl, Kevin Dring
  • Publication number: 20150105261
    Abstract: An oxide superconducting thin film wherein nanoparticles functioning as flux pins are dispersed in the film is provided. The oxide superconducting thin film wherein the nanoparticles in the oxide superconducting thin film have a dispersing density of 1020 particles/m3 to 1024 particles/m3 is provided. The oxide superconducting thin film wherein the nanoparticles have a particle diameter of 5 nm to 100 nm is provided. A method of manufacturing an oxide superconducting thin film wherein a predetermined amount of a solution obtained by dissolving nanoparticles functioning as flux pins in a solvent is added to a solution obtained by dissolving an organometallic compound in a solvent to prepare a source material solution for an oxide superconducting thin film, and the source material solution is used to manufacture the oxide superconducting thin film through a coating-pyrolysis process is provided.
    Type: Application
    Filed: May 31, 2012
    Publication date: April 16, 2015
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tatsuoki Nagaishi, Genki Honda, Iwao Yamaguchi, Takaaki Manabe, Takeshi Hikata, Hiroaki Matsui, Wakichi Kondo, Hirofumi Yamasaki, Toshiya Kumagai
  • Patent number: 8765053
    Abstract: A method for producing a Sn based alloy (15) comprising a metal matrix of a metal matrix material, wherein the metal matrix material comprises Sn, and inclusions of a compound material, further referred to as compound inclusions, wherein the compound material contains one element or a combination of elements of the group Ti, V, Zr, Hf, further referred to as dopant, and one or a plurality of other elements, in particular Sn, Cu and/or Nb. Particles of the metal matrix material, further referred to as matrix particles, are mixed with particles of the compound material, further referred to as compound particles, and the matrix particles and the compound particles are compacted during and/or after their mixing. A Sn based alloy containing finer compound inclusion of a dopant can be prepared, in order to produce Nb3Sn superconductor material with a superior current carrying capacity.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: July 1, 2014
    Assignee: Bruker BioSpin AG
    Inventor: Florin Buta
  • Patent number: 8309494
    Abstract: The invention provides an iron-based superconducting substance capable of bringing about superconductivity without using any toxic elements. The iron-based superconducting substance includes a composition wherein an FeTe alloy is doped with sulfur in such a way as to satisfy the following formula 1. Fe(Te1-xSx)y where 0<x<1, and 0.8<y?1 ??Formula 1 The iron-based superconducting substance takes a tetragonal PbO structure with a space group P4/nmm.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 13, 2012
    Assignee: National Institute for Materials Science
    Inventors: Yoshihiko Takano, Yoshikazu Mizuguchi
  • Patent number: 8035933
    Abstract: Disclosed is the structure of a persistent current switch and a control method for the same. In the switch structure, a portion of a superconducting wire to be used as a switch is formed with slits such that the flow of current is controlled by the switch, to facilitate a transition between the superconducting state and the normal state of the superconducting wire. The structure of the persistent current switch includes a first slit longitudinally extending from a first point on one end of a superconducting wire to a second point and from a third point to a fourth point, the second, third, and fourth points being arranged sequentially in a longitudinal line, and second and third slits provided at opposite sides of a region between the second point and the third point where no first slit exists.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: October 11, 2011
    Assignee: Korea Polytechnic University Industry Academic Cooperation Foundation
    Inventors: Hee-Gyoun Lee, Gye-Won Hong, Kyeong Dal Choi, Seung Wook Lee
  • Publication number: 20110245083
    Abstract: An article including a substrate and a layer of a homogeneous metal-oxyfluoride intermediate film disposed on the substrate, the intermediate film containing a rare earth metal, an alkaline earth metal, and a transition metal. The intermediate film has a defect density less than 20 percent and, upon thermal treatment, is capable of converting to a homogeneous rare earth metal-alkaline earth metal-transition metal-oxide superconductor film with a stoichiometric thickness greater than 1 ?m and up to 5 ?m. Also disclosed is another article including a substrate and the homogeneous superconductor film with a stoichiometric thickness greater than 1 ?m and up to 5 ?m. Further, methods of making these two articles are described.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: American Superconductor Corporation
    Inventors: Srivatsan Sathyamurthy, Martin W. Rupich
  • Publication number: 20110218109
    Abstract: A clathrate compound of formula (I): M8AxBy-x (I) wherein: M is an alkaline earth metal, a rare earth metal, an alkali metal, Cd, or a combination thereof, A is Ga, Al, In, Zn or a combination thereof; B is Ge, Si, Sn, Ni or a combination thereof; and 12?x?16, 40?y?43, x and y each is or is not an integer. Embodiments of the invention also include method of making and using the clathrate compound.
    Type: Application
    Filed: November 4, 2009
    Publication date: September 8, 2011
    Inventors: Shengqiang Bai, Lidong Chen, Lin He, Li Wang, Wenbin Zhang, Yanfei Zhou
  • Publication number: 20110207610
    Abstract: The invention has for its object for the provision of an iron-based superconducting substance capable of bringing about superconductivity without using any toxic elements. The invention provides an iron-based superconducting substance characterized by comprising a composition wherein an FeTe alloy is doped with sulfur in such a way as to satisfy the following formula 1. Fe(Te1-xSx)y where 0<x<1, and 0.8<y?1??Formula 1 The inventive iron-based superconducting substance is also characterized by taking a tetragonal PbO structure with a space group P4/nmm.
    Type: Application
    Filed: November 4, 2009
    Publication date: August 25, 2011
    Inventors: Yoshihiko Takano, Yoshikazu Mizuguchi
  • Publication number: 20110045985
    Abstract: A superconductor which comprises a new compound composition substituting for perovskite copper oxides. The superconductor is characterized by comprising a compound which is represented by the chemical formula A(TM)2Pn2 [wherein A is at least one member selected from the elements in Group 1, the elements in Group 2, or the elements in Group 3 (Sc, Y, and the rare-earth metal elements); TM is at least one member selected from the transition metal elements Fe, Ru, Os, Ni, Pd, or Pt; and Pn is at least one member selected from the elements in Group 15 (pnicogen elements)] and which has an infinite-layer crystal structure comprising (TM)Pn layers alternating with metal layers of the element (A).
    Type: Application
    Filed: February 20, 2009
    Publication date: February 24, 2011
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Hiroshi Yanagi, Toshio Kamiya, Satoru Matsuishi, Sungwng Kim, Seok Gyu Yoon, Hidenori Hiramatsu, Masahiro Hirano, Yoichi Kamihara, Takatoshi Nomura
  • Publication number: 20100255998
    Abstract: A method for producing a Sn based alloy (15) comprising a metal matrix of a metal matrix material, wherein the metal matrix material comprises Sn, and inclusions of a compound material, further referred to as compound inclusions, wherein the compound material contains one element or a combination of elements of the group Ti, V, Zr, Hf, further referred to as dopant, and one or a plurality of other elements, in particular Sn, Cu and/or Nb. Particles of the metal matrix material, further referred to as matrix particles, are mixed with particles of the compound material, further referred to as compound particles, and the matrix particles and the compound particles are compacted during and/or after their mixing. A Sn based alloy containing finer compound inclusion of a dopant can be prepared, in order to produce Nb3Sn superconductor material with a superior current carrying capacity.
    Type: Application
    Filed: January 27, 2010
    Publication date: October 7, 2010
    Applicant: Bruker BioSpin AG
    Inventor: Florin Buta
  • Patent number: 7718573
    Abstract: A method for producing an oxide superconductor by partially melting and solidifying the precursor of the oxide superconductor is a method wherein the precursor is placed on a substrate material containing pure metal or a compound which is meltable in the precursor when the precursor is in a partially molten state, and partially melting and solidifying the precursor in said state.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: May 18, 2010
    Assignee: Origin Electric Company, Ltd
    Inventors: Motohide Matsui, Masato Murakami
  • Publication number: 20080274896
    Abstract: A substrate for a superconducting wire is made of Ni or Ni alloy, with a ratio of cube texture of 95% or above constant in a width direction of a substrate body, a ratio of low-angle (15 or less) grain boundary of 99% or above regularly distributed in the width direction, a thickness of 40-150 ?m, an average grain size of 100 ?m or less, and a surface roughness of RMS 50 nm or less. A method for fabricating the substrate includes rolling a Ni or Ni-alloy rod with a rectangular section; and thermally treating the rolled rod, the rolling step having a reduction ratio of 5 to 15% at each rolling, the rod being moved between rollers for the rolling process at a linear velocity of 100 m/min or less, the thermally treating process being conducted by heating above a recrystallization temperature with flowing an inert gas including hydrogen gas.
    Type: Application
    Filed: September 5, 2005
    Publication date: November 6, 2008
    Inventors: Bong-Ki Ji, Byoung-Kwang Lee
  • Publication number: 20080194411
    Abstract: A cryogenically-cooled HTS wire includes a stabilizer having a total thickness in a range of 200-600 micrometers and a resistivity in a range of 0.8-15.0 microOhm cm at approximately 90 K. A first HTS layer is thermally-coupled to at least a portion of the stabilizer.
    Type: Application
    Filed: March 20, 2007
    Publication date: August 14, 2008
    Inventors: Douglas C. Folts, James MaGuire, Jie Yuan, Alexis P. Malozemoff
  • Publication number: 20080161189
    Abstract: A superconducting electrical machine has rotor and stator assemblies. A first rotor assembly is located to rotate within a stator assembly and is spaced from the stator assembly by an air gap. A second rotor assembly is located to rotate outside the stator assembly and is also spaced from the stator assembly by an air gap. The first and second rotor assemblies have at least one superconducting field winding. The superconducting field windings are formed from a High Temperature Superconducting (HTS) material such as BSCCO-2223 or YBCO, for example. The double rotor assembly configuration provides a new technical effect over conventional rotating superconducting machines having a single rotor assembly.
    Type: Application
    Filed: August 8, 2005
    Publication date: July 3, 2008
    Inventors: Clive Lewis, Graham LeFlem
  • Publication number: 20080100164
    Abstract: An inductor-type synchronous machine includes field stators having field elements by which an N-pole and an S-pole are concentrically formed, rotors to which a rotating shaft is fixed and has N-pole inductors disposed so as to face the N-pole of the field elements and S-pole inductors disposed so as to face the S-pole of the field elements, and an armature stator having armature coils disposed so as to face the N-pole inductors and the S-pole inductors.
    Type: Application
    Filed: December 16, 2005
    Publication date: May 1, 2008
    Inventors: Toru Okazaki, Shingo Ohashi, Hidehiko Sugimoto, Toshio Takeda
  • Patent number: 6995119
    Abstract: Superconducting phases comprising magnesium diboride related composites and methods of preparation.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: February 7, 2006
    Assignee: Northwestern University
    Inventor: David C. Dunand
  • Patent number: 6953770
    Abstract: The present invention relates to an MgB2-based superconductor that is easy to manufacture and well suited to mass production, and that exhibits excellent superconducting characteristics (such as a high critical current density) while still retaining the high critical temperature characteristics of MgB2. A powder mixture of magnesium, boron, and titanium is pressed into a pellet, and this product is sintered under an atmospheric pressure and other conditions (preferably at 600° C. or higher) to manufacture an MgB2-based superconductor in which titanium and/or a titanium compound are dispersed in polycrystalline MgB2. The composition of the MgB2-based superconductor is preferably adjusted to have an atomic ratio of Mg:B:Ti=x:2:y, 0.7<x<1.2 and 0.05<y<0.3, and more preferably 0.07<y<0.2, by adjusting the amounts in which the raw materials are added.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: October 11, 2005
    Assignee: International Superconductivity Technology Center, The Juridical Foundation
    Inventors: Yong Zhao, Yong Feng, Yuan Wu, Takato Machi, Yasunori Fudamoto, Naoki Koshizuka, Masato Murakami
  • Patent number: 6894006
    Abstract: A method for reducing the concentration of non-superconducting phases during the heat treatment of Pb doped Ag/Bi-2223 composites having Bi-2223 and Bi-2212 superconducting phases is disclosed. A Pb doped Ag/Bi-2223 composite having Bi-2223 and Bi-2212 superconducting phases is heated in an atmosphere having an oxygen partial pressure not less than about 0.04 atmospheres and the temperature is maintained at the lower of a non-superconducting phase take-off temperature and the Bi-2223 superconducting phase grain growth take-off temperature. The oxygen partial pressure is varied and the temperature is varied between about 815° C. and about 835° C. to produce not less than 80 percent conversion to Pb doped Bi-2223 superconducting phase and not greater than about 20 volume percent non-superconducting phases. The oxygen partial pressure is preferably varied between about 0.04 and about 0.21 atmospheres. A product by the method is disclosed.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: May 17, 2005
    Assignees: University of Chicago, American Superconductor Corp.
    Inventors: Victor A. Maroni, Nazarali N. Merchant, Ronald D. Parrella
  • Publication number: 20040028886
    Abstract: By rapidly heating a precursor wire having a multifilamentary structure in which multiple composite cores in which a composite compound of an Nb—Ga compound and Nb is embedded in Nb are embedded in Nb, Ta, Nb-base alloy or Tabase alloy as a matrix material to a temperature range of 1400 to 2100° C. in 2 seconds, quenching the precursor wire at a rate of 5000° C./second or larger, and subjecting the precursor wire to additional heat treatment at a temperature range of 600 to 850° C. for 1 to 400 hours, a superconducting wire having a multifilamentary structure in which multiple composite cores in which a composite compound containing Nb3Ga of a stoichiometric composition embedded in Nb are embedded in Nb, Ta, Nb-base alloy or Tabase alloy as a matrix material is obtained.
    Type: Application
    Filed: March 27, 2003
    Publication date: February 12, 2004
    Inventors: Kiyoshi Inoue, Yasuo Iijima, Akihiro Kikuchi, Yuji Yoshida
  • Patent number: 6569360
    Abstract: The present invention provides a generic method of preparing a metal matrix composite with a textured compound. A “roller-skate” structure starting powder with a mixture of plate-like particles and smaller particles provides better flow compatibility, higher packing density, better densification and texture formation in preparing a metal matrix composite with a textured compound. In particular, the invention provides a method of preparing a textured superconducting composite wire with an improved critical current density.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: May 27, 2003
    Inventor: Hengning Wu
  • Publication number: 20030096710
    Abstract: Superconducting phases comprising magnesium diboride related composites and methods of preparation.
    Type: Application
    Filed: May 31, 2002
    Publication date: May 22, 2003
    Inventor: David C. Dunand
  • Patent number: 6525002
    Abstract: An oxide superconductor includes a textured superconducting material including an array of defects with a neutron-fissionable element, or with at least one of the following chemical elements: uranium-238, Nd, Mn, Re, Th, Sm, V, and Ta. The array of defects is dispersed throughout the superconducting material. The superconducting material may be the RE1Ba2Cu3O7−&dgr; compound, wherein RE=Y, Nd, La, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu; the Bi2Sr2CaCu2Ox, the (Bi, Pb)2Sr2CaCu2Ox, Bi2Sr2Ca2Cu3Ox or (Bi, Pb)2Sr2Ca2Cu3Ox compound; the Tl2Ca1.5BaCu2Ox or Tl2Ca2Ba2Cu3Ox compound; or a compound involving substitution such as the Nd1+xBa2−xCu3Ox compounds. The neutron-fissionable element may be uranium-235. The oxide superconductor may include additional defects created by fission.
    Type: Grant
    Filed: May 6, 2000
    Date of Patent: February 25, 2003
    Inventor: Roy Weinstein
  • Patent number: 6420318
    Abstract: Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (&lgr;). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a &lgr; greater than 0.2, preferably the &lgr; is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high &lgr;. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: July 16, 2002
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Matthew J. Holcomb
  • Patent number: 6365553
    Abstract: The invention provides an oxide superconductor capable of sufficiently withstanding external forces such as a large electromagnetic force and thermal stresses accompanying rapid heating and cooling while in service, and internal stresses so as to be able to exhibit a high trapped magnetic field stably over a long period of time. The oxide superconductor such as, for example, “a copper oxide superconductor containing rare earth elements”, is composed of an oxide superconductive bulk body impregnated with a low melting metal or an oxide superconductive bulk body impregnated with a low melting metal and having a thin film of the low melting metal formed on the external surface thereof. Such oxide superconductors as described above can be produced by a process whereby the oxide superconductive bulk body kept in an atmosphere of reduced pressure is brought into contact with the low melting metal.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: April 2, 2002
    Assignees: International Superconductivity Technology Center, Railway Technical Research Institute
    Inventors: Masaru Tomita, Masato Murakami
  • Publication number: 20020004463
    Abstract: A composite superconductor having an interior component of multiple filaments of superconducting Bi-2223 sheathed in a Ag or Ag alloy material, and a RE, TI or Hg based superconductor surrounding the interior component.
    Type: Application
    Filed: April 26, 2001
    Publication date: January 10, 2002
    Applicant: The University of Chicago
    Inventors: Uthamalingam Balachandran, Milan Lelovic, Nicholas G. Eror
  • Patent number: 6239079
    Abstract: A high temperature superconductor composite material capable of working at liquid nitrogen and higher temperatures K>77 has a sintered compound of intermixed components including high temperature superconductor ceramics, a silver dope, and sintering products of interaction of the superconductor ceramics and the silver dope with silicone material.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: May 29, 2001
    Inventors: M. I. Topchiashvili, A. E. Rokhvarger
  • Patent number: 6172007
    Abstract: An oxide superconductor which exhibits an uniform and high critical current is disclosed. Further, a method of manufacturing this oxide superconductor is disclosed, namely, a RE—Ba—Cu—O oxide superconductor (RE is one or more kinds of rare earth elements including Y) by performing a treatment, which includes at least a burning process to be performed in a range of temperatures that are higher than a melting point of a raw material mixture containing a RE-compound raw material, Ba-compound raw material and a Cu-compound raw material, on the raw material mixture. This method further includes a step of crushing the raw material mixture into particles and establishing the mean particle diameter of one or all of the raw materials as ranging from 50 to 80 &mgr;m.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: January 9, 2001
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Kazuya Yamaguchi, Shuichi Kohayashi, Shuetsu Haseyama, Shuji Yoshizawa
  • Patent number: 6063736
    Abstract: There is provided RE-Ba-Cu-O oxide bulk superconductors in which considerably high critical current density is obtained at relatively high temperature. In the present RE-Ba-Cu-O bulk superconductors, RE is a combination of two or more elements selected from La, Nd, Sm, Eu and Gd, at least one of them being La, Nd and Sm and the remainder being Eu or Gd, in which a parent phase thereof comprises a RE.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y crystal wherein -0.1<x<0.2 and 6.7<y<7.1, and 5 to 50% by volume of a RE.sub.2 Ba.sub.2 CuO.sub.5 fine dispersed phase having partide size of 0.01 to 0.5 .mu.m. Preferably, a total amount of Eu and Gd in the RE site is 40% by weight or less, while a slight amount of Pt may be added. As a result, the critical current density at liquid nitrogen temperature can be improved to 10,000 A/cm.sup.2 or more under a condition where a magnetic field of 3T is impressed parallel to c axis of the crystal.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: May 16, 2000
    Assignees: Superconductivity Research Laboratory, Iwate Prefectual Government
    Inventors: Muralidar Miryara, Masato Murakami, Koji Segawa, Koichi Kamada, Takashi Saitho
  • Patent number: 6038461
    Abstract: There are disclosed a high temperature superconductive material which can be plastically deformed, processed optionally into predetermined configurations and industrially mass produced and a method of manufacturing a formed body of the high temperature superconductive material. Mixed is a powder raw material which is mainly composed of: 10 to 50 mol % of at least one amide or nitride of alkali metal of Li, Na or K; 10 to 60 mol % of cyanide containing at least one metal selected from aluminum, copper, silver or gold; 5 to 50 mol % of at least one pure metal selected from aluminum, copper, silver or gold; and 10 mol % or less of at least one alkaline earth metal selected from Be, Mg, Ca, Sr or Ba. The powder raw material is pressed, and heated and sintered at the temperature of 673 K to 1553 K. In this manner, obtained is the plastically deformable high temperature superconductive material which can be optionally processed through forging, rolling and the like.
    Type: Grant
    Filed: April 24, 1998
    Date of Patent: March 14, 2000
    Inventors: Yoshifumi Sakai, Itsuko Sakai
  • Patent number: 5998336
    Abstract: A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed.
    Type: Grant
    Filed: February 26, 1997
    Date of Patent: December 7, 1999
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Matthew J. Holcomb
  • Patent number: 5994275
    Abstract: An oxide superconductor article comprises silver and an oxide superconductor having the formula Bi.sub.2-y Pb.sub.y Sr.sub.2 Ca.sub.2 O.sub.10+x, where 0.ltoreq.x.ltoreq.1.5, and 0.3.ltoreq.y.ltoreq.0.4, the oxide superconductor characterized by a critical current transition temperature of greater than 111.0 K as defined by zero resistance by a four point linear probe method with zero resistance corresponding to a resistivity of less that 10.sup.-8 .OMEGA.-cm.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: November 30, 1999
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Gilbert N. Riley, Jr., William L. Carter
  • Patent number: 5972846
    Abstract: Articles according to the invention comprise a superconductive cuprate (e.g., YBa.sub.2 Cu.sub.3 O.sub.7) body containing elongate grains measuring at least about 10 .mu.m along the long axis and having an aspect ratio of at least 10:1. Bodies according to the invention can have relatively high critical current density, as compared to analogous non-textured bodies.
    Type: Grant
    Filed: May 27, 1992
    Date of Patent: October 26, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Sungho Jin, Richard Curry Sherwood, Thomas Henry Tiefel
  • Patent number: 5958840
    Abstract: An oxide superconductor which has high mechanical strength and exhibits favorable magnetic properties and high resistance to environment. Further, a method of manufacturing this oxide superconductor, namely, a method of manufacturing a RE--Ba--Cu--O oxide superconductor (RE is one or more kinds of rare earth elements including Y) by performing a treatment, which includes at least a burning process to be performed in a range of temperatures that are higher than the melting point of a raw material mixture containing a RE-compound raw material, a Ba-compound raw material and a Cu-compound raw material, on the aforesaid raw material mixture. This method further comprises the addition step of adding 1 to 30 in percent by weight (wt %) of Ag to the raw material mixture, and the crystallization step of melting the raw material mixture, to which Ag is added, at a temperature that is not lower than a temperature at which the raw material mixture is decomposed and fused into the RE.sub.2 BaCuO.sub.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: September 28, 1999
    Assignees: Dowa Mining Co., Ltd., Chubu Electric Power Company, Incorporated
    Inventors: Shuichi Kohayashi, Shuetsu Haseyama, Shuji Yoshizawa, Shigeo Nagaya
  • Patent number: 5952268
    Abstract: The present invention relates to method of preparing a superconductor material consisting in preparing a precursor constituted by a powder of Ba.sub.2 Ca.sub.n-1 Cu.sub.n+1 O.sub.x or Ba.sub.2 Ca.sub.n-1 Cu.sub.n+1 O.sub.x where n is an integer greater than 1 and x is greater than 2n+2; in mixing said powder with silver oxide power, optionally in the presence of excess copper oxide, in a proportion of one mole of precursor for one to three moles of silver oxide; and in heating to high temperature and high pressure.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: September 14, 1999
    Assignee: Alcatel
    Inventors: Miguel Angel Alario-Franco, Catherine Chaillout, Jean-Jacques Capponi, Jean-Louis Tholence, Benedicte Souletie
  • Patent number: 5840897
    Abstract: A metalorganic complex of the formula:MA.sub.y Xwherein:M is a y-valent metal;A is a monodentate or multidentate organic ligand coordinated to M which allows complexing of MA.sub.y with X;y is an integer having a value of 2, 3 or 4; each of the A ligands may be the same or different; andX is a monodentate or multidentate ligand coordinated to M and containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F.The metal M may be selected from the group consisting of Cu, Ba, Sr, La, Nd, Ce, Pr, Sm, Eu, Th, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Tl, Y, Pb, Ni, Pd, Pt, Al, Ga, In, Ag, Au, Co, Rh, Ir, Fe, Ru, Sn, Li, Na, K, Rb, Cs, Ca, Mg, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. A may be selected from the group consisting of .beta.-diketonates and their sulfur and nitrogen analogs, .beta.-ketoesters and their sulfur and nitrogen analogs, cyclopentadienyls, alkyls, perfluoroalkyls, alkoxides, perfluoroalkoxides, and Schiff bases.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 24, 1998
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Duncan W. Brown, Thomas H. Baum, Brian A. Vaarstra, Robin A. Gardiner
  • Patent number: 5698497
    Abstract: Carbonaceous materials based on the fullerene molecules have been developed which allow for superconductivity. The fullerene materials are soluble in common solvents.
    Type: Grant
    Filed: June 13, 1994
    Date of Patent: December 16, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Robert Cort Haddon, Arthur Foster Hebard, Donald Winslow Murphy, Matthew Jonathan Rosseinsky
  • Patent number: 5552370
    Abstract: A method for making metal/ceramic superconductor thick film structures including the steps of preparing a silver/superconductor ink, applying the ink to a substrate, evaporating the ink's binder, decomposing a silver compound in the residue to coat the superconductor grains, sintering the coated superconductor grains, and oxygenating the superconductor grains through the silver coating. The resultant inter-granular silver increases the critical current and mechanical strength of the superconductor.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: September 3, 1996
    Assignee: Hewlett-Packard Company
    Inventors: John T. Anderson, V. K. Nagesh, Richard C. Ruby
  • Patent number: 5547921
    Abstract: A superconducting film including 0.1-5% by weight of magnesium oxide wherein the superconducting film has a thickness in a range from 300 to 1000 .mu.m. A superconducting device for magnetic shielding comprises: a substrate; and a superconducting layer supported by the substrate, the superconducting layer including grains of a Bi-type superconducting oxide so that the superconducting layer has a critical temperature higher than -196.degree. C., the superconducting layer having a thickness in a range from 300 to 1,000 .mu.m, the superconducting layer including 0.1-5% by weight of magnesium oxide, where the superconducting device has a laminated structure including the substrate and the superconducting layer. A process for producing a superconducting film comprises the steps of: firing a mixture of calcined powders of a superconducting oxide and 0.1-5% by weight of magnesium oxide powders at a temperature at which the superconducting oxide is partially melted.
    Type: Grant
    Filed: January 19, 1995
    Date of Patent: August 20, 1996
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Tani, Tooru Hayase, Hideki Shimizu, Kazuyuki Matsuda
  • Patent number: 5545613
    Abstract: A method of preparing a superconducting oxide by combining the metallic elements of the oxide to form an alloy, followed by oxidation of the alloy to form the oxide. Superconducting oxide-metal composites are prepared in which a noble metal phase intimately mixed with the oxide phase results in improved mechanical properties. The superconducting oxides and oxide-metal composites are provided in a variety of useful forms.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: August 13, 1996
    Assignee: Massachusetts Institute of Technology
    Inventors: Gregory J. Yurek, John B. VanderSande
  • Patent number: 5510323
    Abstract: An oxide superconductor comprising a perovskite type oxide compound of thallium, strontium, calcium and copper or thallium, strontium, balium, calcium and copper is produced by absorbing thallium in a gaseous phase into a mixture of strontium oxide or strontium oxide and barium oxide, calcium oxide, and copper oxide or a mixture of compounds capable of producing these oxides upon firing. From this superconductor are provided a superconductor wire material, tape-shaped wire material, coil, thin film, magnet, magnetic shielding material, printed circuit board, measuring device, computer, power storing device and etc.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: April 23, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Tomoichi Kamo, Seizi Takeuchi, Shinpei Matsuda, Atsuko Soeta, Takaaki Suzuki, Yutaka Yoshida
  • Patent number: 5508256
    Abstract: A method of producing a high-temperature oxide superconducting material, which comprises the steps of (a) preparing a material corresponding to an oxide superconductor of the perovskite type structure consisting essentially of a first member selected from the group consisting yttrium, lanthanoids, thallium and bismuth; at least one alkaline earth metal; copper; and oxygen and (b) heating the material in the presence of an alkali metal selected from the group consisting of potassium, sodium, rubidium and cesium to a temperature around the melting point of the alkali metal or to a higher temperature for a time sufficient to effect grain growth in the superconductor material, thereby to produce the superconductor containing the alkali metal in an amount not larger than 4 mole % based on the first member.
    Type: Grant
    Filed: June 23, 1994
    Date of Patent: April 16, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Teruo Kumagai, Tsuneyuki Kanai, Atsuko Soeta, Takaaki Suzuki, Kazutoshi Higashiyama, Tomoichi Kamo, Shinpei Matsuda, Kunihiro Maeda, Akira Okayama, Hideyo Kodama, Akira Yoshinari, Yoshimi Yanai
  • Patent number: 5508257
    Abstract: Superconducting composite comprising a matrix made of superconducting sintered mass composed of perovskite type or quasi-perovskite type oxide and metal phase dispersed in the superconducting mass with a proportion of from 10 to 70 volume % with respect to said composite. The metal phase may consist of at least one of Cu, Ag, Au, Pt, Ni and Zn or their alloys. The superconducting sintered mass may be Ba-Y-Cu-O type compound oxide.
    Type: Grant
    Filed: February 17, 1994
    Date of Patent: April 16, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichiro Sibata, Takeshi Yamaguchi, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5486501
    Abstract: BaCuO.sub.2.5 containing precursors for superconducting materials and process for making shaped superconductor articles therefrom.
    Type: Grant
    Filed: February 9, 1994
    Date of Patent: January 23, 1996
    Inventor: Shome N. Sinha
  • Patent number: 5482918
    Abstract: A method for producing microcomposite powders for use in superconducting and non-superconducting applications.
    Type: Grant
    Filed: February 7, 1994
    Date of Patent: January 9, 1996
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Michael A. Maginnis, David A. Robinson
  • Patent number: 5472527
    Abstract: A method for forming unsegregated metal oxide-silver composites includes preparing a precursor alloy comprising silver and precursor elements of a desired metal oxide and oxidizing the alloy under conditions of high oxygen activity selected to permit diffusion of oxygen into silver while significantly restricting the diffusion of the precursor elements into silver, such that oxidation of the precursor elements to the metal oxide occurs before diffusion of the metallic elements into silver. Further processing of the metal oxide composite affords an oxide superconducting composite with a highly unsegregated microstructure.
    Type: Grant
    Filed: June 24, 1993
    Date of Patent: December 5, 1995
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Lawrence J. Masur, Eric R. Podtburg, Kenneth H. Sandhage
  • Patent number: 5470821
    Abstract: Composite bulk superconducting materials having desirable physical, measured transport current density and high T.sub.c superconducting characteristics are provided which comprise a first matrix of superconducting ceramic oxide crystalline grains with a second matrix of elemental metal (gold, silver, palladium and tin) situated within the interstices between the crystalline grains. Preferably, each matrix is a continuous phase within the composite material, with the ceramic oxide preferably being present at a level of at least about 80% by weight, whereas the elemental metal is present at a level of up to about 20% by weight. In fabrication procedures, a precursor superconducting ceramic oxide is first prepared and reduced to a fine powder size; this is mixed with powdered elemental metal, and the mixture is compressed using high compaction pressures on the order of 14 tons/cm.sup.2 or greater to form a body, which is then sintered to yield the composite.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: November 28, 1995
    Assignees: The University of Kansas, Midwest Superconductivity, Inc.
    Inventors: Kai W. Wong, Xin Fei, Ying Xin, Yi-Han Kao
  • Patent number: 5444425
    Abstract: A flux-trapped superconducting magnet which is formed of high transition temperature superconducting mixture doped with a magnetic material having a Curie temperature below the transition temperature of the superconducting mixture.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: August 22, 1995
    Assignee: The Regents of the University of Colorado
    Inventors: Allen M. Hermann, Gol A. Naziripour, Timir Datta
  • Patent number: 5413981
    Abstract: A method for manufacturing the oxide superconductor according to the present invention comprises the steps of: mixing a starting material including Bi, Sr, Ca and Cu such that a mole ratio of Bi, Sr, Ca and Cu is 2:2+a:1+b:2+c, wherein a.gtoreq.0, b.gtoreq.0, c.gtoreq.0, and 0<a+b+c<3; melting the mixed material at a temperature of 900.degree. C.-1500.degree. C.; quenching rapidly the molten material; and annealing the quenched material at a partial molten temperature of 800.degree. C.-1000.degree. C. This method gives product wherein a precipitate of at least one compound in the group SrO, CuO and (Ca.sub.1-x Sr.sub.x).sub.2 CuO.sub.3 (wherein 0.gtoreq.x<1) is finely dispersed in the superconducting crystal of Bi.sub.2 Sr.sub.2 Ca.sub.1 Cu.sub.2 O.sub.y (wherein y is about 8). The precipitates act as flux pinning centers.
    Type: Grant
    Filed: July 19, 1993
    Date of Patent: May 9, 1995
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kunihiko Egawa, Toshio Umemura, Shinichi Kinouchi, Mitsunobu Wakata, Shin Utsunomiya, Ayumi Nozaki
  • Patent number: 5338507
    Abstract: A method for making metal/ceramic superconductor thick film structures including the steps of preparing a silver/superconductor ink, applying the ink to a substrate, evaporating the ink's binder, decomposing a silver compound in the residue to coat the superconductor grains, sintering the coated superconductor grains, and oxygenating the superconductor grains through the silver coating. The resultant inter-granular silver increases the critical current and mechanical strength of the superconductor.
    Type: Grant
    Filed: August 29, 1991
    Date of Patent: August 16, 1994
    Assignee: Hewlett-Packard Company
    Inventors: John T. Anderson, V. K. Nagesh, Richard C. Ruby