Superconductor Next To Layer Containing Nonsuperconducting Ceramic Composition Or Inorganic Compound (e.g., Metal Oxide, Metal Nitride, Etc.) Patents (Class 505/238)
  • Patent number: 10268968
    Abstract: A technique relates to a superconducting qubit. A Josephson junction includes a first superconductor and a second superconductor formed on a non-superconducting metal. A capacitor is coupled in parallel with the Josephson junction.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: April 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David W. Abraham, Josephine B. Chang, Jay M. Gambetta
  • Patent number: 9887342
    Abstract: A method of forming a superconductor includes exposing a layer disposed on a substrate to an oxygen ambient, and selectively annealing a portion of the layer to form a superconducting region within the layer.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: February 6, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Connie P. Wang, Paul Murphy, Paul Sullivan, Sukti Chatterjee
  • Patent number: 9112106
    Abstract: A premixed powdery precursor composition suitable as precursor material for obtaining a coating solution for the preparation of, for instance, thin film superconductors based on YBCO 1:2:3 via a coating technique, wherein the powdery precursor composition comprises a mixture of suitable salts of the constituent elements, in particular salts of trifluoroacetate and acetate.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: August 18, 2015
    Assignee: NEXANS
    Inventors: Joachim Bock, Andre Wolf, Dirk Isfort
  • Patent number: 9023764
    Abstract: According to one embodiment, an oxide superconductor includes an oriented superconductor layer and an oxide layer. The oriented superconductor layer contains fluorine at 2.0×1016-5.0×1019 atoms/cc and carbon at 1.0×1018-5.0×1020 atoms/cc. The superconductor layer contains in 90% or more a portion oriented along c-axis with an in-plane orientation degree (??) of 10 degrees or less, and contains a LnBa2Cu3O7-x superconductor material (Ln being yttrium or a lanthanoid except cerium, praseodymium, promethium, and lutetium). The oxide layer is provided in contact with a lower surface of the superconductor layer and oriented with an in-plane orientation degree (??) of 10 degrees or less with respect to one crystal axis of the superconductor layer. Area of a portion of the lower surface of the superconductor layer in contact with the oxide layer is 0.3 or less of area of a region directly below the superconductor layer.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: May 5, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Araki, Mariko Hayashi, Ko Yamada, Hiroyuki Fuke
  • Patent number: 8983563
    Abstract: The invention relates to a high temperature superconducting tape conductor having a flexible metal substrate that comprises at least one intermediate layer disposed on the flexible metal substrate and comprising terraces on the side opposite the flexible metal substrate, wherein a mean width of the terraces is less than 1 ?m and a mean height of the terraces is more than 20 nm, and that comprises at least one high temperature superconducting layer disposed on the intermediate layer, which is disposed on the at least one intermediate layer and comprises a layer thickness of more than 3 ?m. The ampacity of the high temperature superconducting tape conductor relative to the conductor width is more than 600 A/cm at 77 K.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: March 17, 2015
    Assignee: Theva Dunnschichttechnik GmbH
    Inventors: Robert Semerad, Werner Prusseit
  • Patent number: 8965469
    Abstract: Disclosed are an oxide superconductor tape and a method of manufacturing the oxide superconductor tape capable of improving the length and characteristics of superconductor tape and obtaining stabilized characteristics across the entire length thereof. A Y-class superconductor tape (10), as an oxide superconductor tape, comprises a tape (13) further comprising a tape-shaped non-oriented metallic substrate (11), and a first buffer layer (sheet layer) (12) that is formed by IBAD upon the tape-shaped non-oriented metallic substrate (11); and a second buffer layer (gap layer) (14), further comprising a lateral face portion (14a) that is extended to the lateral faces of the first buffer layer (sheet layer) (12) upon the tape (13) by RTR RF-magnetron sputtering.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: February 24, 2015
    Assignee: SWCC Show Cable Systems Co., Ltd.
    Inventors: Tatsuhisa Nakanishi, Yuji Aoki, Tsutomu Koizumi, Atsushi Kaneko, Takayo Hasegawa
  • Patent number: 8954125
    Abstract: Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes forming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: February 10, 2015
    Assignees: International Business Machines Corporation, The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards
    Inventors: Antonio D. Corcoles Gonzalez, Jiansong Gao, Dustin A. Hite, George A. Keefe, David P. Pappas, Mary E. Rothwell, Matthias Steffen, Chang C. Tsuei, Michael R. Vissers, David S. Wisbey
  • Patent number: 8927461
    Abstract: Provided is a substrate for superconductive film formation, which includes a metal substrate, and an oxide layer formed directly on the metal substrate, containing chromium oxide as a major component and having a thickness of 10-300 nm and an arithmetic average roughness Ra of not more than 50 nm. A method of manufacturing a substrate for superconductive film formation, which includes forming an oxide layer directly on a metal substrate, the oxide layer containing chromium oxide as a major component and having a thickness of 10-300 nm and an arithmetic average roughness Ra of not more than 50 nm.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: January 6, 2015
    Assignees: International Superconductivity Technology Center, Furukawa Electric Co., Ltd., Japan Fine Ceramics Center
    Inventors: Seiki Miyata, Hiroyuki Fukushima, Reiji Kuriki, Akira Ibi, Masateru Yoshizumi, Akio Kinoshita, Yutaka Yamada, Yuh Shiohara, Ryuji Yoshida, Takeharu Kato, Tsukasa Hirayama
  • Patent number: 8912126
    Abstract: A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: December 16, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Toyo Kohan Co., Ltd.
    Inventors: Takashi Yamaguchi, Masaya Konishi, Hajime Ota
  • Patent number: 8865627
    Abstract: A method for manufacturing a superconducting wire includes the following steps. A laminate metal having a first metal layer and a Ni layer formed on the first metal layer is prepared. An intermediate layer (20) is formed on the Ni layer of the laminate metal. A superconducting layer (30) is formed on the intermediate layer (20). By subjecting the laminate metal to a heat treatment after at least either of the step of forming a intermediate layer (20) and the step of forming a superconducting layer (30), a nonmagnetic Ni alloy layer (12) is formed from the laminate metal.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: October 21, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Toyo Kohan Co., Ltd.
    Inventor: Hajime Ota
  • Patent number: 8802598
    Abstract: A superconducting element (SE1-SE5) with a central section (20) located between two end sections (21a, 21b) of the superconducting element (SE1-SE5), the superconducting element (SE1-SE5) has a substrate tape (10), a buffer layer (11), a high temperature superconducting (HTS) layer (12), a first protection layer (14), and a shunt layer (17), The superconducting element (SE1-SE5) has at least one elongated opening (19) in the central section (20) elongated between the two end sections (21a, 21b), whereby the at least one elongated opening (19) divides the central section (20) of the superconducting element (SE1-SE5) into at least two HTS strips (18a, 18b, 18c), whereby the shunt layer (17) envelops the surface of each of the HTS strips (18a, 18b, 18c). The superconducting element shows improved electrical stabilization and time stability.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 12, 2014
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 8748349
    Abstract: A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A2B?B?O6, where A is rare earth or alkaline earth metal and B? and B? are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: June 10, 2014
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation
    Inventors: Amit Goyal, Sung-Hun Wee
  • Patent number: 8748350
    Abstract: A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A2B?B?O6, where A is rare earth or alkaline earth metal and B? and B? are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: June 10, 2014
    Assignees: UT-Battelle, University of Tennessee Research Center
    Inventors: Amit Goyal, Mariappan Paranthaman, Sung-Hun Wee
  • Patent number: 8664163
    Abstract: Described is an article including a sapphire substrate carrying a superconductive layer of a compound of the formula YBa2Cu3O7-x (YBCO), the layer having surface area of at least 10 cm2, and critical current of at least 100 A/cm width at a temperature of 77K or higher. In one exemplary embodiment, the thickness of the superconductive layer is between 10 nm and 50 nm. In another exemplary embodiment, the thickness of the superconductive layer is more than 600 nm. In preferred embodiment, an YSZ layer and a non-superconductive YBCO layer separate between the superconductive layer and the substrate.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: March 4, 2014
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Guy Deutscher, Mishael Azoulay, Boaz Almog
  • Patent number: 8644899
    Abstract: A coated conductor with a substantially round cross section has a high temperature superconductor layer which is sandwiched between an inner substrate layer and an outer substrate layer to place the high temperature superconductor layer in the region of neutral strain axis.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: February 4, 2014
    Assignee: Nexans
    Inventors: Arnaud Allais, Mark O. Rikel, Jürgen Ehrenberg, Christian-Eric Bruzek
  • Patent number: 8633137
    Abstract: Disclosed herein is a high-temperature superconducting tape, including: a substrate; a buffer layer formed on the substrate; and a high-temperature superconducting layer formed on the buffer layer, wherein the substrate is made of SUS310s or stainless steel containing 0.01-1% of silicon (Si) and 1-5% of molybdenum (Mo) and has an average metal crystal grain size of 12 ?m or less, and the high-temperature superconducting layer is made of a ReBCO (ReBa2Cu3O7, Re=Nd, Sm, Eu, Gd, Dy, Ho, Y)-based superconductive material. The high-temperature superconducting tape is advantageous with the result that a high-grade superconducting layer can be deposited on the thin buffer layer and thus the critical current density of the high-temperature superconducting tape can be improved, thereby remarkably improving the characteristics of the high-temperature superconducting tape.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: January 21, 2014
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Hong Soo Ha, Sang Soo Oh, Ho Sup Kim
  • Patent number: 8600463
    Abstract: A conductor arrangement for a resistive switching element, has at least first and second conductor connections disposed in a mutual plane adjacent to each other and insulated against each other. The composite conductors each have two conductor parts extending parallel, and forming a bifilar construction. The conductor parts are constructed from at least one superconducting conductor band. The composite conductors are formed into a coil winding, wherein the windings thereof substantially extend in the manner of a spiral, and are insulated against each other by a spacer.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: December 3, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventor: Hans-Peter Krämer
  • Patent number: 8569212
    Abstract: Disclosed herein is a superconducting wire which is used in, for example, superconducting magnet energy storage systems. The superconducting wire includes: a wire comprising a metal substrate, a superconducting layer and a buffer interposed between the metal substrate and the superconducting layer; and a stabilizer layer plated on the wire, wherein an epoxy resin insulating layer coats the entire surface of the stabilizer layer. The superconducting wire makes it possible to reduce damage to an insulating material when forming the insulating material during the production of the superconducting wire, and it has a uniform surface and can be produced in a simple manner.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: October 29, 2013
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Hong Soo Ha, Sang Soo Oh, Seok Ho Kim, Gi Deok Shim
  • Patent number: 8536098
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Grant
    Filed: July 30, 2011
    Date of Patent: September 17, 2013
    Inventor: Amit Goyal
  • Publication number: 20130196856
    Abstract: In some embodiments of the invention, superconducting structures are described. In certain embodiments the superconducting structures described are thin films of iron-based superconductors on textured substrates; in some aspects a method for producing thin films of iron-based superconductors on textured substrates is disclosed. In some embodiments applications of thin films of iron-based superconductors on textured substrates are described. Also contemplated is the formation of a film of iron-based superconductor having a thickness and an in-plane lattice constant formed on a textured substrate having a thickness and an in-plane lattice constant similar to the in-plane lattice constant of the iron-based superconductor.
    Type: Application
    Filed: August 2, 2011
    Publication date: August 1, 2013
    Applicant: BROOKHAVENSCIENCE ASSOICATES, LLC
    Inventors: Qiang Li, Weidong Si
  • Patent number: 8481460
    Abstract: A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: July 9, 2013
    Assignee: UT-Battelle, LLC
    Inventor: Amit Goyal
  • Patent number: 8431515
    Abstract: A tape-shaped oxide superconductor includes a 15 to 100 nm-thick Ce—Gd—O-based oxide layer (Ce:Gd=40:60 to 70:30 molar ratio) and a 100 nm-thick Ce—Zr—O-based oxide layer (Ce:Zr=50:50 molar ratio) as first and second intermediate layers are formed by MOD on an Ni-base alloy substrate having a half value width (FWHM:??) of 6.5 degrees. A 150 nm-thick CeO2 oxide layer as a third intermediate layer is formed on the second intermediate layer by RF sputtering. A 1 ?m-thick YBCO superconducting layer is formed by TFA-MOD on the three-layer structure. In the tape-shaped oxide superconductor, the ?? values of the first to third intermediate layers are (6.0 to 6.5) degrees, (6.0 to 6.6) degrees, and (6.0 to 6.6) degrees, respectively, and the Jc value of the YBCO superconducting layer in liquid nitrogen is 1.8 to 2.2 MA/cm2.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: April 30, 2013
    Assignees: International Superconductivity Technology Center, The Juridical Foundation, SWCC Showa Cable Systems Co., Ltd.
    Inventors: Yasuo Takahashi, Tsutomu Koizumi, Yuji Aoki, Atsushi Kaneko, Takayo Hasegawa
  • Patent number: 8394741
    Abstract: A high-temperature superconductor layer arrangement includes at least one substrate and one textured buffer layer made of oxidic material. The buffer layer displays at least one further constituent forming a homogeneous mixed-crystal layer. The further constituent is a transition metal from the first subgroup and/or forming at least a partial melt with the oxidic buffer material at an annealing temperature of ?1,600 degrees Celsius. The further constituent can particularly be copper and/or silver.
    Type: Grant
    Filed: March 14, 2009
    Date of Patent: March 12, 2013
    Assignee: BASF SE
    Inventors: Michael Baecker, Oliver Brunkahl, Martina Falter
  • Patent number: 8383552
    Abstract: The present invention provides a method of making a high temperature superconductor having a doped, nanoparticulate pinning structure. The method includes providing a nanoparticulate pinning material, providing a cuprate material, doping the nanoparticulate pinning material with a dopant to form a doped nanoparticulate material, depositing a layer of the cuprate material on a substrate, and depositing a layer of the doped nanoparticulate material on the layer of cuprate material. The invention also provides a high temperature superconductor (HTS) having a doped, nanoparticulate pinning structure including a plurality of layers of a cuprate material and a plurality of layers of a doped nanoparticulate pinning material. At least one layer of the doped nanoparticulate pinning material is stacked between two layers of the cuprate material.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: February 26, 2013
    Assignee: The United States of America as Represented by the Secretary of the Air Force
    Inventors: Paul N. Barnes, Timothy J. Haugan
  • Patent number: 8290555
    Abstract: A superconducting wire having at least a superconducting thin film and a stabilizing film formed one on top of another in order on a substrate having a predetermined width and a predetermined length, the superconducting wire having at least one cut made along a direction of the length of the superconducting wire, the superconducting wire being bendable at the cut in a width direction.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 16, 2012
    Assignees: The Furukawa Electric Co., Ltd., International Superconductivity Technology Center, the Juridical Foundation, National University Corporation Yokohama National University
    Inventors: Masashi Yagi, Shinichi Mukoyama, Yuh Shiohara, Teruo Izumi, Naoyuki Amemiya
  • Publication number: 20120258864
    Abstract: The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.
    Type: Application
    Filed: June 13, 2012
    Publication date: October 11, 2012
    Inventors: Douglas J. Gilbert, Timothy S. Cale
  • Patent number: 8263531
    Abstract: Under one aspect, a laminated, spliced superconductor wire includes a superconductor joint, which includes (i) first and second superconductor wires, each wire including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer; and (ii) a conductive bridge, the conductive bridge including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer, wherein the cap layer of the conductive bridge is in electrically conductive contact with a portion of the cap layer of each of the first and second superconductor wires through an electrically conductive bonding material. The spliced wire also includes (b) a stabilizer structure surrounding at least a portion of the superconductor joint, wherein the superconductor joint is in electrical contact with the stabilizer structure; and (c) a substantially nonporous electrically conductive filler, wherein the filler substantially surrounds the superconductor joint.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 11, 2012
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Eric R. Podtburg
  • Patent number: 8124568
    Abstract: An oxide superconductor with superconduction properties being improved by effectively introducing a pinning center thereinto and its fabrication method are disclosed. The superconductor has a high-crystallinity oxide superconductor film which is formed on a substrate with a <001> direction of crystal grain being oriented almost perpendicularly to the substrate and with (100) planes of neighboring crystal grains being oriented to form an oblique angle ranging from 0 to 4 degrees or 86 to 90 degrees. The film has a multilayer structure including a plurality of high-density magnetic field trap layers stacked in almost parallel to the substrate and a low-density magnetic field trap layer sandwiched therebetween. An average grain boundary width of the high-density trap layers in a cross-section horizontal to the substrate is 80 nm or less. The width is less than an average grain boundary width of the low-density trap layer in its cross-section horizontal to the substrate.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: February 28, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mariko Hayashi, Takeshi Araki
  • Patent number: 8119571
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: February 21, 2012
    Inventors: Amit Goyal, Sukill Kang
  • Patent number: 8105981
    Abstract: This invention provides a thin superconducting oxide film, which can realize a high critical current, and a superconducting member having a high level of electric power resistance. The superconducting member comprises a sapphire R face substrate, a buffer layer formed of grain lumps of an oxide provided on the sapphire R face substrate, and a superconducting layer provided on the buffer layer. The nearest neighbor distance between oxygen atoms in the oxide and the grain diameter of grain lumps of the oxide have been specified. The superconducting member can be used as a member for superconducting filters.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: January 31, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kohei Nakayama, Mutsuki Yamazaki
  • Patent number: 8088503
    Abstract: A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La2Zr2O7 or Gd2Zr2O7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: January 3, 2012
    Assignees: UT-Battelle, LLC, The Regents of the University of California
    Inventors: Mariappan Parans Paranthaman, Srivatsan Sathyamurthy, Tolga Aytug, Paul N Arendt, Liliana Stan, Stephen R Foltyn
  • Patent number: 8055318
    Abstract: A new family of superconducting materials with critical temperature up to 55 K have recently been discovered, comprising a crystal structure with atomic layers of iron and arsenic alternating with atomic layers of rare-earth oxide or alkaline earth. The present invention identifies structures for integrated circuit elements (including Josephson junctions) in these and related materials. These superconducting circuit elements will operate at a higher temperature than low-temperature superconductors such as niobium, and may be easier to manufacture than prior-art high-temperature superconductors based on copper-oxides.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: November 8, 2011
    Assignee: Hypres, Inc.
    Inventor: Alan M. Kadin
  • Patent number: 8043716
    Abstract: Disclosed herein is a gradient thin film, formed on a substrate by simultaneously depositing different materials on the substrate using a plurality of thin film deposition apparatuses provided in a vacuum chamber, wherein the gradient thin film is formed such that the composition thereof is continuously changed depending on the thickness thereof by deposition control plates provided in the path through which the different materials move to the substrate. The gradient thin film is advantageous in that the thin film is formed by simultaneously depositing different materials using various deposition apparatuses, so that the composition thereof is continuously changed depending on the thickness thereof, with the result that the physical properties of a thin film are easily controlled and the number of deposition processes is decreased, and thus processing time and manufacturing costs are decreased, thereby improving economic efficiency.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: October 25, 2011
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Ho Sup Kim, Sang Soo Oh, Tae Hyung Kim, Dong Woo Ha, Kyu Jung Song, Hong Soo Ha, Rock Kil Ko, Nam Jin Lee
  • Patent number: 8034745
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 11, 2011
    Inventor: Amit Goyal
  • Patent number: 8030246
    Abstract: Under one aspect, a laminated, spliced superconductor wire includes a superconductor joint, which includes (i) first and second superconductor wires, each wire including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer; and (ii) a conductive bridge, the conductive bridge including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer, wherein the cap layer of the conductive bridge is in electrically conductive contact with a portion of the cap layer of each of the first and second superconductor wires through an electrically conductive bonding material. The spliced wire also includes (b) a stabilizer structure surrounding at least a portion of the superconductor joint, wherein the superconductor joint is in electrical contact with the stabilizer structure; and (c) a substantially nonporous electrically conductive filler, wherein the filler substantially surrounds the superconductor joint.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: October 4, 2011
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Eric R. Podtburg
  • Patent number: 8030247
    Abstract: Disclosed herein is a precursor solution for forming a biaxially oriented buffer layer through low-temperature heat treatment, by which a highly oriented buffer layer can be formed even when the precursor solution is heat-treated at a low temperature of 1000° C. or lower at the time of forming a buffer layer through a wet chemical method. The precursor solution is prepared by adding a carboxylate or an alkoxide of bismuth, boron, lead, gallium, or the like, which is a metal salt for forming an oxide having a low melting point of 1200° C. or lower after pyrolysis in an oxygen atmosphere, to a precursor solution for forming a buffer layer through a wet chemical method.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 4, 2011
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Jai-Moo Yoo, Young-Kuk Kim, Jae-Woong Ko, Kook-Chae Chung
  • Publication number: 20110230356
    Abstract: The films of this invention are high temperature superconducting (HTS) thin films specifically optimized for microwave and RF applications. In particular, this invention focuses on compositions with a significant deviation from the 1:2:3 stoichiometry in order to create the films optimized for microwave/RF applications. The RF/microwave HTS applications require the HTS thin films to have superior microwave properties, specifically low surface resistance, Rs, and highly linear surface reactance, Xs, i.e. high JIMD. As such, the invention is characterized in terms of its physical composition, surface morphology, superconducting properties, and performance characteristics of microwave circuits made from these films.
    Type: Application
    Filed: December 21, 2010
    Publication date: September 22, 2011
    Inventors: Brian Moeckly, Viktor Gliantsev, Shing-jen (Luke) Peng, Balam Willemsen
  • Patent number: 8008233
    Abstract: A coated conductor with simplified layer architecture includes a biaxial textured substrate, a template buffer layer composed of a material having the general formula RE2?xB2+xO7 with RE being at least one lanthanoid metal, B being at least one metal selected from Zr and Hf and ?0.4?x?+0.7, where the superconductor layer is obtainable by hybrid liquid phase epitaxy and can be deposited directly onto the template buffer layer.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: August 30, 2011
    Assignees: Nexans, Cambridge Enterprise Limited
    Inventors: Dirk Isfort, Joachim Bock, Judith Louise Driscoll, Ahmed Kursumovic
  • Patent number: 8003571
    Abstract: A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: August 23, 2011
    Assignee: Los Alamos National Security, LLC
    Inventors: Liliana Stan, Quanxi Jia, Stephen R. Foltyn
  • Patent number: 7985713
    Abstract: A magnesium boride thin film having a B-rich composition represented by the general formula of MgBx (x=1 to 10) and a superconducting transition temperature of 10K or more has superior crystallinity and orientation and is used as a superconducting material. This thin film is formed by maintaining a film forming environment in a high vacuum atmosphere of 4×10?5 Pa or less, and simultaneously depositing Mg and B on a substrate maintained at a temperature of 200° C. or less so as to grow the film at a growth rate of 0.05 nm/sec or less. It is preferable to supply an Mg vapor and a B vapor into the film forming environment at an Mg/B molar ratio of 1/1 to 12/1.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: July 26, 2011
    Assignee: Incorporated National University Iwate University
    Inventors: Yoshitomo Harada, Masahito Yoshizawa, Haruyuki Endo
  • Patent number: 7985712
    Abstract: RE superconductive layer excelling in Jc and Tc is formed on an interlayer capable of preventing cracking and diffusion of substrate-constituting Ni element into YBCO layer and excelling in crystallinity and surface smoothness. The interlayer is formed by coating a surface of metal substrate with a mixed solution composed of an organometallic acid salt of cerium, an organometallic acid salt of a solid solution formation element capable of forming a solid solution with cerium and an organometallic acid salt of a charge compensation element capable of compensating for a charge mismatch attributed to a difference between the electron valences of respective ions of cerium and the solid solution formation element and subsequently carrying out heat treatment in a reducing atmosphere of 900 to 1200° C. whose pressure ranges from 0.1 Pa to below atmospheric pressure. Thereafter, a rare earth oxide superconductive layer is formed on the interlayer.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: July 26, 2011
    Assignees: International Superconductivity Technology Center, The Juridical Foundation, Showa Electric Wire & Cable Co., Ltd.
    Inventors: Yuji Aoki, Yasuo Takahashi, Takayo Hasegawa
  • Patent number: 7981841
    Abstract: The conductive path of the current-limiting device is made of a strip-shaped super conductor, whereby the structure thereof has a metallic strip, at least one oxidic buffer, a type AB2Cu3Ox super conductive layer and a metal cover layer which is arranged thereon. An intrinsically stable bifilar coil is embodied with said super conductor, and a distance is maintained between adjacent coil windings, wherein a distance maintainer is arranged which is transparent to the coolant.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: July 19, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hans-Peter Krämer, Wolfgang Schmidt
  • Patent number: 7919435
    Abstract: The present invention relates to a method for producing a defect-containing superconducting film, the method comprising (a) depositing a phase-separable layer epitaxially onto a biaxially-textured substrate, wherein the phase-separable layer includes at least two phase-separable components; (b) achieving nanoscale phase separation of the phase-separable layer such that a phase-separated layer including at least two phase-separated components is produced; and (c) depositing a superconducting film epitaxially onto said phase-separated components of the phase-separated layer such that nanoscale features of the phase-separated layer are propagated into the superconducting film.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 5, 2011
    Assignee: UT-Battelle, LLC
    Inventor: Amit Goyal
  • Patent number: 7919434
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 5, 2011
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 7910521
    Abstract: A coated conductor with simplified layer architecture includes a biaxial textured substrate, a template buffer layer composed of a material having the general formula RE2?xB2+xO7 with RE being at least one lanthanoid metal, B being at least one metal selected from Zr and Hf and ?0.4?x?+0.7, where the superconductor layer is obtainable by hybrid liquid phase epitaxy and can be deposited directly onto the template buffer layer.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: March 22, 2011
    Inventors: Dirk Isfort, Joachim Bock, Judith Louise Driscoll, Ahmed Kursumovic
  • Patent number: 7902120
    Abstract: Superconductor wires or layers having improved properties and methods for making the same are described. The superconducting layer includes a rare earth element-alkaline earth element-transition metal oxide having an average stacking fault density that is greater than about 0.01 nm?1, wherein two or more rare earth cations form the rare earth element. To form the superconductor layer of the present invention, a layer having a rare earth element-alkaline earth element-transition metal oxide substantially in a first crystal structure can be provided to a substrate where two or more rare earth cations form the rare earth element. The layer can then be heated at a temperature that is greater than 550° C. under oxidizing conditions to form a high-temperature superconducting layer substantially in a second crystal structure.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: March 8, 2011
    Assignee: American Superconductor Corporation
    Inventors: Martin W. Rupich, Wei Zhang, Yibing Huang, Xiaoping Li
  • Patent number: 7902119
    Abstract: Porous ceramic superconductors having a film thickness over 0.5 microns are provided. The superconducting material is applied to a vicinal substrate and optionally nanoparticles are inserted to release local strain. The resultant superconductors exhibit improved Jc values compared to nonvicinal (flat) counterparts and those having no nanoparticles.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: March 8, 2011
    Inventors: Judy Wu, Rose Emergo, Timothy Haugan, Paul Barnes
  • Patent number: 7884050
    Abstract: A band-shaped high-temperature superconductor (HTSL) with high critical current density can be produced economically in a wet-chemical process. In the process, a first precursor solution is applied to a carrier, dried, and annealed. Additional precursor solutions may then be applied, with the first precursor solution contain little or no pinning centers, and any subsequent precursor solutions contains a higher concentration of pinning centers than the first precursor solutions.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: February 8, 2011
    Assignee: Zenergy Power GmbH
    Inventor: Michael Bäcker
  • Patent number: 7879763
    Abstract: A superconducting article is provided that includes a substrate, wherein the substrate is untextured and comprises a nickel-based alloy containing primarily nickel and not less than about 20 wt % of an alloying element, and wherein the substrate is essentially free of Mo and Mn. The superconducting article further includes a buffer layer overlying the substrate and a high-temperature superconducting (HTS) layer overlying the buffer layer.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: February 1, 2011
    Assignee: Superpower, Inc.
    Inventors: Venkat Selvamanickam, Yunfei Qiao
  • Patent number: 7879762
    Abstract: A superconductor has a conductive path with a metallic substrate strip, a super-conductive layer made of a AB2CU3Ox type high-Tc-super conductive material, at least one insulating buffer layer which is arranged therebetween, and a metallic cover layer which is arranged thereon. At least one contacting element made of a normal conductive contacting material and arranged at least on one longitudinal side of the structure between the cover layer and the substrate strip enables a predetermined normally conductive limitation of the current-limiting device to be obtained.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: February 1, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hans-Peter Krämer, Wolfgang Schmidt