Superconductor Next To Layer Containing Nonsuperconducting Ceramic Composition Or Inorganic Compound (e.g., Metal Oxide, Metal Nitride, Etc.) Patents (Class 505/238)
-
Patent number: 11756708Abstract: An oxide superconducting wire includes a superconducting laminate including an oxide superconducting layer disposed, either directly or indirectly, on a substrate, and a stabilization layer which is a Cu plating layer covering an outer periphery of the superconducting laminate, and a Vickers hardness of the Cu plating layer is in the range of 80 to 190 HV.Type: GrantFiled: March 16, 2020Date of Patent: September 12, 2023Assignee: Fujikura Ltd.Inventor: Masaki Ohsugi
-
Patent number: 11450938Abstract: A device includes: a substrate; a first superconductor layer on the substrate, the first superconductor layer having a first kinetic inductance; and a second superconductor layer on the first superconductor layer, the second superconductor layer having a second kinetic inductance that is lower than the first kinetic inductance, in which the second superconductor layer covers the first superconductor layer such that the second superconductor layer and the first superconductor layer have a same footprint, with the exception of at least a first region where the second superconductor layer is omitted so that the first superconductor layer and the second superconductor layer form a circuit element having a predetermined circuit parameter.Type: GrantFiled: September 13, 2017Date of Patent: September 20, 2022Assignee: Google LLCInventors: Theodore Charles White, Anthony Edward Megrant
-
Patent number: 10832843Abstract: A superconductor tape may be fabricated via Metal Organic Chemical Vapor Deposition (MOCVD) to achieve peel strengths greater than approximately 4.5 N/cm. The superconductor tape may be fabricated via MOCVD with a REBCO composition that includes the elements Samarium (Sm)-Barium(Ba)-Copper(Cu)-Oxygen(O). Varying levels of Copper (Cu) content can achieve peel strengths ranging between approximately 4.5 N/cm to approximately 8.0 N/cm.Type: GrantFiled: March 17, 2016Date of Patent: November 10, 2020Assignee: The University of Houston SystemInventor: Venkat Selvamanickam
-
Patent number: 10711368Abstract: A manufacturing method of monocrystalline silicon includes: melting silicon housed in a quartz crucible into a silicon melt by heating the quartz crucible with a heating unit; dipping a seed crystal into the silicon melt in the quartz crucible to bring the seed crystal into contact with the silicon melt; and pulling up the seed crystal to grow monocrystalline silicon. In the pulling-up, a formation of a straight body of the monocrystalline silicon is started at a power consumption of the heating unit being equal to or more than 10000 kWh to grow an entirety of the monocrystalline silicon.Type: GrantFiled: October 5, 2016Date of Patent: July 14, 2020Assignee: SUMCO CORPORATIONInventor: Tegi Kim
-
Patent number: 10268968Abstract: A technique relates to a superconducting qubit. A Josephson junction includes a first superconductor and a second superconductor formed on a non-superconducting metal. A capacitor is coupled in parallel with the Josephson junction.Type: GrantFiled: November 15, 2017Date of Patent: April 23, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: David W. Abraham, Josephine B. Chang, Jay M. Gambetta
-
Patent number: 9887342Abstract: A method of forming a superconductor includes exposing a layer disposed on a substrate to an oxygen ambient, and selectively annealing a portion of the layer to form a superconducting region within the layer.Type: GrantFiled: January 25, 2017Date of Patent: February 6, 2018Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Connie P. Wang, Paul Murphy, Paul Sullivan, Sukti Chatterjee
-
Patent number: 9112106Abstract: A premixed powdery precursor composition suitable as precursor material for obtaining a coating solution for the preparation of, for instance, thin film superconductors based on YBCO 1:2:3 via a coating technique, wherein the powdery precursor composition comprises a mixture of suitable salts of the constituent elements, in particular salts of trifluoroacetate and acetate.Type: GrantFiled: November 2, 2005Date of Patent: August 18, 2015Assignee: NEXANSInventors: Joachim Bock, Andre Wolf, Dirk Isfort
-
Patent number: 9023764Abstract: According to one embodiment, an oxide superconductor includes an oriented superconductor layer and an oxide layer. The oriented superconductor layer contains fluorine at 2.0×1016-5.0×1019 atoms/cc and carbon at 1.0×1018-5.0×1020 atoms/cc. The superconductor layer contains in 90% or more a portion oriented along c-axis with an in-plane orientation degree (??) of 10 degrees or less, and contains a LnBa2Cu3O7-x superconductor material (Ln being yttrium or a lanthanoid except cerium, praseodymium, promethium, and lutetium). The oxide layer is provided in contact with a lower surface of the superconductor layer and oriented with an in-plane orientation degree (??) of 10 degrees or less with respect to one crystal axis of the superconductor layer. Area of a portion of the lower surface of the superconductor layer in contact with the oxide layer is 0.3 or less of area of a region directly below the superconductor layer.Type: GrantFiled: February 14, 2013Date of Patent: May 5, 2015Assignee: Kabushiki Kaisha ToshibaInventors: Takeshi Araki, Mariko Hayashi, Ko Yamada, Hiroyuki Fuke
-
Patent number: 8983563Abstract: The invention relates to a high temperature superconducting tape conductor having a flexible metal substrate that comprises at least one intermediate layer disposed on the flexible metal substrate and comprising terraces on the side opposite the flexible metal substrate, wherein a mean width of the terraces is less than 1 ?m and a mean height of the terraces is more than 20 nm, and that comprises at least one high temperature superconducting layer disposed on the intermediate layer, which is disposed on the at least one intermediate layer and comprises a layer thickness of more than 3 ?m. The ampacity of the high temperature superconducting tape conductor relative to the conductor width is more than 600 A/cm at 77 K.Type: GrantFiled: June 15, 2011Date of Patent: March 17, 2015Assignee: Theva Dunnschichttechnik GmbHInventors: Robert Semerad, Werner Prusseit
-
Patent number: 8965469Abstract: Disclosed are an oxide superconductor tape and a method of manufacturing the oxide superconductor tape capable of improving the length and characteristics of superconductor tape and obtaining stabilized characteristics across the entire length thereof. A Y-class superconductor tape (10), as an oxide superconductor tape, comprises a tape (13) further comprising a tape-shaped non-oriented metallic substrate (11), and a first buffer layer (sheet layer) (12) that is formed by IBAD upon the tape-shaped non-oriented metallic substrate (11); and a second buffer layer (gap layer) (14), further comprising a lateral face portion (14a) that is extended to the lateral faces of the first buffer layer (sheet layer) (12) upon the tape (13) by RTR RF-magnetron sputtering.Type: GrantFiled: February 10, 2011Date of Patent: February 24, 2015Assignee: SWCC Show Cable Systems Co., Ltd.Inventors: Tatsuhisa Nakanishi, Yuji Aoki, Tsutomu Koizumi, Atsushi Kaneko, Takayo Hasegawa
-
Patent number: 8954125Abstract: Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes forming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.Type: GrantFiled: July 28, 2011Date of Patent: February 10, 2015Assignees: International Business Machines Corporation, The United States of America, as represented by the Secretary of Commerce, The National Institute of StandardsInventors: Antonio D. Corcoles Gonzalez, Jiansong Gao, Dustin A. Hite, George A. Keefe, David P. Pappas, Mary E. Rothwell, Matthias Steffen, Chang C. Tsuei, Michael R. Vissers, David S. Wisbey
-
Patent number: 8927461Abstract: Provided is a substrate for superconductive film formation, which includes a metal substrate, and an oxide layer formed directly on the metal substrate, containing chromium oxide as a major component and having a thickness of 10-300 nm and an arithmetic average roughness Ra of not more than 50 nm. A method of manufacturing a substrate for superconductive film formation, which includes forming an oxide layer directly on a metal substrate, the oxide layer containing chromium oxide as a major component and having a thickness of 10-300 nm and an arithmetic average roughness Ra of not more than 50 nm.Type: GrantFiled: May 20, 2011Date of Patent: January 6, 2015Assignees: International Superconductivity Technology Center, Furukawa Electric Co., Ltd., Japan Fine Ceramics CenterInventors: Seiki Miyata, Hiroyuki Fukushima, Reiji Kuriki, Akira Ibi, Masateru Yoshizumi, Akio Kinoshita, Yutaka Yamada, Yuh Shiohara, Ryuji Yoshida, Takeharu Kato, Tsukasa Hirayama
-
Patent number: 8912126Abstract: A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.Type: GrantFiled: July 7, 2010Date of Patent: December 16, 2014Assignees: Sumitomo Electric Industries, Ltd., Toyo Kohan Co., Ltd.Inventors: Takashi Yamaguchi, Masaya Konishi, Hajime Ota
-
Patent number: 8865627Abstract: A method for manufacturing a superconducting wire includes the following steps. A laminate metal having a first metal layer and a Ni layer formed on the first metal layer is prepared. An intermediate layer (20) is formed on the Ni layer of the laminate metal. A superconducting layer (30) is formed on the intermediate layer (20). By subjecting the laminate metal to a heat treatment after at least either of the step of forming a intermediate layer (20) and the step of forming a superconducting layer (30), a nonmagnetic Ni alloy layer (12) is formed from the laminate metal.Type: GrantFiled: November 27, 2013Date of Patent: October 21, 2014Assignees: Sumitomo Electric Industries, Ltd., Toyo Kohan Co., Ltd.Inventor: Hajime Ota
-
Patent number: 8802598Abstract: A superconducting element (SE1-SE5) with a central section (20) located between two end sections (21a, 21b) of the superconducting element (SE1-SE5), the superconducting element (SE1-SE5) has a substrate tape (10), a buffer layer (11), a high temperature superconducting (HTS) layer (12), a first protection layer (14), and a shunt layer (17), The superconducting element (SE1-SE5) has at least one elongated opening (19) in the central section (20) elongated between the two end sections (21a, 21b), whereby the at least one elongated opening (19) divides the central section (20) of the superconducting element (SE1-SE5) into at least two HTS strips (18a, 18b, 18c), whereby the shunt layer (17) envelops the surface of each of the HTS strips (18a, 18b, 18c). The superconducting element shows improved electrical stabilization and time stability.Type: GrantFiled: February 15, 2012Date of Patent: August 12, 2014Assignee: Bruker HTS GmbHInventor: Alexander Usoskin
-
Patent number: 8748350Abstract: A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A2B?B?O6, where A is rare earth or alkaline earth metal and B? and B? are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.Type: GrantFiled: April 15, 2011Date of Patent: June 10, 2014Assignees: UT-Battelle, University of Tennessee Research CenterInventors: Amit Goyal, Mariappan Paranthaman, Sung-Hun Wee
-
Patent number: 8748349Abstract: A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A2B?B?O6, where A is rare earth or alkaline earth metal and B? and B? are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.Type: GrantFiled: April 15, 2011Date of Patent: June 10, 2014Assignees: UT-Battelle, LLC, University of Tennessee Research FoundationInventors: Amit Goyal, Sung-Hun Wee
-
Patent number: 8664163Abstract: Described is an article including a sapphire substrate carrying a superconductive layer of a compound of the formula YBa2Cu3O7-x (YBCO), the layer having surface area of at least 10 cm2, and critical current of at least 100 A/cm width at a temperature of 77K or higher. In one exemplary embodiment, the thickness of the superconductive layer is between 10 nm and 50 nm. In another exemplary embodiment, the thickness of the superconductive layer is more than 600 nm. In preferred embodiment, an YSZ layer and a non-superconductive YBCO layer separate between the superconductive layer and the substrate.Type: GrantFiled: January 14, 2010Date of Patent: March 4, 2014Assignee: Ramot at Tel-Aviv University Ltd.Inventors: Guy Deutscher, Mishael Azoulay, Boaz Almog
-
Patent number: 8644899Abstract: A coated conductor with a substantially round cross section has a high temperature superconductor layer which is sandwiched between an inner substrate layer and an outer substrate layer to place the high temperature superconductor layer in the region of neutral strain axis.Type: GrantFiled: July 15, 2010Date of Patent: February 4, 2014Assignee: NexansInventors: Arnaud Allais, Mark O. Rikel, Jürgen Ehrenberg, Christian-Eric Bruzek
-
Patent number: 8633137Abstract: Disclosed herein is a high-temperature superconducting tape, including: a substrate; a buffer layer formed on the substrate; and a high-temperature superconducting layer formed on the buffer layer, wherein the substrate is made of SUS310s or stainless steel containing 0.01-1% of silicon (Si) and 1-5% of molybdenum (Mo) and has an average metal crystal grain size of 12 ?m or less, and the high-temperature superconducting layer is made of a ReBCO (ReBa2Cu3O7, Re=Nd, Sm, Eu, Gd, Dy, Ho, Y)-based superconductive material. The high-temperature superconducting tape is advantageous with the result that a high-grade superconducting layer can be deposited on the thin buffer layer and thus the critical current density of the high-temperature superconducting tape can be improved, thereby remarkably improving the characteristics of the high-temperature superconducting tape.Type: GrantFiled: September 7, 2011Date of Patent: January 21, 2014Assignee: Korea Electrotechnology Research InstituteInventors: Hong Soo Ha, Sang Soo Oh, Ho Sup Kim
-
Patent number: 8600463Abstract: A conductor arrangement for a resistive switching element, has at least first and second conductor connections disposed in a mutual plane adjacent to each other and insulated against each other. The composite conductors each have two conductor parts extending parallel, and forming a bifilar construction. The conductor parts are constructed from at least one superconducting conductor band. The composite conductors are formed into a coil winding, wherein the windings thereof substantially extend in the manner of a spiral, and are insulated against each other by a spacer.Type: GrantFiled: April 9, 2009Date of Patent: December 3, 2013Assignee: Siemens AktiengesellschaftInventor: Hans-Peter Krämer
-
Patent number: 8569212Abstract: Disclosed herein is a superconducting wire which is used in, for example, superconducting magnet energy storage systems. The superconducting wire includes: a wire comprising a metal substrate, a superconducting layer and a buffer interposed between the metal substrate and the superconducting layer; and a stabilizer layer plated on the wire, wherein an epoxy resin insulating layer coats the entire surface of the stabilizer layer. The superconducting wire makes it possible to reduce damage to an insulating material when forming the insulating material during the production of the superconducting wire, and it has a uniform surface and can be produced in a simple manner.Type: GrantFiled: March 1, 2011Date of Patent: October 29, 2013Assignee: Korea Electrotechnology Research InstituteInventors: Hong Soo Ha, Sang Soo Oh, Seok Ho Kim, Gi Deok Shim
-
Patent number: 8536098Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.Type: GrantFiled: July 30, 2011Date of Patent: September 17, 2013Inventor: Amit Goyal
-
Publication number: 20130196856Abstract: In some embodiments of the invention, superconducting structures are described. In certain embodiments the superconducting structures described are thin films of iron-based superconductors on textured substrates; in some aspects a method for producing thin films of iron-based superconductors on textured substrates is disclosed. In some embodiments applications of thin films of iron-based superconductors on textured substrates are described. Also contemplated is the formation of a film of iron-based superconductor having a thickness and an in-plane lattice constant formed on a textured substrate having a thickness and an in-plane lattice constant similar to the in-plane lattice constant of the iron-based superconductor.Type: ApplicationFiled: August 2, 2011Publication date: August 1, 2013Applicant: BROOKHAVENSCIENCE ASSOICATES, LLCInventors: Qiang Li, Weidong Si
-
Patent number: 8481460Abstract: A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.Type: GrantFiled: June 21, 2012Date of Patent: July 9, 2013Assignee: UT-Battelle, LLCInventor: Amit Goyal
-
Patent number: 8431515Abstract: A tape-shaped oxide superconductor includes a 15 to 100 nm-thick Ce—Gd—O-based oxide layer (Ce:Gd=40:60 to 70:30 molar ratio) and a 100 nm-thick Ce—Zr—O-based oxide layer (Ce:Zr=50:50 molar ratio) as first and second intermediate layers are formed by MOD on an Ni-base alloy substrate having a half value width (FWHM:??) of 6.5 degrees. A 150 nm-thick CeO2 oxide layer as a third intermediate layer is formed on the second intermediate layer by RF sputtering. A 1 ?m-thick YBCO superconducting layer is formed by TFA-MOD on the three-layer structure. In the tape-shaped oxide superconductor, the ?? values of the first to third intermediate layers are (6.0 to 6.5) degrees, (6.0 to 6.6) degrees, and (6.0 to 6.6) degrees, respectively, and the Jc value of the YBCO superconducting layer in liquid nitrogen is 1.8 to 2.2 MA/cm2.Type: GrantFiled: May 7, 2008Date of Patent: April 30, 2013Assignees: International Superconductivity Technology Center, The Juridical Foundation, SWCC Showa Cable Systems Co., Ltd.Inventors: Yasuo Takahashi, Tsutomu Koizumi, Yuji Aoki, Atsushi Kaneko, Takayo Hasegawa
-
Patent number: 8394741Abstract: A high-temperature superconductor layer arrangement includes at least one substrate and one textured buffer layer made of oxidic material. The buffer layer displays at least one further constituent forming a homogeneous mixed-crystal layer. The further constituent is a transition metal from the first subgroup and/or forming at least a partial melt with the oxidic buffer material at an annealing temperature of ?1,600 degrees Celsius. The further constituent can particularly be copper and/or silver.Type: GrantFiled: March 14, 2009Date of Patent: March 12, 2013Assignee: BASF SEInventors: Michael Baecker, Oliver Brunkahl, Martina Falter
-
Patent number: 8383552Abstract: The present invention provides a method of making a high temperature superconductor having a doped, nanoparticulate pinning structure. The method includes providing a nanoparticulate pinning material, providing a cuprate material, doping the nanoparticulate pinning material with a dopant to form a doped nanoparticulate material, depositing a layer of the cuprate material on a substrate, and depositing a layer of the doped nanoparticulate material on the layer of cuprate material. The invention also provides a high temperature superconductor (HTS) having a doped, nanoparticulate pinning structure including a plurality of layers of a cuprate material and a plurality of layers of a doped nanoparticulate pinning material. At least one layer of the doped nanoparticulate pinning material is stacked between two layers of the cuprate material.Type: GrantFiled: January 31, 2008Date of Patent: February 26, 2013Assignee: The United States of America as Represented by the Secretary of the Air ForceInventors: Paul N. Barnes, Timothy J. Haugan
-
Patent number: 8290555Abstract: A superconducting wire having at least a superconducting thin film and a stabilizing film formed one on top of another in order on a substrate having a predetermined width and a predetermined length, the superconducting wire having at least one cut made along a direction of the length of the superconducting wire, the superconducting wire being bendable at the cut in a width direction.Type: GrantFiled: January 23, 2009Date of Patent: October 16, 2012Assignees: The Furukawa Electric Co., Ltd., International Superconductivity Technology Center, the Juridical Foundation, National University Corporation Yokohama National UniversityInventors: Masashi Yagi, Shinichi Mukoyama, Yuh Shiohara, Teruo Izumi, Naoyuki Amemiya
-
Publication number: 20120258864Abstract: The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.Type: ApplicationFiled: June 13, 2012Publication date: October 11, 2012Inventors: Douglas J. Gilbert, Timothy S. Cale
-
Patent number: 8263531Abstract: Under one aspect, a laminated, spliced superconductor wire includes a superconductor joint, which includes (i) first and second superconductor wires, each wire including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer; and (ii) a conductive bridge, the conductive bridge including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer, wherein the cap layer of the conductive bridge is in electrically conductive contact with a portion of the cap layer of each of the first and second superconductor wires through an electrically conductive bonding material. The spliced wire also includes (b) a stabilizer structure surrounding at least a portion of the superconductor joint, wherein the superconductor joint is in electrical contact with the stabilizer structure; and (c) a substantially nonporous electrically conductive filler, wherein the filler substantially surrounds the superconductor joint.Type: GrantFiled: September 20, 2011Date of Patent: September 11, 2012Assignee: American Superconductor CorporationInventors: Alexander Otto, Eric R. Podtburg
-
Patent number: 8124568Abstract: An oxide superconductor with superconduction properties being improved by effectively introducing a pinning center thereinto and its fabrication method are disclosed. The superconductor has a high-crystallinity oxide superconductor film which is formed on a substrate with a <001> direction of crystal grain being oriented almost perpendicularly to the substrate and with (100) planes of neighboring crystal grains being oriented to form an oblique angle ranging from 0 to 4 degrees or 86 to 90 degrees. The film has a multilayer structure including a plurality of high-density magnetic field trap layers stacked in almost parallel to the substrate and a low-density magnetic field trap layer sandwiched therebetween. An average grain boundary width of the high-density trap layers in a cross-section horizontal to the substrate is 80 nm or less. The width is less than an average grain boundary width of the low-density trap layer in its cross-section horizontal to the substrate.Type: GrantFiled: October 1, 2008Date of Patent: February 28, 2012Assignee: Kabushiki Kaisha ToshibaInventors: Mariko Hayashi, Takeshi Araki
-
Patent number: 8119571Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.Type: GrantFiled: August 3, 2006Date of Patent: February 21, 2012Inventors: Amit Goyal, Sukill Kang
-
Patent number: 8105981Abstract: This invention provides a thin superconducting oxide film, which can realize a high critical current, and a superconducting member having a high level of electric power resistance. The superconducting member comprises a sapphire R face substrate, a buffer layer formed of grain lumps of an oxide provided on the sapphire R face substrate, and a superconducting layer provided on the buffer layer. The nearest neighbor distance between oxygen atoms in the oxide and the grain diameter of grain lumps of the oxide have been specified. The superconducting member can be used as a member for superconducting filters.Type: GrantFiled: August 28, 2008Date of Patent: January 31, 2012Assignee: Kabushiki Kaisha ToshibaInventors: Kohei Nakayama, Mutsuki Yamazaki
-
Patent number: 8088503Abstract: A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La2Zr2O7 or Gd2Zr2O7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.Type: GrantFiled: January 30, 2009Date of Patent: January 3, 2012Assignees: UT-Battelle, LLC, The Regents of the University of CaliforniaInventors: Mariappan Parans Paranthaman, Srivatsan Sathyamurthy, Tolga Aytug, Paul N Arendt, Liliana Stan, Stephen R Foltyn
-
Patent number: 8055318Abstract: A new family of superconducting materials with critical temperature up to 55 K have recently been discovered, comprising a crystal structure with atomic layers of iron and arsenic alternating with atomic layers of rare-earth oxide or alkaline earth. The present invention identifies structures for integrated circuit elements (including Josephson junctions) in these and related materials. These superconducting circuit elements will operate at a higher temperature than low-temperature superconductors such as niobium, and may be easier to manufacture than prior-art high-temperature superconductors based on copper-oxides.Type: GrantFiled: April 22, 2009Date of Patent: November 8, 2011Assignee: Hypres, Inc.Inventor: Alan M. Kadin
-
Patent number: 8043716Abstract: Disclosed herein is a gradient thin film, formed on a substrate by simultaneously depositing different materials on the substrate using a plurality of thin film deposition apparatuses provided in a vacuum chamber, wherein the gradient thin film is formed such that the composition thereof is continuously changed depending on the thickness thereof by deposition control plates provided in the path through which the different materials move to the substrate. The gradient thin film is advantageous in that the thin film is formed by simultaneously depositing different materials using various deposition apparatuses, so that the composition thereof is continuously changed depending on the thickness thereof, with the result that the physical properties of a thin film are easily controlled and the number of deposition processes is decreased, and thus processing time and manufacturing costs are decreased, thereby improving economic efficiency.Type: GrantFiled: July 22, 2008Date of Patent: October 25, 2011Assignee: Korea Electrotechnology Research InstituteInventors: Ho Sup Kim, Sang Soo Oh, Tae Hyung Kim, Dong Woo Ha, Kyu Jung Song, Hong Soo Ha, Rock Kil Ko, Nam Jin Lee
-
Patent number: 8034745Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.Type: GrantFiled: March 24, 2008Date of Patent: October 11, 2011Inventor: Amit Goyal
-
Patent number: 8030247Abstract: Disclosed herein is a precursor solution for forming a biaxially oriented buffer layer through low-temperature heat treatment, by which a highly oriented buffer layer can be formed even when the precursor solution is heat-treated at a low temperature of 1000° C. or lower at the time of forming a buffer layer through a wet chemical method. The precursor solution is prepared by adding a carboxylate or an alkoxide of bismuth, boron, lead, gallium, or the like, which is a metal salt for forming an oxide having a low melting point of 1200° C. or lower after pyrolysis in an oxygen atmosphere, to a precursor solution for forming a buffer layer through a wet chemical method.Type: GrantFiled: January 12, 2007Date of Patent: October 4, 2011Assignee: Korea Institute of Machinery & MaterialsInventors: Jai-Moo Yoo, Young-Kuk Kim, Jae-Woong Ko, Kook-Chae Chung
-
Patent number: 8030246Abstract: Under one aspect, a laminated, spliced superconductor wire includes a superconductor joint, which includes (i) first and second superconductor wires, each wire including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer; and (ii) a conductive bridge, the conductive bridge including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer, wherein the cap layer of the conductive bridge is in electrically conductive contact with a portion of the cap layer of each of the first and second superconductor wires through an electrically conductive bonding material. The spliced wire also includes (b) a stabilizer structure surrounding at least a portion of the superconductor joint, wherein the superconductor joint is in electrical contact with the stabilizer structure; and (c) a substantially nonporous electrically conductive filler, wherein the filler substantially surrounds the superconductor joint.Type: GrantFiled: July 23, 2007Date of Patent: October 4, 2011Assignee: American Superconductor CorporationInventors: Alexander Otto, Eric R. Podtburg
-
Publication number: 20110230356Abstract: The films of this invention are high temperature superconducting (HTS) thin films specifically optimized for microwave and RF applications. In particular, this invention focuses on compositions with a significant deviation from the 1:2:3 stoichiometry in order to create the films optimized for microwave/RF applications. The RF/microwave HTS applications require the HTS thin films to have superior microwave properties, specifically low surface resistance, Rs, and highly linear surface reactance, Xs, i.e. high JIMD. As such, the invention is characterized in terms of its physical composition, surface morphology, superconducting properties, and performance characteristics of microwave circuits made from these films.Type: ApplicationFiled: December 21, 2010Publication date: September 22, 2011Inventors: Brian Moeckly, Viktor Gliantsev, Shing-jen (Luke) Peng, Balam Willemsen
-
Patent number: 8008233Abstract: A coated conductor with simplified layer architecture includes a biaxial textured substrate, a template buffer layer composed of a material having the general formula RE2?xB2+xO7 with RE being at least one lanthanoid metal, B being at least one metal selected from Zr and Hf and ?0.4?x?+0.7, where the superconductor layer is obtainable by hybrid liquid phase epitaxy and can be deposited directly onto the template buffer layer.Type: GrantFiled: June 30, 2008Date of Patent: August 30, 2011Assignees: Nexans, Cambridge Enterprise LimitedInventors: Dirk Isfort, Joachim Bock, Judith Louise Driscoll, Ahmed Kursumovic
-
Patent number: 8003571Abstract: A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.Type: GrantFiled: August 7, 2007Date of Patent: August 23, 2011Assignee: Los Alamos National Security, LLCInventors: Liliana Stan, Quanxi Jia, Stephen R. Foltyn
-
Patent number: 7985712Abstract: RE superconductive layer excelling in Jc and Tc is formed on an interlayer capable of preventing cracking and diffusion of substrate-constituting Ni element into YBCO layer and excelling in crystallinity and surface smoothness. The interlayer is formed by coating a surface of metal substrate with a mixed solution composed of an organometallic acid salt of cerium, an organometallic acid salt of a solid solution formation element capable of forming a solid solution with cerium and an organometallic acid salt of a charge compensation element capable of compensating for a charge mismatch attributed to a difference between the electron valences of respective ions of cerium and the solid solution formation element and subsequently carrying out heat treatment in a reducing atmosphere of 900 to 1200° C. whose pressure ranges from 0.1 Pa to below atmospheric pressure. Thereafter, a rare earth oxide superconductive layer is formed on the interlayer.Type: GrantFiled: March 12, 2004Date of Patent: July 26, 2011Assignees: International Superconductivity Technology Center, The Juridical Foundation, Showa Electric Wire & Cable Co., Ltd.Inventors: Yuji Aoki, Yasuo Takahashi, Takayo Hasegawa
-
Patent number: 7985713Abstract: A magnesium boride thin film having a B-rich composition represented by the general formula of MgBx (x=1 to 10) and a superconducting transition temperature of 10K or more has superior crystallinity and orientation and is used as a superconducting material. This thin film is formed by maintaining a film forming environment in a high vacuum atmosphere of 4×10?5 Pa or less, and simultaneously depositing Mg and B on a substrate maintained at a temperature of 200° C. or less so as to grow the film at a growth rate of 0.05 nm/sec or less. It is preferable to supply an Mg vapor and a B vapor into the film forming environment at an Mg/B molar ratio of 1/1 to 12/1.Type: GrantFiled: March 22, 2006Date of Patent: July 26, 2011Assignee: Incorporated National University Iwate UniversityInventors: Yoshitomo Harada, Masahito Yoshizawa, Haruyuki Endo
-
Patent number: 7981841Abstract: The conductive path of the current-limiting device is made of a strip-shaped super conductor, whereby the structure thereof has a metallic strip, at least one oxidic buffer, a type AB2Cu3Ox super conductive layer and a metal cover layer which is arranged thereon. An intrinsically stable bifilar coil is embodied with said super conductor, and a distance is maintained between adjacent coil windings, wherein a distance maintainer is arranged which is transparent to the coolant.Type: GrantFiled: September 27, 2005Date of Patent: July 19, 2011Assignee: Siemens AktiengesellschaftInventors: Hans-Peter Krämer, Wolfgang Schmidt
-
Patent number: 7919435Abstract: The present invention relates to a method for producing a defect-containing superconducting film, the method comprising (a) depositing a phase-separable layer epitaxially onto a biaxially-textured substrate, wherein the phase-separable layer includes at least two phase-separable components; (b) achieving nanoscale phase separation of the phase-separable layer such that a phase-separated layer including at least two phase-separated components is produced; and (c) depositing a superconducting film epitaxially onto said phase-separated components of the phase-separated layer such that nanoscale features of the phase-separated layer are propagated into the superconducting film.Type: GrantFiled: September 30, 2008Date of Patent: April 5, 2011Assignee: UT-Battelle, LLCInventor: Amit Goyal
-
Patent number: 7919434Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.Type: GrantFiled: April 21, 2010Date of Patent: April 5, 2011Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology CenterInventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
-
Patent number: 7910521Abstract: A coated conductor with simplified layer architecture includes a biaxial textured substrate, a template buffer layer composed of a material having the general formula RE2?xB2+xO7 with RE being at least one lanthanoid metal, B being at least one metal selected from Zr and Hf and ?0.4?x?+0.7, where the superconductor layer is obtainable by hybrid liquid phase epitaxy and can be deposited directly onto the template buffer layer.Type: GrantFiled: June 30, 2008Date of Patent: March 22, 2011Inventors: Dirk Isfort, Joachim Bock, Judith Louise Driscoll, Ahmed Kursumovic
-
Patent number: 7902119Abstract: Porous ceramic superconductors having a film thickness over 0.5 microns are provided. The superconducting material is applied to a vicinal substrate and optionally nanoparticles are inserted to release local strain. The resultant superconductors exhibit improved Jc values compared to nonvicinal (flat) counterparts and those having no nanoparticles.Type: GrantFiled: July 21, 2006Date of Patent: March 8, 2011Inventors: Judy Wu, Rose Emergo, Timothy Haugan, Paul Barnes