Stock: (class 428, 428/930) Patents (Class 505/812)
  • Publication number: 20030066388
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: October 28, 2002
    Publication date: April 10, 2003
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6451450
    Abstract: A laminate article consists of a substrate and a biaxially textured protective layer over the substrate. The substrate can be biaxially textured and also have reduced magnetism over the magnetism of Ni. The substrate can be selected from the group consisting of nickel, copper, iron, aluminum, silver and alloys containing any of the foregoing. The protective layer can be selected from the group consisting of gold, silver, platinum, palladium, and nickel and alloys containing any of the foregoing. The protective layer is also non-oxidizable under conditions employed to deposit a desired, subsequent oxide buffer layer. Layers of YBCO, CeO2, YSZ, LaAlO3, SrTiO3, Y2O3, RE2O3, SrRuO3, LaNiO3 and La2ZrO3 can be deposited over the protective layer. A method of forming the laminate article is also disclosed.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: September 17, 2002
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Donald M. Kroeger, Mariappan Paranthaman, Dominic F. Lee, Roeland Feenstra, David P. Norton
  • Patent number: 6239079
    Abstract: A high temperature superconductor composite material capable of working at liquid nitrogen and higher temperatures K>77 has a sintered compound of intermixed components including high temperature superconductor ceramics, a silver dope, and sintering products of interaction of the superconductor ceramics and the silver dope with silicone material.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: May 29, 2001
    Inventors: M. I. Topchiashvili, A. E. Rokhvarger
  • Patent number: 5753862
    Abstract: A compound superconducting wire comprising a matrix of CuX alloy and a multiplicity of Z.sub.3 X filaments embedded in the matrix in a spaced relationship so as not to come into contact with each other wherein X is Sn or Ga and Z.sub.3 X is Nb.sub.3 Sn or V.sub.3 Ga. In a precursor, therefore, a multiplicity of filaments of a base metal material Z such as Nb are arranged in a Cu base metal metrix concentrically in layers around a center core of a base metal material X such as Sn, in which the spacing between any adjacent filaments arranged in a former boundary region of an .epsilon.-phase bronze layer having a certain radius from the center produced when the precursor is preheat-treated at a temperature of 300.degree. to 600.degree. C. is made larger than the spacing between any adjacent filaments arranged in the other matrix regions.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: May 19, 1998
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoshio Kubo, Kunihiko Egawa, Hiroko Higuma, Takayuki Nagai, Fusaoki Uchikawa
  • Patent number: 5753380
    Abstract: The present invention concerns an aluminum alloy conductor of a cryostatic stabilizer for use at ultra low temperatures of 30.degree. K. or lower which is provided on and around a superconductor. The aluminum alloy conductor is made of 6 to 200 weight ppm of at least one element selected from the group of metallic and semimetallic effective elements consisting of B, Ca, Ce, Ga, Y, Yb and Th, and aluminum and inevitable impurities. The aluminum alloy conductor is obtained by adding at least one of these elements into a high purity aluminum whose purity is at least 99.98 wt. %. The aluminum alloy conductor has a 0.2% proof strength of not greater than 2.6 Kg/mm.sup.2.
    Type: Grant
    Filed: May 16, 1995
    Date of Patent: May 19, 1998
    Assignees: Sumitomo Chemical Co., Ltd., The Texas A&M University System
    Inventors: Akihiko Takahashi, Hitoshi Yasuda, Karl Theodore Hartwig, Lacy Clark McDonald
  • Patent number: 5733389
    Abstract: A method for manufacturing an aluminum alloy conductor for use at ultra low temperature which involves the steps of adding at least one of the metallic and semimetallic effective elements selected from the group consisting of B, Ca, Ce, Ga, Y, Yb and Th, in a total amount of 6 to 200 weight ppm, into a previously prepared molten high purity aluminum having a purity of not less than 99.98 wt % to thereby obtain a molten metal mixture; casting the molten metal mixture to thereby obtain a casting; subjecting the casting to extrusion working at 150.degree. C. to 350.degree. C. in an area reduction ratio of 1:10 to 1:150 whereby an extrusion worked product is formed; and annealing the extrusion worked product at a temperature of 250.degree. C. to 530.degree. C. for 3 to 120 minutes, whereby an aluminum alloy conductor for use at ultra low temperature is obtained.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: March 31, 1998
    Assignees: Sumitomo Chemical Co., Ltd., Texas A & M University System
    Inventors: Akihiko Takahashi, Hitoshi Yasuda, Karl Theodore Hartwig, Lacy Clark McDonald
  • Patent number: 5476719
    Abstract: A multi-layer microstrip structure includes a substrate and a first superconducting layer deposited on the substrate. A first dielectric layer, made at least partially of benzocyclobutene (BCB), is deposited on the first superconducting layer. Additional superconducting dielectric and superconducting layers can be employed. Preferably the superconducting layers are made from niobium. The multilayer microstrip structure is ideally suited for use in passive circuit components of microwave circuits and in multi-chip modules.
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: December 19, 1995
    Assignee: TRW Inc.
    Inventors: Robert D. Sandell, Andrew D. Smith
  • Patent number: 5474834
    Abstract: A circuit sub-assembly as a mounting for an electronic component such as Josephson device, i.e., a superconducting element, comprises a ceramic insulating substrate, an oxygen-shielding barrier layer formed on the insulating substrate, and a circuit film of niobium, as a superconducting material formed on the barrier layer according to a desired pattern. The barrier layer prevents oxidation of the circuit layer by shielding it from oxygen present in the insulating substrate. Due to the barrier layer, the circuit film is scarcely subject to superconductivity-impairing oxidation. The circuit film is thus capable of high-speed electronic signal conduction.
    Type: Grant
    Filed: June 9, 1994
    Date of Patent: December 12, 1995
    Assignee: Kyocera Corporation
    Inventors: Shigeo Tanahashi, Takanori Kubo, Kazuhiro Kawabata
  • Patent number: 5455223
    Abstract: In one aspect, the present invention is a precursor powder to an oxide superconductor, namely a coated particle comprising a metal oxide particle core (including a mixed metal oxide, e.g., BSCCO-2212 or YBCO-123) on which is deposited a secondary metal oxide coating (e.g., M.sub.n CuO.sub.x or CuO). The metal oxide particle and secondary metal oxide coating together comprise metallic elements having a stoichiometry appropriate for the formation of a desired oxide superconductor. The metal oxide reacts with the secondary metal oxide under suitable conditions (e.g., heating) to form the desired oxide superconductor (e.g., BSCCO-2223 or YBCO-124). In another aspect, the invention is a method for preparing such a coated particle, comprising: preparing a precursor solution comprising a metal .mu.
    Type: Grant
    Filed: February 24, 1993
    Date of Patent: October 3, 1995
    Assignee: American Superconductor Corporation
    Inventors: Martin Rupich, Gilbert N. Riley, Jr., William L. Carter
  • Patent number: 5266416
    Abstract: An aluminum-stabilized superconducting wire includes a superconducting wire member obtained by burying a superconducting filament in a copper matrix and an aluminum stabilizing member covered in an outer surface of the superconducting wire member, and the aluminum stabilizing member is constituted by an aluminum alloy having a 0.2 % proof resistivity of 4 kg/mm.sup.2 or more at a very low temperature and a residual resistance ratio of 250 or more. It is preferable that the aluminum alloy contains at least one element selected from 50 to 1,000 ppm of Zn, 50 to 150 ppm of Si, 50 to 400 ppm of Ag, 50 to 300 ppm of Cu, and 30 to 2,000 ppm of Ce, and that a balance is constituted by Al and an inevitable impurity.
    Type: Grant
    Filed: February 11, 1992
    Date of Patent: November 30, 1993
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Itaru Inoue, Yoshinori Nagasu, Keizo Kosugi, Takuya Suzuki
  • Patent number: 5104745
    Abstract: A multifilament superconducting strand for use at industrial frequencies and made from an initial billet comprising a superconducting core niobium-titanium alloy surrounded by an anti-diffusion barrier layer which is in turn surrounded by a copper based matrix material, with the strand being made from the billet by successive stages of extrusion, wire-drawing, and assembly, wherein the strand includes 5.times.10.sup.5 to 5.times.10.sup.6 filaments each constituted by the superconducting core reduced to a diameter in the range 50 nm to 150 nm, the filaments being separated from one another by a distance lying in the range 30 nm to 100 nm, which distance is occupied by the anti-diffusion layer and the matrix material. The matrix material contains in excess of 8% manganese when the anti-diffusion layer is made of niobium, or alternatively, the anti-diffusion layer may be of an iron-containing alloy with the matrix containing copper and nickel.
    Type: Grant
    Filed: July 6, 1990
    Date of Patent: April 14, 1992
    Assignee: GEC Alsthom SA
    Inventors: Julian Cave, Thierry Verhaege
  • Patent number: 5044406
    Abstract: A pipe comprises a hollow support member made from a member selected from copper and copper compounds and a copper oxide superconducting ceramic material which covers the inner surface of the support member with a space kept in the pipe for use in a magnet or power accumulator device.
    Type: Grant
    Filed: March 14, 1988
    Date of Patent: September 3, 1991
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 4900717
    Abstract: In a process for selective crystallization of 2,6-dialkyl-naphthalene selected from the group consisting of methyl-n-propyl-naphthalene, methyl isopropyl-naphthalene, ethyl-isopropyl-napthalene, ethyl-n-butyl-naphthalene, di-n-propyl-naphthalene, diisopropyl-naphthalene, methyl-amyl-naphthalene, ethyl-amyl-naphthalene, propyl-amyl-naphthalene, di-n-butyl-naphthalene and diisobutyl-naphthalene from their isomer mixtures from a polar solvent solution, the improvement comprising effecting the crystallization with constant stirring at a temperature from 25.degree. to -30.degree. C. to obtain the 2,6-dialkyl-naphthalene at least 95% pure.
    Type: Grant
    Filed: February 4, 1988
    Date of Patent: February 13, 1990
    Assignee: Rutgerswerke AG
    Inventors: Wilhelm Holtmann, Robert Zellerhoff, Rudolf Oberkobusch, Peter Staglich, Bernhard Charpey