Material, Per Se, Process Of Making Same Patents (Class 505/800)
  • Patent number: 5391323
    Abstract: Carbonaceous materials based on the fullerene molecules have been developed which allow for high conductivity (comparable to or higher than those attained by n-type doped polyacetylene). The fullerene materials are soluble in common solvents.
    Type: Grant
    Filed: November 22, 1993
    Date of Patent: February 21, 1995
    Assignee: AT&T Corp.
    Inventors: Robert C. Haddon, Arthur F. Hebard, Donald W. Murphy, Matthew J. Rosseinsky
  • Patent number: 5294600
    Abstract: A superconducting material higher in superconducting transition temperature and superconducting volume ratio than any conventional one is provided, which comprises a fullerene doped with rubidium and cesium. This fullerene system superconducting material makes it possible to improve both the superconducting transition temperature and superconducting volume ratio by having rubidium and cesium doped thereinto compared with any conventional fullerene systems. If the chemical composition of this super conducting material is expressed as Rb.sub.x Cs.sub.y C.sub.n, x and y are arbitrary if an equation x+y=3 is satisfied, preferable to be x=2 and y=1, further preferable to be x=1 and y=s. The superconducting transition temperature Tc and superconducting volume ratio when x=1 and y=2 or x=2 and y=1 are superior to those when x=3 and y=0 or x=0 and y=3, respectively.
    Type: Grant
    Filed: July 2, 1992
    Date of Patent: March 15, 1994
    Assignee: NEC Corporation
    Inventors: Katsumi Tanigaki, Thomas Ebbesen, Sadanori Kuroshima, Junichiro Mizuki
  • Patent number: 5244871
    Abstract: An oxide superconductor comprises a composition represented by the composition formula: (Nd.sub.x --Ce.sub.y --L.sub.z).sub.2 CuO.sub.4-d (wherein L is an element selected from Ca and Mg, and x+y+z=1). The compositions of Nd, Ce and L of the oxide superconductor corresponds to a point falling inside an area of Nd--Ce--L ternary diagram surrounded by straight lines (A-B), (B-C), (C-D) and (D-A) connecting point (A) with point (B), point (B) with point (C), point (C) with point (D) and point (D) with point (A), respectively, the points (A), (B), (C) and (D) being points (x=1, y=0, z=0), (x=0.4, y=0.6, z=0), (x=0.4, y=0.3, z=0.3) and (x=0.1, y=0, z=0.9), respectively, in the Nd--Ce--L ternary diagram. Above-described Nd--Ce--L--Cu--O oxides can exhibit superconductivity within a wide range of composition when heat-treated in an atmosphere of nitrogen.
    Type: Grant
    Filed: October 9, 1991
    Date of Patent: September 14, 1993
    Assignees: Mitsubishi Metal Corporation, Hitachi, Ltd., International Superconductivity Technology Center
    Inventors: Takeshi Sakurai, Toru Yamashita, Hisao Yamauchi, Shoji Tanaka
  • Patent number: 4861753
    Abstract: There is disclosed an improved process for preparing a superconducting composition having the formula MBa.sub.2 Cu.sub.3 O.sub.x wherein M is selected from the group consisiting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu; x is from about 6.5 to about 7.0; said composition having a superconducting transition temperature of about 90 K.; said process consisiting essentially of mixing ba(NO.sub.3).sub.2, M.sub.2 O.sub.3 and CuO in an atomic ratio of M:Ba:Cu of about 1:2:3 to form a precursor powder and heating the precursor powder in an oxygen-containing atmoshpere at a temperature from about 875.degree. C. to about 950.degree. C. for a time sufficient to form MBa.sub.2 Cu.sub.3 O.sub.y, where y is from about 6.0 to about 6.4; and maintaining the Mba.sub.2 Cu.sub.3 O.sub.y in an oxygen-containing atmosphere while cooling for a time sufficient to obtain the desired product.
    Type: Grant
    Filed: June 22, 1987
    Date of Patent: August 29, 1989
    Assignee: E. I. Du Pont De Nemours and Company
    Inventor: Eugene M. McCarron, III