Conductor: (class 174) Patents (Class 505/884)
  • Patent number: 8437819
    Abstract: Superconductor cable having a plurality of flat, tape-shaped ribbon superconductor wires assembled to form a stack having a rectangular cross section, the stack having a twist about a longitudinal axis of the stack. Multiple superconductor cables including twisted stacked-cables of the flat-tape-shaped superconductor wires, and power cable comprising the twisted flat-tape stacked cables are disclosed. Superconducting power cable disposed within and separated from an electrical insulator with a space passing cryo-coolant between the superconducting cable and insulator is also disclosed.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 7, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Makoto Takayasu, Joseph V. Minervini, Leslie Bromberg
  • Patent number: 8044752
    Abstract: High-current, compact, flexible conductors containing high temperature superconducting (HTS) tapes and methods for making the same are described. The HTS tapes are arranged into a stack, a plurality of stacks are arranged to form a superstructure, and the superstructure is twisted about the cable axis to obtain a HTS cable. The HTS cables of the invention can be utilized in numerous applications such as cables employed to generate magnetic fields for degaussing and high current electric power transmission or distribution applications.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: October 25, 2011
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Ralph P. Mason, James F. Maguire, Jie Yuan
  • Patent number: 7777602
    Abstract: Tape-shaped superconducting wires, and a superconducting coil formed from said wires, wherein a plurality of electrically separated superconducting film parts, each having a rectangular cross section and arranged in parallel, form parallel conductors, providing superconducting wires capable of containing losses incurred in the presence of alternating current (A/C). A superconducting coil is made by winding the superconducting wires, wherein the coil structure contains at least a part wherein perpendicular interlinkage magnetic fluxes acting among conductor elements of the parallel conductors by the distribution of magnetic fields generated by the superconducting coils cancel mutually in order to contain circulating current within the wires and to make shunt current uniform, thereby providing a low-loss A/C superconducting coil.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 17, 2010
    Assignees: International Superconductivity Technology Center, Juridical Foundation, Fuji Electric Systems Co., Ltd., Fujikura Ltd.
    Inventors: Kazuo Funaki, Masataka Iwakuma, Takanobu Kisu, Akira Tomioka, Toshio Uede, Hiroshi Fuji, Teruo Izumi, Yuh Shiohara
  • Patent number: 7453340
    Abstract: Tape-shaped superconducting wires, and a superconducting coil formed from said wires, wherein a plurality of electrically separated superconducting film parts, each having a rectangular cross section and arranged in parallel, form parallel conductors, providing superconducting wires capable of containing losses incurred in the presence of alternating current (A/C). A superconducting coil is made by winding the superconducting wires, wherein the coil structure contains at least a part wherein perpendicular interlinkage magnetic fluxes acting among conductor elements of the parallel conductors by the distribution of magnetic fields generated by the superconducting coils cancel mutually in order to contain circulating current within the wires and to make shunt current uniform, thereby providing a low-loss A/C superconducting coil.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: November 18, 2008
    Assignees: International Superconductivity Technology Center, The Juridical Foundation, Fuji Electric Systems Co., Ltd., Fujikura Ltd.
    Inventors: Kazuo Funaki, Masataka Iwakuma, Takanobu Kisu, Akira Tomioka, Toshio Uede, Hiroshi Fuji, Teruo Izumi, Yuh Shiohara
  • Patent number: 6906265
    Abstract: A cabled conductor comprises a plurality of transposed strands each comprising one or more preferably twisted filaments preferably surrounded or supported by a matrix material and comprising textured anisotropic superconducting compounds which have crystallographic grain alignment that is substantially unidirectional and independent of the rotational orientation of the strands and filaments in the cabled conductors. The cabled conductor is made by forming a plurality of suitable composite strands, forming a cabled intermediate from the strands by transposing them about the longitudinal axis of the conductor at a preselected strand lay pitch, and, texturing the strands in one or more steps including at least one step involving application of a texturing process with a primary component directed orthogonal to the widest longitudinal cross-section of the cabled intermediate, at least one such orthogonal texturing step occurring subsequent to said strand transposition step.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: June 14, 2005
    Assignee: American Superconductor Corporation
    Inventors: Gregory L. Snitchler, Jeffrey M. Seuntjens, William L. Barnes, Gilbert N. Riley, Jr.
  • Patent number: 6835892
    Abstract: Superconducting cable (1) comprising: a) a layer (20) of tapes comprising superconducting material, b) a tubular element (6) for supporting said layer (20) of tapes comprising superconducting material, c) a cooling circuit, adapted to cool the superconducting material to a working temperature not higher than its critical temperature, characterized in that said tubular element (6) is composite and comprises a predetermined amount of a first material having a first thermal expansion coefficient and a second material having a thermal expansion coefficient higher than that of said first material, said thermal expansion coefficients and said amounts of said first and second material being predetermined in such a way that said tubular element has an overall thermal shrinkage between the room temperature and said working temperature of the cable such as to cause a deformation of said tapes comprising superconducting material lower than the critical deformation of the same tapes.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: December 28, 2004
    Assignee: Pirelli Cavi e Sistemi S.p.A
    Inventors: Marco Nassi, Pierluigi Ladieā€²
  • Patent number: 6638894
    Abstract: A class of superconductive materials containing copper-oxygen bonding and with mixed cation-occupancy designed with a view to size and valence consideration yield useful values of critical temperature and other properties. Uses entail all applications which involves superconducting materials such as magnets and transmission lines which require continuous superconductivity paths as well as detectors (e.g., which may rely on tunneling).
    Type: Grant
    Filed: March 10, 1987
    Date of Patent: October 28, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Bertram Josef Batlogg, Robert Joseph Cava, Robert Bruce van Dover
  • Patent number: 6635603
    Abstract: A class of superconductive materials containing copper-oxygen bonding and with mixed cation-occupancy designed with a view to size and valence consideration yield useful values of critical temperature and other properties. Uses entail all applications which involves superconducting materials such as magnets and transmission lines which require continuous superconductivity paths as well as detectors (e.g., which may rely on tunneling).
    Type: Grant
    Filed: March 3, 1987
    Date of Patent: October 21, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Bertram Josef Batlogg, Robert Joseph Cava, Robert Bruce van Dover
  • Patent number: 6630425
    Abstract: Superconducting copper oxides of the perovskite structure are modified to have mixed occupancy of a cation site, thereby resulting in increased limits in critical field and/or critical current. Mixed occupancy may be observed in terms of increased resistivity as the superconducting material reverts to a nonsuperconducting state. A significant advantage, at least for preferred compositions, derives from the fact that critical temperature is unaffected relative to the prototypical material.
    Type: Grant
    Filed: March 18, 1987
    Date of Patent: October 7, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Bertram Josef Batlogg, Robert Joseph Cava, Robert Bruce van Dover
  • Patent number: 6510604
    Abstract: Superconducting cables, wires and methods of making the same are disclosed. The cables can offer improved flexibility while maintaining a high current carrying capacity. Advantageously, the superconducting filaments of the cables can be formed from relatively brittle materials having comparatively high critical temperatures and/or comparatively high critical magnetic fields. Magnet systems can be formed using these cables without using the conventional “react-then-wind” method.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: January 28, 2003
    Assignee: Massachusetts Institute of Technology
    Inventor: Shahin Pourrahimi
  • Publication number: 20020023772
    Abstract: A superconducting wire having a fine line made of an oxide superconductor which has metal material dispersed therein, the outer periphery of which being coated with a conductive material; and a manufacturing method for the superconducting wire, comprising a process for drawing a metal pipe; filled with an oxide superconductor so as to product the fine line and a process for heating the fine line at a temperature which is higher than the melting point of the metal material constituting the metal pipe.
    Type: Application
    Filed: September 14, 1995
    Publication date: February 28, 2002
    Inventor: NORIO KANEKO
  • Patent number: 6205345
    Abstract: In order to obtain a superconducting wire containing an oxide superconductor, whose critical current density is not much reduced upon application of bending, a plurality of strands 3, comprising oxide superconductors 1 covered with first metal sheaths 2, are filled into a second metal sheath 4, and deformation processing is performed to sectionally apply a compressive load to the second metal sheath, so that the thickness of the oxide superconductor 1 contained in each strand 3 is not more than 5% of the overall thickness of the superconducting wire 6.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: March 20, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichi Sato, Hidehito Mukai, Nobuhiro Shibuta
  • Patent number: 6133814
    Abstract: Structure for joining together metal-coated multi-core oxide superconductor wire material parts in a tape shape. The C axis of a oxide superconductor crystal is substantially oriented along the longitudinal (length) direction that the wire material extends. The end faces of the wire material parts contact each other at the joint part; and the C face of the oxide superconductor crystal is continuously oriented at the joint part.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: October 17, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Michiya Okada, Keiji Fukushima, Kazuhide Tanaka
  • Patent number: 6034588
    Abstract: A superconducting current lead is provided, in which a plurality of unit conductors serving as current paths and each formed from a tape-like oxide superconducting wire are disposed on a cylindrical support member 4 so that a tape surface of the superconducting wire material is made parallel with a circumferential direction in a cylindrical coordinate system, and magnetic members 3 are disposed between the plurality of unit conductors.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: March 7, 2000
    Assignees: Japan Atomic Energy Research Institute, Fuji Electric Co., Ltd.
    Inventors: Toshinari Ando, Hiroshi Tsuji, Takaaki Isono, Kazuya Hamada, Yukio Yasukawa, Masanobu Nozawa
  • Patent number: 5861788
    Abstract: In application to a superconducting magnet which is cooled by a cryogenic refrigerator, provided is a superconducting coil which can maintain a cooled state and enables a stable operation and continuous driving even if a ramping speed is increased. First and second superconducting conductors are connected with each other. Respective tape-like superconducting multifilamentary wires are electrically connected with each other through solder, to form joint bodies. The respective joint bodies are insulated from each other by interposition of an insulating material therebetween.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: January 19, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kengo Ohkura, Munetsugu Ueyama, Kenichi Sato
  • Patent number: 5837941
    Abstract: A superconductor wire comprising a plurality of Nb--Ti superconductor filaments embedded in a copper matrix made of a copper alloy other than a two element copper alloy selected from the group consisting of a Cu--Ni alloy, a Cu--Sn alloy and a Cu--Mn alloy, wherein the resistivity (Z) at room temperature of the copper matrix is 2.times.10.sup.-8 .OMEGA.m to 65.times.10.sup.-8 .OMEGA.m, and the distance between superconductor filaments is not less than 0.0625.times.1/.sqroot.Z nm. The superconductor wire has a high critical current density, a small AC loss and improved workability.
    Type: Grant
    Filed: August 16, 1994
    Date of Patent: November 17, 1998
    Assignees: Tokai University, The Furukawa Electric Co., Ltd.
    Inventors: Kyoji Tachikawa, Yasuzo Tanaka, Kaname Matsumoto, Hisaki Sakamoto
  • Patent number: 5827801
    Abstract: A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amount of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to atomic %. The base material is filled with a Bi-containing oxide of Bi.sub.1 Pb.sub.u Sr.sub.x Ca.sub.y Cu.sub.z O.sub.w wherein u=0-0.3, x=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: October 27, 1998
    Assignees: Sumitomo Heavy Industries, Ltd., National Research Institute for Metals
    Inventors: Yoshiaki Tanaka, Tomoyuki Yanagiya, Fumiaki Matsumoto, Masao Fukutomi, Toshihisa Asano, Kazunori Komori, Hiroshi Maeda
  • Patent number: 5753862
    Abstract: A compound superconducting wire comprising a matrix of CuX alloy and a multiplicity of Z.sub.3 X filaments embedded in the matrix in a spaced relationship so as not to come into contact with each other wherein X is Sn or Ga and Z.sub.3 X is Nb.sub.3 Sn or V.sub.3 Ga. In a precursor, therefore, a multiplicity of filaments of a base metal material Z such as Nb are arranged in a Cu base metal metrix concentrically in layers around a center core of a base metal material X such as Sn, in which the spacing between any adjacent filaments arranged in a former boundary region of an .epsilon.-phase bronze layer having a certain radius from the center produced when the precursor is preheat-treated at a temperature of 300.degree. to 600.degree. C. is made larger than the spacing between any adjacent filaments arranged in the other matrix regions.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: May 19, 1998
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoshio Kubo, Kunihiko Egawa, Hiroko Higuma, Takayuki Nagai, Fusaoki Uchikawa
  • Patent number: 5698497
    Abstract: Carbonaceous materials based on the fullerene molecules have been developed which allow for superconductivity. The fullerene materials are soluble in common solvents.
    Type: Grant
    Filed: June 13, 1994
    Date of Patent: December 16, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Robert Cort Haddon, Arthur Foster Hebard, Donald Winslow Murphy, Matthew Jonathan Rosseinsky
  • Patent number: 5663528
    Abstract: A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amounts of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to 5 atomic %. The base material is filled with a Bi-containing oxide of Bi.sub.1 Pb.sub.u Sr.sub.x Ca.sub.y Cu.sub.z O.sub.w wherein u=0-0.3, X=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
    Type: Grant
    Filed: December 21, 1993
    Date of Patent: September 2, 1997
    Assignees: Sumitomo Heavy Industries, Ltd., National Research Institute for Metals
    Inventors: Yoshiaki Tanaka, Tomoyuki Yanagiya, Fumiaki Matsumoto, Masao Fukutomi, Toshihisa Asano, Kazunori Komori, Hiroshi Maeda
  • Patent number: 5654098
    Abstract: A superconducting wire saved in weight and enhanced in mechanical properties is provided without damaging electric and thermal characteristics as an Al stabilizer, and further a method for producing the same, a high strength Al sintered alloy and powders used for the process are provided. A superconducting wire comprising an Al alloy of a high purity Al in which a small amount of ceramic ultrafine particles are dispersed and superconducting filaments embedded in the Al alloy, in which a large number of the ceramic ultrafine particles are dispersed in the area of 1 .mu.m.sup.2, and the areas of 1 .mu.m.sup.2 in which a large number of the ceramic ultrafine particles are dispersed, are formed over nearly the whole of the alloy.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: August 5, 1997
    Assignee: Hitachi, Ltd.
    Inventors: Yasuhisa Aono, Fumio Iida, Shinzo Ikeda, Takahiko Kato, Masakiyo Izumiya, Hideyo Kodama
  • Patent number: 5647116
    Abstract: A non-superconductive Ag-based sheath formed surrounding a superconducting tape or wire is stripped by placing a Bi- or Pb-based metal material on the Ag-based sheath to be removed; and then heating the Bi- or pb-based metal material to 250.degree. C.-450.degree. C. to dissolve the Ag-based sheath; and removing the dissolved Ag-based sheath.
    Type: Grant
    Filed: September 7, 1995
    Date of Patent: July 15, 1997
    Assignee: National Science Council
    Inventors: Chin-Hai Kao, Horng-Yi Tang
  • Patent number: 5620798
    Abstract: A new design for an aluminum stabilized superconductor which embeds the superconducting cable within a high purity aluminum stabilizer. This stabilizer is, in turn, partially surrounded by an aluminum alloy sheath. The aluminum alloy sheath is constructed and arranged so that at least one exterior surface of the stabilizer is open for exposure to a coolant. Preferably, this open exterior surface of the stabilizer will be knurled for greater cooling efficiency.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: April 15, 1997
    Assignee: The Babcock & Wilcox Company
    Inventors: Xianrui Huang, Gregory A. Lehmann, Yury Lvovsky, Ronald G. Wood
  • Patent number: 5538942
    Abstract: A superconducting magnet coil is produced by winding a superconducting wire to form a coil; impregnating the coil with a curable resin composition of low viscosity which contains for example at least one epoxy resin selected from the group consisting of diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F and diglycidyl ether of bisphenol AF, all having a number-average molecular weight of 350-1,000, a flexibilizer and a curing catalyst, to obtain a curable-resin composition-impregnated coil; and heating the curable-resin-composition-impregnated coil to cure the composition.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: July 23, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Toru Koyama, Koo Honjo, Masao Suzuki, Akio Takahashi, Akio Mukoh, Keiji Fukushi, Seiji Numata
  • Patent number: 5442137
    Abstract: A housing is arranged outside a superconducting wire body to enclose it at a predetermined gap. A solder layer and/or a space are formed as a stress relaxation layer between the superconducting wire body and the housing. The gap between a surface of the superconducting wire body, to which a load acts in a direction perpendicular to the longitudinal direction of the superconducting wire body, and a housing material layer, is set to at least 0.25 mm at each side. Alternatively, a solder layer is formed to leave a space between a surface of the superconducting wire body, to which the above load mainly acts, and the housing material layer.
    Type: Grant
    Filed: November 22, 1991
    Date of Patent: August 15, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoru Murase, Shigeo Nakayama
  • Patent number: 5426094
    Abstract: An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.
    Type: Grant
    Filed: January 16, 1991
    Date of Patent: June 20, 1995
    Assignee: Arch Development Corporation
    Inventors: John R. Hull, Roger B. Poeppel
  • Patent number: 5384197
    Abstract: A superconducting magnet coil contains a coil of superconducting wire and a cured product of a curable resin composition with which the coil has been impregnated, the cured product having a thermal shrinkage factor of 1.5-0.3%, preferably 1.0-0.3%, when cooled from the glass transition temperature to 4.2K, a bend-breaking strain of 2.9-3.9%, preferably 3.2-3.9%, at 4.2K and a modulus of 500-1,000 kg/mm.sup.2 at 4.2K, or undergoing a thermal stress of 0-10 kg/mm.sup.2 when cooled from the glass transition temperature to 4.2K and resisting to quench during superconducting operation.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: January 24, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Toru Koyama, Koo Honjo, Masao Suzuki, Akio Takahashi, Akio Mukoh, Keiji Fukushi, Seiji Numata
  • Patent number: 5347085
    Abstract: A multifilamentary oxide superconducting wire includes a metal matrix and a plurality of flat oxide superconductor filaments arranged in the metal matrix such that wide directions thereof are radially arranged in a section of the metal matrix. A method of manufacturing a multifilamentary oxide superconducting wire includes the steps of filling a raw material of an oxide superconductor in a through hole of a metal member to form a composite billet, subjecting the composite billet to a diameter reduction process to form a composite wire having a fan-like section, arranging composite wires so that larger arcs of the composite wires are located on the outer side, thus forming form a composite wire arrangement, covering the composite wire arrangement with a metal member to form a metal-covered composite wire arrangement, and performing a predetermined heating process of the metal-covered composite wire arrangement, thus forming the raw material into an oxide superconductor.
    Type: Grant
    Filed: January 30, 1992
    Date of Patent: September 13, 1994
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hiroyuki Kikuchi, Masanao Mimura, Naoki Uno, Yasuzo Tanaka
  • Patent number: 5340795
    Abstract: Improved methods, apparatus, and compositions for achieving superconductivity are disclosed. The methods and apparatus are based upon applying an external driving force, i.e., either an electrical current or a magnetic field, at a predetermined frequency. The predetermined frequency is chosen to equal one or more of the resonant frequencies of the molecular vibration of the atoms which provide conductivity to the material. The compositions of the invention require a continuous bridge or network of electrically compatible atoms between the opposite poles of the electrical pathway. Another aspect of the invention provides a method for determining the resonant frequency of molecular vibration, i.e., the frequency at which the external driving force should be applied. In this aspect of the invention, the composition is exposed to one or more sources of electromagnetic energy which radiate at known frequencies. The response of the composition to the various frequencies of radiation is measured and compared.
    Type: Grant
    Filed: May 22, 1992
    Date of Patent: August 23, 1994
    Inventor: Daniel A. Boehnen
  • Patent number: 5248851
    Abstract: A pseudo rod, fabricated from several plate sections joined together at their edges and having a cross-section resembling a polygon approximates a rod having a circular cross section. Using multiple plates joined at their edges permits growing a crystalline material on the planar faced substrates and if the plates are crystalline material, the crystalline material grown thereon can have improved current carrying capability.
    Type: Grant
    Filed: December 2, 1992
    Date of Patent: September 28, 1993
    Assignee: Motorola, Inc.
    Inventors: Marc K. Chason, Richard S. Kommrusch, Pankaj B. Desai
  • Patent number: 5200577
    Abstract: A superconducting wire is formed by twisting a bundle of a plurality of superconducting material filaments in which one material filament is arranged in a central portion of the filament bundle and a plurality of other material filaments arranged outside the central material filament so as to surround the central one. The filament bundle is twisted in that the central material filament is substituted with another one of outer material filaments one by one in order periodically during a twisting process along an axial direction of the filament bundle.
    Type: Grant
    Filed: June 13, 1991
    Date of Patent: April 6, 1993
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mamoru Shimada
  • Patent number: 5189260
    Abstract: A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.
    Type: Grant
    Filed: February 6, 1991
    Date of Patent: February 23, 1993
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Douglas K. Finnemore, Theodore A. Miller, Jerome E. Ostenson, Louis A. Schwartzkopf, Steven C. Sanders
  • Patent number: 5183970
    Abstract: A superconductive transmission line is formed of mixed metallic oxide ceramic material, particularly Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x drawn epitaxially upon a substrate. The superconductive material has basal crystallographic planes in alignment with copper oxide of the ceramic material. The planes are parallel to the substrate. The transmission line is constructed of a plurality of electrically conductive elements, each of which is formed of the superconductive material. The conductive elements are arranged with the crystalline planes parallel to an axis of the transmission line, along which axis power is to flow. Thereby, magnetic fields induced by currents flowing in the conductive elements intersect the conductive elements perpendicularly to the basal crystallographic planes to maximize the current which can flow while retaining linearity between magnetization and applied magnetic field.
    Type: Grant
    Filed: March 9, 1992
    Date of Patent: February 2, 1993
    Assignee: International Business Machines Corp.
    Inventors: William J. Gallagher, Thomas K. Worthington
  • Patent number: 5183965
    Abstract: An electrical conductor particularly suited for use as a downlead to low temperature devices includes a ceramic honeycomb body having longitudinal channels wherein films of substantially single crystals of a ceramic superconductor are grown. The maximum current carrying capacity of the ceramic superconductor may be oriented parallel to the channels. Square channels arranged in alternating rows of oppositely directed current provide desirable magnetic field cancellations and permit high current flows. A method for making the electrical conductor and a method of extruding the ceramic honeycomb body are also disclosed.
    Type: Grant
    Filed: August 3, 1990
    Date of Patent: February 2, 1993
    Inventor: William N. Lawless
  • Patent number: 5167061
    Abstract: A process for producing a niobium-tin superconductor wire made from a multifilament composite via the internal tin approach is provided for. In particular, a process of preparing such a wire via an internal tin tube surrounded by a diffusion barrier and a stabilizer, this results in a drawn wire product have improved properties and lower cost.
    Type: Grant
    Filed: September 12, 1991
    Date of Patent: December 1, 1992
    Assignee: Advanced Superconductors Inc.
    Inventor: Gennady Ozeryansky
  • Patent number: 5168125
    Abstract: A superconductor protected against partial transition includes superconductor strands around at least one non-superconductor central strand or at least one non-superconductor central core electrically insulated from the superconductor strands. At least at both ends of the superconductor, the central strand or said central core is electrically connected to the superconductor strand. The central strand or the central core comprises at least one non-superconductor metal filament whose resistivity at 4.2.degree. K. is less than 10.sup.-9 .OMEGA..m embedded in a metal alloy matrix whose resistivity at that temperature is greater than 10.sup.-8 .OMEGA..m.
    Type: Grant
    Filed: January 25, 1991
    Date of Patent: December 1, 1992
    Assignee: GEC Alsthom SA
    Inventors: Thierry Verhaege, Van Doan Pham, Alain Lacaze
  • Patent number: 5168127
    Abstract: A method of producing an oxide superconducting wire. A non-oxidizing metal layer is formed between an oxide superconducting material and an oxidizing metal support in order to prevent oxygen from being taken away from the oxide superconducting material by the oxidizing metal support during a subsequent heat treatment for producing an oxide superconductor to thereby obtaining a wire composite. The wire composite is then heated to produce the oxide superconductor.
    Type: Grant
    Filed: February 6, 1992
    Date of Patent: December 1, 1992
    Assignee: Fujikura Ltd.
    Inventors: Osamu Kohno, Yoshimitsu Ikeno, Nobuyuki Sadakata, Masaru Sugimoto, Mikio Nakagawa
  • Patent number: 5132487
    Abstract: An improved transmission system for electrical energy comprising a plurality of ball members interspersed by mating members enclosed within at least one protective outer wrapping, with the ball members and the mating members being in contact with adjacent members and being formed of material which is electrically conductive at superconductor temperatures and each having an axial opening extending therethrough to permits passage of a suitable coolant fluid, such as liquid helium.
    Type: Grant
    Filed: January 2, 1991
    Date of Patent: July 21, 1992
    Inventor: Robert C. Hoersch
  • Patent number: 5127149
    Abstract: A process for producing a niobium-tin superconductor wire made from a multifilament composite via the internal tin approach is provided for. In particular, a process of preparing such a wire via an internal tin tube surrounded by a diffusion barrier and a stabilizer, this results in a drawn wire product have improved properties and lower cost.
    Type: Grant
    Filed: February 26, 1990
    Date of Patent: July 7, 1992
    Assignee: Advanced Superconductors, Inc.
    Inventor: Gennady Ozeryansky
  • Patent number: 5114908
    Abstract: A superconductive conductor (1) is formed by at least three superconducting wires (3) comprising oxide superconductor members (4) and stabilizing members (5), which are point-symmetrically arranged in section. The superconducting wires (3) are so point-symmetrically arranged that electromagnetic force and magnetic fields provided by the respective superconducting wires (3) cancel each other, whereby it is possible to reduce distortion and influence by applied magnetic fields.
    Type: Grant
    Filed: August 7, 1990
    Date of Patent: May 19, 1992
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichi Sato, Hidehito Mukai
  • Patent number: 5057645
    Abstract: A lead interface for a superconducting device has a segment of normal conducting lead electrically connected to a segment of superconducting lead coiled within a dewar. The superconducting lead is adapted to be cooled to below the superconductor critical temperature by circulating a cooling fluid through an internal fluid chamber which runs the length of the superconducting coil and into an intermediate disk having an internal spiral fluid chamber. When the superconducting device is on standby, a superconducting switch is closed and the superconducting segment of the interface is left uncooled. To charge or discharge the superconducting device, the superconducting segment of the interface is cooled prior to opening the superconducting switch.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: October 15, 1991
    Assignee: Wisconsin Alumni Research Foundation
    Inventor: Mohamed A. Hilal
  • Patent number: 5057489
    Abstract: A multifilamentary superconducting cable has two parallel spaced-apart guide wires. A first layer of mutually parallel superconducting filaments is woven partially around and between the guide wires in a transposed braid. Likewise, a second layer of mutually parallel superconducting filaments is woven partially around and between the guide wires in a transposed braid. Thus, the two layers overlap each other as the respective layers pass between the guide wires. The two superconducting layers and two guide wires are enclosed in a helical copper duct, with the guide wires being oriented within the duct.
    Type: Grant
    Filed: September 21, 1990
    Date of Patent: October 15, 1991
    Assignee: General Atomics
    Inventors: Tihiro Ohkawa, Robert A. Olstad
  • Patent number: 4997719
    Abstract: A flexible Nb-containing superconductor-laminated aromatic polyimide material useful for superconducting wires and circuits, comprising an Nb-containing superconductor layer formed on an aromatic imide polymer substrate, which preferably comprise a polymerization-imidization product of an aromatic tetracarboxylic acid component comprising, as a major ingredient, a biphenyltetracarboxylic dianhydride with an aromatic diamine component comprising, as a major ingredient, an aromatic diamine having a one benzene ring structure.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: March 5, 1991
    Assignee: Ube Industries, Ltd.
    Inventors: Shigetoshi Ohshima, Ryoichi Sato, Kenichiro Yano
  • Patent number: 4927985
    Abstract: A composite hyperconductor for use at cryogenic temperatures and particularly well suited for AC applications employs at least one filament of conductor having an extremely low electrical resistance at cryogenic temperatures, a strengthening matrix surrounding the conductor, and a barrier for electrically insulating the conductor from the matrix while providing for efficient heat transfer therebetween and/or serving as a diffusion barrier to prevent contamination of the high purity conductor during processing. The preferred composite hyperconductor for space applications comprises an ultra high purity aluminum conducting filament, a aluminum alloy matrix and a boron nitride barrier.
    Type: Grant
    Filed: August 12, 1988
    Date of Patent: May 22, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Natraj C. Iyer, Walter J. Carr, Jr., Alan T. Male
  • Patent number: 4901621
    Abstract: A rail gun projectile includes superconducting material. Current from a DC power supply flows between the rails through the superconducting material with a component at right angles to the elongated direction of the rails. The superconducting material is of a type that the current flowing through it produces a force for driving the projectile longitudinally along the rails. Metal abutting against the superconducting material shunts current from the power supply around a portion of the superconducting material having a tendency to go normal to the remainder of the superconducting material in the superconducting state.
    Type: Grant
    Filed: July 9, 1987
    Date of Patent: February 20, 1990
    Assignee: GT-Devices
    Inventor: Derek A. Tidman
  • Patent number: 4894556
    Abstract: A pulsed transformer utilizing the transition of the primary winding from a superconducting state to a normal state to increase the efficiency of energy transfer to the secondary winding thereof and hence to a load across the secondary winding. The primary winding is constructed as a composite which has minimal resistance when in a superconductive state and significantly higher resistance when in a normal or critical state.
    Type: Grant
    Filed: June 15, 1987
    Date of Patent: January 16, 1990
    Assignee: General Dynamics Corporation, Convair Division
    Inventors: Mohamed A. Hilal, Jerome F. Parmer, Scott D. Peck, Eddie M. W. Leung
  • Patent number: 4849288
    Abstract: A superconducting fiber of a superconducting fiber bundle includes a carrier fiber having an outer surface, and superconducting layers and separating layers alternatingly surrounding the outer surface of the carrier fiber and a method for producing the same.
    Type: Grant
    Filed: July 7, 1986
    Date of Patent: July 18, 1989
    Assignees: Brown, Boveri & Cie. AG, Kernforschungszentrum Karlsruhe GmbH
    Inventors: Franz Schmaderer, Georg F. Wahl, Cord-Heinrich Dustmann, Erich Fitzer, Karl Brennfleck, Manfred Dietrich