Cyclic Cryogenic System (e.g., Sterling, Gifford-mcmahon, Etc.) Patents (Class 505/894)

Cross-Reference Art Collections

With regenerative heat exchanger (Class 505/895)
  • Patent number: 9396855
    Abstract: A method includes the steps of: bringing a refrigerator's distal end into contact with a contact of a heat transfer member to thermally connect the refrigerator via the heat transfer member to a superconducting coil to cool the superconducting coil to cryogenic temperature; after the step of bringing the refrigerator's distal end into contact with the contact of the heat transfer member, bringing the refrigerator's distal end out of contact with the contact of the heat transfer member; and after the step of bringing the refrigerator's distal end out of contact with the contact of the heat transfer member, injecting liquid helium into a helium tank.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 19, 2016
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Hajime Tamura
  • Patent number: 8352002
    Abstract: A superconductor cooling system has: a first superconductor; a first cooling conductor used for cooling the first superconductor; a first cooling unit configured to cool the first cooling conductor to a first temperature; and a current lead configured to supply a current to the first superconductor. Here, a part of a path of the current is formed of a second superconductor. The superconductor cooling system further has: a second cooling conductor used for cooling the second superconductor; a second cooling unit configured to cool the second cooling conductor to a second temperature; and a first thermal conduction switch connected between the first cooling conductor and the second cooling conductor to ON and OFF heat transfer between the first cooling conductor and the second cooling conductor.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: January 8, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Hiroshi Kawashima
  • Patent number: 8112135
    Abstract: A superconductive electrical cable is provided, which comprises a conductor consisting of superconductive wires. The conductor (L) is designed as a stranded conductor in which the wires (1) are stranded together with a predetermined pitch length (S) lying between about 5×D and about 20×D, where D is the diameter of the stranded conductor.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: February 7, 2012
    Assignee: Nexans
    Inventors: Arnaud Allals, Frank Schmidt
  • Patent number: 6181228
    Abstract: A magnet, such as an open or closed magnet, has a first assembly with at least one superconductive main coil and with a first vacuum enclosure enclosing the main coil(s). A first cryocooler coldhead has a rigid first housing and is generally vertically aligned. A first flexible bellows is vertically aligned, has a first end attached to the first housing of the first cryocooler coldhead and has a second end attached to the first vacuum enclosure of the first assembly.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: January 30, 2001
    Assignee: General Electric Company
    Inventors: Evangelos Trifon Laskaris, Paul Shadforth Thompson, Yu Wang
  • Patent number: 5991647
    Abstract: A high temperature superconductor lead assembly for reducing the heat leak into a cryocooled system features a shroud configured for at least partial submersion in a cryogenic fluid contained within a bath chamber, and a high temperature superconductor lead element at least partially contained within the shroud. In use, a portion of the high temperature superconductor lead element contained within the shroud extends below a fluid level of the cryogenic fluid in the bath chamber. The portion of the high temperature superconductor lead element is thermally shielded by the shroud such that it is maintained at a temperature higher than the temperature of the cryogenic fluid. The shroud is a double-walled vacuum structure with a sealed end and an open end. In use, the open end is submerged in the cryogenic fluid.
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: November 23, 1999
    Assignee: American Superconductor Corporation
    Inventors: William E. Brockenborough, Bruce Barton Gamble, Anthony J. Rodenbush, Ahmed Sidi-Yekhlef
  • Patent number: 5918470
    Abstract: A recondensing zero boiloff superconducting magnet assembly utilizing a cryocooler with a compressible indium gasket positioned between the cryocooler and the recondenser and with the gasket containing a plurality of spaced parallel grid wires with interconnecting web segments of a lesser thickness interconnecting the mid sections of ends of adjacent wires to facilitate compression of the gasket to control improved thermal conductivity while minimizing the pressure and forces on the assembly.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: July 6, 1999
    Assignee: General Electric Company
    Inventors: In-Hua Xu, Daniel C. Woods, William S. Stogner
  • Patent number: 5759960
    Abstract: A superconductive device (e.g., magnet) having a superconductive lead assembly and cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end thermally connected to the first stage and a second end thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in surrounding compressive contact with the first ceramic superconductive lead, and a rigid, nonporous support tube surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connected to the second stage.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: June 2, 1998
    Assignee: General Electric Company
    Inventors: Robert Adolph Ackermann, Kenneth Gordon Herd, Evangelos Trifon Laskaris, Richard Andrew Ranze
  • Patent number: 5551243
    Abstract: A super conducting magnet system for magnetic resonance systems comprising at least one radiation shield. Temperature sensors, an external refrigeration system and a controller are provided for maintaining said at least one shield at a constant temperature by heating the shield and reducing the heat provided as the refrigerator system wears or by increasing the frequency of the refrigeration cycle as the system wears or both.
    Type: Grant
    Filed: July 12, 1995
    Date of Patent: September 3, 1996
    Assignee: Elscint Ltd.
    Inventors: Alex Palkovich, John Bird, Neil Clarke
  • Patent number: 5301507
    Abstract: This invention relates to a cryogenless superconducting magnet system of the type that is attached to a utility grid at end-user site and is used to store electrical energy until such time that an electrical disruption occurs in the grid. Structures of this type, generally, allow the stored electrical energy to be released in such a manner that the disruption in the utility grid is negated before it reaches critical loads.
    Type: Grant
    Filed: August 3, 1992
    Date of Patent: April 12, 1994
    Assignee: General Electric Company
    Inventors: Evangelos T. Laskaris, Ahmed K. Kalafala
  • Patent number: 5182914
    Abstract: The rotary dipole active magnetic regenerative refrigerator (10) of the present invention comprises a stationary first regenerative magnetic bed (12) positioned within a stationary first inner dipole magnet (14), a stationary second regenerative magnetic material bed (16) positioned within a stationary second inner dipole magnet (18), an outer dipole magnet (20) that rotates on a longitudinal axis and encloses the inner dipole magnets (14, 18), a cold heat exchanger (22), hot heat exchangers (24, 26), a fluid displacer (28), and connective plumbing through which a heat transfer fluid is conveyed.
    Type: Grant
    Filed: March 14, 1990
    Date of Patent: February 2, 1993
    Assignee: Astronautics Corporation of America
    Inventors: John A. Barclay, Joseph A. Waynert, Anthony J. DeGregoria, Joseph W. Johnson, Peter J. Claybaker
  • Patent number: 5111665
    Abstract: A cryorefrigerator mount for a refrigerated superconductive magnet is disclosed. In particular, a cryorefrigerator system has two separate cryorefrigerators such that one of the cryorefrigertors contacts and cools the magnet while the other cryorefrigerator is held in a raised, standby position. If the first cryorefrigerator malfunctions and can no longer cool the magnet, the second cryorefrigerator is lowered to contact and cool the magnet. The first cryorefrigerator is then raised so it can be repaired, serviced or replaced.
    Type: Grant
    Filed: February 19, 1991
    Date of Patent: May 12, 1992
    Assignee: General Electric Company
    Inventor: Robert A. Ackermann
  • Patent number: 5007243
    Abstract: A method of making high-purity fine particles of reactive metals, reactive especially in terms of their inclination to form hydroxides, comprises the steps of: preparing an inert gas atmosphere within which to manufacture the particles; reducing the moisture remaining in the inert gas atmosphere to an extremely low level; pulverizing the reactive metal within the moisture-free inert gas atmosphere; and collecting and sealing the product particles of reactive metal in a storage container in the same moisture-free inert gas atmosphere.
    Type: Grant
    Filed: November 21, 1989
    Date of Patent: April 16, 1991
    Assignees: IHI Master Metal Ltd., Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Toru Yamaguchi, Yukio Inazuki, Hideo Nakazawa
  • Patent number: 5006505
    Abstract: A practical cryogenic Peltier cooler is devised by replacing one of the semiconducting elements in a conventional peltier cooler with an element comprised of bulk, or thin film superconducting material. In the preferred embodiment, a rare-earth, a barium copper oxide superconductor of the form Yb.sub.a Cu.sub.3 O.sub.x is utilized. The superconducing elements are placed in an alternating series with semiconducting elements comprised of bismuth telluride of the form Bi.sub.2 Te.sub.3 (n-type). Performance may be improved in an alternative embodiment by utilizing instead a bismuth antimony semiconductor of the form Bi.sub.85 Sb.sub.15 (n-type). As a result, cryogenic Peltier coolers can be devised with useful refrigeration capacities and stable cold temperatures of 65-80 degrees Kelvin and below, while heat sinked to a higher temperature.
    Type: Grant
    Filed: August 8, 1988
    Date of Patent: April 9, 1991
    Assignee: Hughes Aircraft Company
    Inventor: Matthew M. Skertic