Suspension (e.g., Magnetic, Electrodynamic, Etc.) Patents (Class 505/903)
  • Patent number: 8391936
    Abstract: A magnetic levitation device includes at least two superconductor molded bodies with stored magnetic field configurations above a magnetic guide track. The at least two superconductor molded bodies have at least one of a stored magnetic field configuration with different vertical spacing from the guide track and a stored magnetic field configuration with different horizontal position with respect to the guide track. The at least two superconductor molded bodies are mechanically held in a position deviating from their stored position above the guide track and connected to one another. This abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: January 29, 2006
    Date of Patent: March 5, 2013
    Assignee: Leibniz-Institut Fuer Festkoerper-und Werkstoffforschung Dresden E.V.
    Inventors: Christoph Beyer, Oliver De Haas, Torsten Riederich, Ludwig Schultz
  • Patent number: 6541885
    Abstract: The invention relates to a magnetic bearing assembly of a rotor in a stator, with at least one magnetic bearing (1) comprising a stator part (2) and a rotor part (3) arranged coaxially thereto in the operating position without contacting the stator part. The bearing effective area of the rotor part is formed by a radial exciting system (6) having a permanent magnet (4), while the stator part (2) comprises a high-temperature superconductor concentrically surrounding the radial exciting system (6) while maintaining an annular air gap (10).
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 1, 2003
    Assignee: Atlas Copco Energas GmbH
    Inventors: Wolf-RĂ¼diger Canders, Hardo May
  • Patent number: 6355599
    Abstract: This invention provides a radiation curable coating composition for superconducting wires. The coating composition comprises at least one (meth)acrylate terminated urethane oligomer, at least one adhesion promoter, at least one (meth)acrylate functionalized diluent and at least one free radical photoinitiator.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: March 12, 2002
    Assignee: DSM Desotech, Inc.
    Inventors: Edward P. Zahora, Steven C. Lapin, David M. Szum, Steven R. Schmid
  • Patent number: 5763971
    Abstract: A superconducting bearing device comprises a permanent magnet portion fixedly mounted on a rotary body concentrically therewith, and a superconductor opposed to the magnet portion and spaced apart therefrom radially of the rotary body, the magnet portion being so disposed that the rotation of the rotary body does not alter the magnetic flux distribution around the axis of rotation of the rotary body, the superconductor being disposed at a position which is spaced apart from the magnet portion by a distance permitting a predetermined quantity of magnetic flux thereof to penetrate into the superconductor and which does not permit the rotation of the rotary body to alter the penetrating magnetic flux distribution. The magnet portion comprises a plurality of annular permanent magnets arranged at a spacing along the axis of rotation of the rotary body and an annular yoke of ferromagnetic material interposed between each two adjacent magnets.
    Type: Grant
    Filed: March 16, 1995
    Date of Patent: June 9, 1998
    Assignee: Koyo Seiko Co., Ltd.
    Inventors: Ryoichi Takahata, Taisaku Hashimoto
  • Patent number: 5633547
    Abstract: A magnetic thrust bearing (110) comprises a magnet (112) mounted on a shaft (114) and a plurality of equi-angularly spaced superconductors (116) mounted on a static structure (118). Each superconductor (116) is mounted onto the static structure (118) by a parallel hinge strip (120) which allows the superconductor (116) to move radially relative to the axis of rotation of the shaft (114). The radial movement of the superconductors (116) changes the cross-sectional area of the magnetic field between the magnet and the superconductors (116) and this changes the stiffness of the magnetic bearing (110). The superconductors (116) move radially due to the pivoting of the parallel hinge strips (120) due to changes in the loads acting on the magnetic bearing (110). It is possible to detect movement of the shaft and to actively move the superconductors to control the stiffness of the magnetic bearing and to control the clearance in the magnetic bearing as in FIG. 5.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: May 27, 1997
    Assignee: Rolls-Royce, plc
    Inventor: Timothy A. Coombs
  • Patent number: 5446018
    Abstract: A superconducting bearing device for supporting a rotary shaft (rotary body) 2 in a noncontact state for rotation at a high speed. A superconducting bearing 4 for supporting the rotary shaft 2 in a noncontact state relative to a housing 1 comprises permanent magnets 14 mounted on the rotary shaft 2, and Type II superconductors 17 attached to the housing 1 and opposed to the magnets as vertically spaced apart therefrom. A mechanical catcher bearing 21 comprising a thrust ball bearing is disposed between the housing 1 and the rotary shaft 2 at opposed portions thereof. An initial position determining mechanism is provided for lifting a bearing ring 23 of the catcher bearing 21 on the housing 1 to position the housing 1 and the rotary shaft 2 in place relative to each other, whereby the superconductors 17 and the permanent magnets 14 on the shaft 2 can be positioned in place relative to each other. The superconducting bearing 4 can be operated efficiently by suitably determining the relative position.
    Type: Grant
    Filed: September 15, 1993
    Date of Patent: August 29, 1995
    Assignee: Koyo Seiko Co., Ltd.
    Inventors: Ryoichi Takahata, Motoaki Shibayama
  • Patent number: 5438038
    Abstract: A superconducting bearing device includes a permanent magnet on a rotor, with a superconductor placed opposite the magnet. Flux trapped in the superconductor during cooling helps to stabilize the rotor. More specifically, the permanent magnet is mounted on the rotor so that, as the rotor rotates, its rotation does not alter the magnetic flux distribution around the axis of rotation of the rotor. The superconductor permits penetration of the magnetic flux from the magnet, being spaced from the magnet by a distance that permits a predetermined quantity of the magnetic flux to penetrate it, while not permitting rotation of the rotor to alter the distribution of the penetrating magnetic flux.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: August 1, 1995
    Assignee: Koyo Seiko Co., Ltd.
    Inventors: Ryoichi Takahata, Shoji Eguchi
  • Patent number: 5410199
    Abstract: A vertically carrying apparatus comprising a carrying capsule that has a space for accommodating an object which is to be carried, the capsule incorporating a horizontal superconducting coil, and armature coils that are vertically arranged side by side outside the carrying capsule, wherein upward thrust force is obtained by a correlation between a persistent current that flows in the superconducting coil and magnetic fields that are produced around the armature coils.The vertically carrying apparatus further comprises a coil support device which includes the superconducting coil, a coil support member that supports the superconducting coil, a helium vessel that accommodates the superconducting coil and the coil support member and that also supports the coil support member through an oscillation preventing member, and a vacuum vessel that accommodates and supports the helium vessel.
    Type: Grant
    Filed: October 25, 1990
    Date of Patent: April 25, 1995
    Assignees: Doryokuro Kakunenryo Kaihatsu Jigyodan, Mitsubishi Heavy Industries, Ltd.
    Inventors: Manabu Kinugasa, Tomoyuki Mizushina, Hiroyuki Aoki, Toshihide Nakano, Takuya Kimura, Kazuyoshi Hayakawa, Kenichi Matsunaga
  • Patent number: 5396205
    Abstract: A tightly wound superconducting coil device includes a cooling medium vessel, a coil winding disposed in the cooling medium vessel, the coil winding including an unspliced superconducting wire and having a configuration such that a cooling medium disposed in the cooling medium vessel does not contact the unspliced superconducting wire, and an insulating member disposed between the coil winding and the cooling medium vessel, wherein a portion of the unspliced superconducting wire forming outer portions of the coil winding on two opposite sides of the coil winding has a composition which causes a stability margin of the outer portions of the coil winding to be greater than a stability margin of a remaining portion of the coil winding.
    Type: Grant
    Filed: April 24, 1992
    Date of Patent: March 7, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Ryukichi Takahashi, Fumio Iida, Naofumi Tada
  • Patent number: 5330967
    Abstract: A superconducting bearing device includes a permanent magnet on a rotor, with a superconductor placed opposite the magnet. Flux trapped in the superconductor during cooling helps to stabilize the rotor. More specifically, the permanent magnet is mounted on the rotor so that, as the rotor rotates, its rotation does not alter the magnetic flux distribution around the axis of rotation of the rotor. The superconductor permits penetration of the magnetic flux from the magnet, being space from the magnet by a distance that permits a predetermined quantity of the magnetic flux to penetrate it, while not permitting rotation of the rotor to alter the distribution of the penetrating magnetic flux.
    Type: Grant
    Filed: July 16, 1991
    Date of Patent: July 19, 1994
    Assignee: Koyo Seiko Co., Ltd.
    Inventors: Ryoichi Takahata, Shoji Eguchi
  • Patent number: 4858511
    Abstract: An electromagnetic railgun launcher and armature. The armature is made from superconducting material and is levitated between the rails of the launcher by the Meissner effect. The Meissner effect is created by cooling the armature and subjecting it to a magnetic field. The armature configuration has a closed loop topology and defines two planes - one plane coincides with the plane of the rails; the other plane is oblique to the first. The armature configuration, when placed between the rails receives an unbalanced Lorentz force which accelerates the armature.
    Type: Grant
    Filed: March 14, 1988
    Date of Patent: August 22, 1989
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Louis J. Jasper, Jr.