Mixing Combined With Non-mixing Operation Or Step, Successively Or Simultaneously (e.g., Heating, Cooling, Ph Change, Ageing, Milling) Patents (Class 516/928)
  • Patent number: 8841352
    Abstract: It is an object to provide a method for producing compound semiconductor particles in which monodisperse compound semiconductor particles can be prepared according to the intended object, clogging with products does not occur due to self-dischargeability, a large pressure is not necessary, and productivity is high. In producing compound semiconductor particles by separating and precipitating, in a fluid, semiconductor raw materials, the fluid is formed into a thin film fluid between two processing surfaces arranged so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, and the semiconductor raw materials are separated and precipitated in the thin film fluid.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 23, 2014
    Assignee: M Technique Co., Ltd.
    Inventor: Masakazu Enomura
  • Patent number: 8747542
    Abstract: A method for producing a rutile titanium oxide sol having a particle diameter measured by dynamic light scattering of 5 nm to 100 nm, the method comprising: a process (a): mixing a tin oxalate aqueous solution, a titanium alkoxide, oxalic acid, a quaternary ammonium hydroxide, and water, while adjusting, per mole of titanium atoms, a proportion of tin atoms to be from 0.1 mol to 0.8 mol, a proportion of the oxalic acid to be from 0.01 mol to 5 mol, and a proportion of the quaternary ammonium hydroxide to be from 0.1 mol to 3.5 mol to prepare a titanium-containing aqueous solution having a concentration in terms of TiO2 of 0.1% by mass to 15% by mass; and a process (b): performing hydrothermal treatment on the titanium-containing aqueous solution produced in the process (a) at 100° C. to 200° C.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: June 10, 2014
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Natsumi Murakami, Ai Miyamoto, Yoshinari Koyama
  • Patent number: 8148434
    Abstract: A process for producing an aqueous silica-based sol is disclosed wherein a cationic ion exchange resin having part of its ion exchange capacity in hydrogen form is contacted with an aqueous alkali metal silicate to form a slurry having a pH from 5.0 to 11.5 and/or having particle aggregation or microgel formation corresponding to a S value up to 45%; adjusting the pH using a material comprising an aluminum compound; and separating the resin from the slurry. Silica-based sols having an S value from 15 to 25%, mole ratio Si:Al from 20:1 to 50:1, mole ratio Si:X, where X=alkali metal, from 5:1 to 17:1, SiO2 content of at least 5% by weight and containing silica-based particles having a specific surface area of at least 300 m2/g, as well as the use of such silica-based sols in producing paper are disclosed.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: April 3, 2012
    Assignee: Akzo Nobel N.V.
    Inventors: Johan Nyander, Glenn Mankin
  • Patent number: 7989504
    Abstract: A method for producing a functional colloid during which particles are reactively fragmented in a mechanical manner in a dispersant in the presence of a modifying agent so that the modifying agent is chemically bound, at least in part, to the fragmented colloid particles.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: August 2, 2011
    Assignee: Buhler Partec GmbH
    Inventors: Jens Adam, Kai Gossmann, Helmut Schmidt, Karl-Peter Schmitt, Frank Tabellion
  • Patent number: 7893114
    Abstract: The invention relates to a process for producing aqueous silica-based sols which comprises providing a cationic ion exchange resin having at least part of its ion exchange capacity in hydrogen form; bringing said ion exchange resin in contact with an aqueous alkali metal silicate to form an aqueous slurry; adjusting the pH of the aqueous slurry and separating the ion exchange resin from the aqueous slurry, as well as the silica-based sols obtained by the process; the invention also relates to silica-based sols obtained by the process, as well as a process for producing paper which comprises providing an aqueous suspension comprising cellulosic fibres; adding to the suspension one or more drainage and retention aids comprising a silica-based sol according to the invention; and dewatering the obtained suspension to provide a sheet or web of paper.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: February 22, 2011
    Assignee: Akzo Nobel N.V.
    Inventors: Glenn Mankin, Marek Tokarz, Freddie Hansson
  • Patent number: 7816411
    Abstract: The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: October 19, 2010
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Laura J. Silva, David John Hesse, Michael Alan Marchiando, Micheal Jay Lamont, Dongming Qiu, Terence Andrew Dritz, Kristina M. Pagnotto, Richard Stevenson, Steven T. Perry, Maddalena Fanelli, Ravi Arora, Bin Yang, Sean Patrick Fitzgerald, Timothy J. Sullivan, Kai Tod Paul Jarosch, Thomas Yuschak
  • Patent number: 7732495
    Abstract: The invention relates to a process for producing aqueous silica-based sols which comprises providing a cationic ion exchange resin having at least part of its ion exchange capacity in hydrogen form; bringing said ion exchange resin in contact with an aqueous alkali metal silicate to form an aqueous slurry; adjusting the pH of the aqueous slurry and separating the ion exchange resin from the aqueous slurry, as well as the silica-based sols obtained by the process. The invention also relates to silica-based sols obtained by the process, as well as a process for producing paper which comprises providing an aqueous suspension comprising cellulosic fibres; adding to the suspension one or more drainage and retention aids comprising a silica-based sol according to the invention; and dewatering the obtained suspension to provide a sheet or web of paper.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: June 8, 2010
    Assignee: Akzo Nobel N.V.
    Inventors: Glenn Mankin, Marek Tokarz, Freddie Hansson
  • Patent number: 7683098
    Abstract: Methods for manufacturing nanomaterial dispersions, such as nanomaterial concentrates, and related nanotechnology are provided. The nanomaterial concentrates provided can be more cheaply stored and transported compared to non-concentrate nanomaterial forms.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 23, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventor: Tapesh Yadav
  • Patent number: 7671097
    Abstract: Stable dispersions of phenolic resins, particularly bisphenol-A/formaldehyde resins, for use in e.g., baking enamels, coatings, adhesives, binders, etc., are disclosed. The dispersions have low levels (e.g., <0.1% by weight) of free aldehyde, thereby reducing environmental harms associated with aldehyde emissions. Low free aldehyde levels are achieved using melamine as an aldehyde scavenger during preparation. It has now been discovered that melamine, in contrast to other scavengers of aldehydes, does not adversely affect dispersion stability, interfere with later processing operations, or negatively impact the final resin product quality (e.g., after curing).
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: March 2, 2010
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Peter C. Boyer, Ahmed A. Iman
  • Patent number: 7629392
    Abstract: A process for producing an aqueous silica-based soils disclosed wherein a cationic ion exchange resin having part of its ion exchange capacity in hydrogen form is contacted with an aqueous alkali metal silicate to form a slurry having a pH from 5.0 to 11.5 and/or having particle aggregation or microgel formation corresponding to a S value up to 45%; adjusting the pH using a material comprising an aluminum compound; and separating the resin from the slurry. Silica-based sols having an S value from 15 to 25%, mole ratio Si:Al from 20:1 to 50:1, mole ratio Si:X, where X=alkali metal, from 5:1 to 17:1, SiO2 content of at least 5% by weight and containing silica-based particles having a specific surface area of at least 300 m2/g, as well as the use of such silica-based sols in producing paper are also disclosed.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: December 8, 2009
    Assignee: Akzo Nobel N.V.
    Inventors: Johan Nyander, Glenn Mankin
  • Patent number: 7622509
    Abstract: The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 24, 2009
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Laura J. Silva, David John Hesse, Michael Alan Marchiando, Michael Jay Lamont, Dongming Qiu, Terence Andrew Dritz, Kristina M. Pagnotto, Richard Stevenson, Steven T. Perry, Maddalena Fanelli, Ravi Arora, Bin Yang, Sean Patrick Fitzgerald, Timothy J. Sullivan, Kai Tod Paul Jarosch, Thomas Yuschak
  • Patent number: 7622510
    Abstract: A method and a device for making a dispersion or an emulsion (41) from at least two fluids known to be unmiscible, the fluids constituting a dispersed phase (40) and a dispersing phase (44), the dispersed phase (40) being driven through a porous body (24) into the dispersing phase (44). The invention is characterized in that the porous body (24) is vibrated by a mechanical, electrical or magnetic excitation.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: November 24, 2009
    Inventor: Christophe Arnaud
  • Patent number: 7569614
    Abstract: A process for producing a stable acidic aqueous alumina sol containing columnar secondary particles having a length of 50 to 400 nm which are formed by face-to-face coagulation of rectangular plate-like primary particles having a length of one side of 10 to 40 nm and a thickness of 2.5 to 10 nm when observed through an electron microscope, by use of an aqueous alkali aluminate solution and liquid or gaseous carbon dioxide as starting materials. The obtained acidic aqueous alumina sol has a low viscosity and is stable for salts. The dried gel obtained from the sol is characterized in that the gel structure thereof is rigid even though it is porous.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: August 4, 2009
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Kiyomi Ema, Takaichi Sugiyama
  • Patent number: 7563827
    Abstract: It is to provide a sol useful as a component of a hard coating agent to be applied on the surface of a plastic lens or useful for other applications, and its production process. A sol containing modified metal oxide particles which comprise, as nuclei, colloidal particles (A) being stannic oxide particles or composite particles comprising stannic oxide particles and zirconium oxide particles, containing these oxides in a weight ratio of ZrO2:SnO2 of from 0:1 to 0.50:1 and having particle sizes of from 4 to 50 nm, and as a coating covering the surface of the nuclei, alkylamine-containing Sb2O5 colloidal particles, an oligomer thereof or a mixture thereof (B1), or composite colloidal particles comprising diantimony pentaoxide and silica, an oligomer thereof or a mixture thereof (B2), in a weight ratio of (B)/(A) of from 0.01 to 0.50 based on the weights of the metal oxides, and have particle sizes of from 4.5 to 60 nm. A coating composition containing a silicon-containing substance and the above particles.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: July 21, 2009
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yoshinari Koyama, Motoko Asada
  • Patent number: 7560418
    Abstract: Metal cross-linked phosphate ester compositions impart fragile progressive gel structure to a variety of oil and invert emulsion-based drilling fluids at neutral or acidic pH. The fluids are useful for drilling wellbores in subterranean formations without need for organophilic clays to suspend drill solids. At greater concentrations, metal cross-linked phosphate ester compositions enhance fluid viscosity for suspending weighting materials in drilling fluids during transport of the fluids, as from a manufacturing or mixing facility to a drilling site.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: July 14, 2009
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Stephen A. Bell, William W. Shumway
  • Patent number: 7517915
    Abstract: A method for preparing a ceramic powder suspension is disclosed. A dispersant having a following structural formula is provided: wherein D is H or COOR1; R1 is a hydrogen atom, or an alkyl group, a cyclic aliphatic group, an aryl group, having 1 to 10 carbon atoms, or a cationic salt group; R2 is an alkyl group having 1 to 10 carbon atoms, a cyclic aliphatic having 1 to 10 carbon atoms or an aryl group having 1 to 10 carbon atoms; R3 is a hydrogen atom or a methyl group; Z is an oxygen atom or an NH group; A is —COO —SO3 or an acid form; a is an integer between 1 to 5000; and p and q are integers between 1 to 10. The dispersant is dissolved in a solvent. Ceramic powder is further added into the solvent with the dispersant.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: April 14, 2009
    Assignee: National Taiwan Normal University
    Inventors: Kung-Chung Hsu, Lung-Pin Chen, Dao-Shinn Hwung, Kuo-Liang Ying, Wen-Cheng Wei, Sea-Fue Wang
  • Patent number: 7495032
    Abstract: A method for processing a ceramic powder suspension includes providing a dispersant having the following structure: wherein R1 is an H+ ion, an Na+ ion, an NH4+ ion or other cationic group; R2 is an H+ ion, an Na+ ion. an NH4+ ion or other cationic group; m is an integer from 10 to 5000 ; and n is an integer from 10 to 3000 . The dispersant is dissolved in a solvent. Ceramic powder is further added into the solvent with the dispersant.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: February 24, 2009
    Inventors: Kung-Chung Hsu, Lung-Pin Chen, Dao-Shinn Hwung, Kuo-Liang Ying, Wen-Cheng Wei, Sea-Fue Wang
  • Patent number: 7476695
    Abstract: There is provided a stable sol comprising modified stannic oxide-zirconium oxide complex colloidal particles, wherein the particles are formed by coating as nuclei stannic oxide-zirconium oxide complex colloidal particles in which stannic oxide colloidal particles obtained by a reaction of metal tin, an organic acid and hydrogen peroxide is bonded to zirconium oxide colloidal particles with tungsten oxide-stannic oxide-silicon dioxide complex colloidal particles. The sol has a high refractive index and is improved in water resistance, moisture resistance and weather resistance, and can be used by mixing with a hard coating paint as a component for improving properties of a hard coating film applied on a plastic lens surface.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: January 13, 2009
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yoshinari Koyama, Motoko Asada
  • Patent number: 7375141
    Abstract: The invention concerns a gum carob with average mole weight (Mw) ranging between 2.5.105 and 1.5.106 g/mol and whereof at least 60 wt. % of said gum is soluble in an aqueous medium at a temperature not higher than 60° C.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: May 20, 2008
    Assignee: Danisco A/S
    Inventors: François DelPrato, Karl Heinrich Oskar Tiefenthaler, Eric Goron, Sophie Vaslin
  • Patent number: 7307104
    Abstract: The disclosed invention relates to a process for making an emulsion. The process comprises: flowing a first liquid through a process microchannel, the process microchannel having a wall with an apertured section; flowing a second liquid through the apertured section into the process microchannel in contact with the first liquid, the first liquid forming a continuous phase, the second liquid forming a discontinuous phase dispersed in the continuous phase.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: December 11, 2007
    Assignee: Velocys, Inc.
    Inventors: Dongming Qiu, Anna Lee Tonkovich, Laura J. Silva, Richard Q. Long, Barry L. Yang, Kristina Marie Trenkamp, Jennifer Anne Freeman
  • Patent number: 7148260
    Abstract: Water-based emulsifier wax gels are provided that include skin-identical sphingolipids The present invention also provides a process for the preparation of such gels, the use of such gels for the preparation of oil-in-water emulsions, and the resulting emulsions that contain the inventive gels.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: December 12, 2006
    Assignee: Goldschmidt GmbH
    Inventor: Thomas Dietz
  • Patent number: 7094395
    Abstract: A method for producing a colored cosmetic composition having inorganic pigments resistant to agglomeration in an oil-in-water emulsion. The method includes the following: preparing an oil dispersion by adding inorganic pigments directly to an oil; preparing an aqueous base that includes water; combining the oil dispersion and aqueous base; and partitioning the inorganic pigments between the oil and the aqueous phase under controlled conditions, for example, hydrophile-lipophile balance, agitation time and speed, and cooling rate. The present invention provides a process to easily disperse iron-oxide pigments, even black iron-oxide pigments, in oil-in-water emulsions. The present invention provides colored cosmetic compositions that have excellent properties, such as smoothness, adhesion to skin, uniform color, ease of removal, smudge resistance and non-oiliness.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: August 22, 2006
    Assignee: Access Business Group International LLC
    Inventors: Di Qu, Jesse C. Leverett
  • Patent number: 6680284
    Abstract: For the preparation of pulverulent particle-reduced formulations with the aid of compressed gases, the solid compound to be formulated, a poorly soluble and usually bioactive active compound, is homogeneously ground together with 10-99% by weight (based on the formulation) of a carrier material which is essentially soluble in the compressed gas mixture, in the presence of compressed gas or mixtures thereof in a stirred autoclave having a mechanical grinding device at process temperatures between 10 and 200° C. and at process pressures between 5 and 500 bar, and in a second process stage the compressed gas mixture, usually dimethyl ether, pure propane and/or carbon dioxide, is expanded by lowering the pressure and separated off from the homogenate, which can also be present as a melt.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: January 20, 2004
    Assignee: Degussa AG
    Inventors: Jürgen Heidlas, Martin Ober, Johann Wiesmüller
  • Patent number: 6677388
    Abstract: Wax in water emulsions prepared from Fischer-Tropsch derived waxes, Fischer-Tropsch process water, and two alkyl ethoxylated phenol nonionic surfactants having different hydrophilic-lipophilic balances provide high performance pipeline transport of waxes with reduced pipeline fouling.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: January 13, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Tapan Chakrabarty, Robert Jay Wittenbrink, Paul Joseph Berlowitz, Loren Leon Ansell
  • Patent number: 6664300
    Abstract: A process for producing a carotenoid emulsion which comprises heating a suspension of the carotenoid in a high boiling organic liquid, by passing the suspension through a conduit of 0.1 to 50 mm inside diameter heated to a temperature in the range of 120 to 700° C. for a residence time of 0.05 to 5 seconds or by mixing the suspension with a high boiling organic liquid heated to the range of 120 to 500° C. for a time of 0.05 to 10 seconds, to dissolve the carotenoid, and then immediately adding the resulting solution into an aqueous solution of an emulsifier to emulsify the solution. By this production process, an emulsion containing a carotenoid as an effective ingredient can be produced with the carotenoid maintaining a high total trans-form proportion, with good productivity, conveniently, and industrially advantageously.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: December 16, 2003
    Assignee: Kuraray Co., Ltd.
    Inventors: Toshiki Mori, Satoshi Mimura, Tomonari Nakatani
  • Patent number: 6660778
    Abstract: The invention concerns a method for emulsifying, without grinding, a silicone in water in the presence of a surfactant, at a temperature less than 60° C. and under shearing at less than 100 s−, comprising steps which consist in: a) preparing a primary oil-in-water emulsion including said surfactant and said silicone under shearing at less than 100 s−, by adding an aqueous phase to an oily phase comprising said silicone; b) enriching the resulting emulsion with an enriching oily phase comprising said silicone by mixing, under shearing at less than 100 s−, and c) if required, repeating one or several times the operation at step b) until the desired concentration in surfactant and/or silicone in the final emulsion is obtained and/or until the desired particle size distribution is obtained.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: December 9, 2003
    Assignee: Rhodia Chimie
    Inventors: Nicolas Durand, Hervé Maze, Jean-Michel Mercier
  • Patent number: 6620856
    Abstract: A method of producing a rheologically stable concentrated aqueous suspension of a particulate alkaline earth metal carbonate which method comprises the following steps: (a) preparing a dilute aqueous suspension of the carbonate having a solids content of not more than 40% by weight; (b) dewatering the dilute aqueous suspension to form a carbonate suspension having a solids content in the range of from 45% to 65% by weight; (c) optionally mixing with the dewatered suspension formed in step (b) a dispersing agent for the carbonate to form a fluid suspension; (d) further dewatering the fluid suspension formed in step (b) by thermal evaporation under reduced pressure to raise the solids content of the suspension by a further differential amount of at least 5% by weight; and (e) after at least some of the dewatering in step (c) treating the suspension by a mechanical working process in which at least 1 kW.hr per tonne of carbonate on a dry weight basis is dissipated to refluidise the suspension.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: September 16, 2003
    Assignee: Imerys Minerals, Limited
    Inventors: Mark Daniel Mortimer, John Anthony Purdey, Deborah Susan Thrale, David Robert Skuse
  • Patent number: 6602917
    Abstract: A process provides a stable emulsion, in particularly a stable, concentrated bitumen emulsion, by emulsifying a first hydrophobic or hydrophilic phase having a viscosity between 1 and 5000 Pa.s with a second phase immiscible in the first phase, in the presence of at least one surfactant, by mixing together the first phase, second phase, and surfactant under a laminar shear regime.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: August 5, 2003
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Fernando Leal Calderon, Jerôme Bibette, Florence Guimberteau
  • Patent number: 6569405
    Abstract: Microcapsules are prepared by a process comprising the steps of (i) spray-drying a solution or dispersion of a wall-forming material in order to obtain intermediate microcapsules and (ii) reducing the water-solubility of at least the outside of the intermediate microcapsules. Suitable wall-forming materials include proteins such as albumin and gelatin. The microcapsules have walls of 40-500 nm thick and are useful in ultrasonic imaging. The control of median size, size distribution and degree of insolubilization and cross-linking of the wall-forming material allows novel microsphere preparations to be produced.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: May 27, 2003
    Assignee: Quadrant Healthcare (UK) Limited
    Inventors: Andrew D. Sutton, Richard A. Johnson, Peter J. Senior, David Heath
  • Patent number: 6410605
    Abstract: A process for preparing a solid particles-containing emulsion comprising mixing an oil droplets-in-water emulsion with lipophilic solid particles or a dispersion thereof, thereby allowing to include the lipophilic solid particles in the oil droplets. The solid particles-containing emulsion can be suitably used in paints, inks for ink jet printers, fiber-treated agents, coating materials, adhesives, skin cosmetics, hair cosmetics, and the like.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: June 25, 2002
    Assignee: Kao Corporation
    Inventors: Toshiya Shimada, Kouichi Funada, Hidetake Nakamura, Hideaki Kubo
  • Patent number: 6391927
    Abstract: Dispersibility of thickener is constant for every lot and viscosity difference is little. Fine bubbles existing in the thicker in ink follower are removed. A step of homogenizing the thickener at any temperature within a range of 40° C. to 130° C. is included. Preferably, a step of homogenizing the thickener at any temperature within a range of 100° C. to 130° C. is included.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: May 21, 2002
    Assignee: Mitsubishi Pencil Kabushikikaisha
    Inventors: Norio Ogura, Youji Takeuchi, Kiyoshi Iwamoto, Tadashi Kamagata, Katsuhiko Shiraishi
  • Patent number: 6387840
    Abstract: A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: May 14, 2002
    Assignee: Intevep, S.A.
    Inventors: Ramon Salazar, Monsaris Pimentel, Alice Dupatrocinio, Pedro Pereira, Jose Guitian, Jose Cordova
  • Patent number: 6284806
    Abstract: Hydrocarbon in water emulsions comprising Fischer-Tropsch process water, at least 20 to about 90 weight percent of a Fischer-Tropsch wax, a first nonionic surfactant having an HLB of at least 11 and a second nonionic surfactant having an HLB less than 11. Said emulsions are liquid at room temperature and pour by ordinary gravity. Also disclosed are methods of making said hydrocarbon in water emulsions.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: September 4, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Tapan Chakrabarty, Robert J. Wittenbrink, Paul J. Berlowitz, Loren L. Ansell
  • Publication number: 20010006156
    Abstract: A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
    Type: Application
    Filed: February 26, 2001
    Publication date: July 5, 2001
    Inventors: Pedro Pereira, Jose Guitian, Jose Cordova, Ramon Salazar, Monsaris Pimentel, Alice Dupatrocinio
  • Patent number: 6251958
    Abstract: A process for preparing a defoamer composition by providing a high-shear, in-line mixer having a rotor-stator assembly with at least one concentric set of shearing teeth which rotate at a tip speed of up to about 25 meters per second and feeding to said mixer a melt of a hydrophobic defoaming agent along with a functional carrier liquid at a controlled mass flow rate and temperature. After mixing, the mixture is cooled and discharged into a receiving vessel.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: June 26, 2001
    Assignee: Henkel Corporation
    Inventors: Puvin Pichai, Kenneth Breindel
  • Patent number: 6207720
    Abstract: The present invention relates to a process of preparing emulsions of hydrolyzable silanes, such as alkoxysilanes, using an oil concentrate. The emulsifiers are initially stirred with water. An oil concentrate is then prepared by adding a hydrolyzable silane to the stirring mixture of emulsifiers and water. Additional water is then dispersed in the oil concentrate to form the desired emulsion. Emulsions prepared by this process have shelf stability that is 6 months or longer.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: March 27, 2001
    Assignee: Crompton Corporation
    Inventors: Toshiko M. Maeda, Antonio Chaves
  • Patent number: 6207178
    Abstract: The present invention is in the area of administration forms and delivery systems for drugs, vaccines and other biologically active agents. More specifically the invention is related to the preparation of suspensions of colloidal solid lipid particles (SLPs) of predominantly anisometrical shape with the lipid matrix being in a stable polymorphic modification and of suspensions of micron and submicron particles of bioactive agents (PBAs); as well as to the use of such suspensions or the lyophilizates thereof as delivery systems primarily for the parenteral administration of preferably poorly water-soluble bioactive substances, particularly drugs, and to their use in cosmetic, food and agricultural products. SLPs and PBAs are prepared by the following emulsification process: (1) A solid lipid or bioactive agent or a mixture of solid lipids or bioactive agents is melted.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: March 27, 2001
    Assignee: Kabi Pharmacia AB
    Inventors: Kirsten Westesen, Britta Siekmann
  • Patent number: 6197837
    Abstract: A process for the preparation of an aqueous tar suspoemulsion includes the steps of mixing a mixture including (a) a viscous tar composition formed from a tar, from inorganic solids and, optionally, from water; (b) water (W); (c) a surface-active agent (SA) exhibiting a hydrophilicity/lipophilicity balance (HLB) of at least 10; and, optionally, (d) a thickening water-soluble polymer (TWP) with a molecular mass of greater than 10,000. The relative amounts of constituents (W), (SA) and, optionally, (TWP) are such that the viscosity of the (W)+(SA)+optional (TWP) mixture is preferably equal to or greater than the viscosity of the tar. An optional embodiment of the process provides for dilution of the mixture obtained with water or with an aqueous acidic solution.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: March 6, 2001
    Assignee: Rhodia Inc.
    Inventors: Philip Dean Hill, Thomas Edwin Pruitt, Forrest Lee Sanders, Gilles Guerin, Bruno Langlois
  • Patent number: 6194472
    Abstract: A composition of a hydrocarbon in water colloidal dispersion including hydrocarbon particles having a mean softening point exceeding 95° C., a water soluble dispersion agent and water, process and apparatus for the production thereof are disclosed. These dispersions have a median particle size below about 4.5 microns and 90% of the hydrocarbon particles have a size less than about 60 microns. These dispersions are storage stable, stable towards transportation, and can be pumped without destabilizing.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: February 27, 2001
    Assignee: Akzo Nobel N.V.
    Inventors: Sundaram Logaraj, Thomas J. Ernzen, Moon-Sun Lin, Antonio C. Ng, Todd Lesley Hays, Calvin Lynn Stegemoeller, Li Feng, Mark Aldrich Stroder
  • Patent number: 6180117
    Abstract: Microemulsion compositions comprising MQ resins and microemulsifiable amino silicone fluids or gums and a surfactant having a high phase inversion temperature, the microemulsions formed therewith, a means for preparing said microemulsions, and personal care products comprising said microemulsions.
    Type: Grant
    Filed: February 10, 1995
    Date of Patent: January 30, 2001
    Assignee: General Electric Company
    Inventors: Marianne D. Berthiaume, James H. Merrifield, Donna A. Riccio
  • Patent number: 6171600
    Abstract: The stable multiple emulsion of the X/O/Y type contains at least one X/O phase in which X is an oil-immiscible component and O an oil phase. The X/O phase can contains an active substance, possibly in solid form, for example for medical, cosmetic or technical applications. The Y phase can be an aqueous phase, an aqueous liquid, preferably liquid-crystalline, gel or a W/O/W emulsion and serves as carrier for the at least one X/O phase. The X/O phase is produced using an emulsifier that has an HLB value equal to or less than 6 and/or is a W/O emulsifier. The preparation of the X/O phase itself and its diffusion in the Y phase are done with standard stirring tools. The drops of the X/O phase have long-term stability and, even when greatly diluted, do not interact with the Y phase or the drops or other X/O phases dispersed therein.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: January 9, 2001
    Assignee: IFAC GmbH
    Inventor: Gerd H. Dahms
  • Patent number: 6169054
    Abstract: A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: January 2, 2001
    Assignee: Intevep, S.A.
    Inventors: Pedro Pereira, Jose Guitian, Jose Cordova, Ramon Salazar, Monsaris Pimentel, Alice Dupatrocinio
  • Patent number: 6156833
    Abstract: An improved emulsification base and a method for manufacturing same for non-aqueous chemical additives comprisesa mixture of water from 68 to 92 percent, of 2-amino-2 methyl-1 propanol from 0.1 to 0.2 percent, of an emulsifying surfactant blend from about 2.2 to 3.2 percent, of methyl esters of soybean oil from about 15-20 percent and of a 30% solution of polymer thickener from about 0.25 to 0.50 percent.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: December 5, 2000
    Assignee: PCI Group, Inc.
    Inventor: Thomas E. Rauls
  • Patent number: 6156806
    Abstract: The present invention is a composition comprising either: a) a high internal phase ratio emulsion having water as a continuous phase and a thermoplastic hydroxy-functional polyether as a disperse phase; or b) a stable aqueous dispersion of the thermoplastic hydroxy-functional polyether. The composition of the present invention addresses a need in the art by providing a thermoplastic coating that exhibits an excellent barrier to oxygen and carbon dioxide, but which barrier properties are not adversely affected by contact with water. The composition is particularly useful in the paper packaging industry where biodegradability and resistance to spoilage of food is desirable.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: December 5, 2000
    Assignee: The Dow Chemical Company
    Inventors: Christian Piechocki, James E. Pate, Michael N. Mang, Jerry E. White, Dale C. Schmidt
  • Patent number: 6121331
    Abstract: A concentrated aqueous pearlescent composition containing: (a) from 1 to 99.9% by weight of a ring-opening reaction product of an olefin epoxide containing from 12 to 22 carbon atoms and a reaction component selected from the group consisting of a fatty alcohol having from 12 to 22 carbon atoms, a polyol having from 2 to 15 carbon atoms and 2 to 10 hydroxyl groups, and mixtures thereof; (b) from 0.1 to 90% by weight of an emulsifier selected from the group consisting of an anionic surfactant, a nonionic surfactant, a cationic surfactant, an ampholytic surfactant, a zwitterionic surfactant, an esterquat, and mixtures thereof; and (c) up to 40% by weight of a polyol, all weights being based on the total weight of the composition.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: September 19, 2000
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Achim Ansmann, Rolf Kawa
  • Patent number: 6113659
    Abstract: A fuel composition comprising a hydrocarbon in water colloidal dispersion including spherical hydrocarbon particles having a mean softening point exceeding about 95.degree. C., and a water soluble dispersion agent comprising a surfactant and stabilizer. The process for the production thereof is disclosed. These dispersions have a median particle size below about 4.5 microns and about 90% of the particles have a mean particle size diameter less than about 60 microns. These dispersions are storage stable, stable towards transportation, and can be pumped and passed through a burner apparatus without destabilizing.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: September 5, 2000
    Assignee: Akzo Nobel nv
    Inventors: Sundaram Logaraj, Thomas J. Ernzen, Antonio Chan Ng, Mark Aldrich Stroder, Stephen J. DeCanio, Ronald J. McKeon, Shailaja M. Shirodkar
  • Patent number: 6087403
    Abstract: This composition based on polyglycosides comprises 30 to 65% by weight of at least one fatty alcohol of formula ROH, where R is a staturated or unsaturated, straight-chained or branched aliphatic radical having 1 to 4 ethylenically unsaturated bonds and having 12 to 22 carbon atoms, the remainder being a mixture of polyglycosides containing 35 to 75% by weight, based on the polyglycosides, of polyhexosides.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: July 11, 2000
    Assignee: Agro Industrie Recherches et Developments (A.R.D.)
    Inventors: Jean-Noel Bertho, Philippe Mathaly, Regis de Baynast, Veronique Dubois
  • Patent number: 6087404
    Abstract: There is disclosed a process for preparing a concentrated aqueous suspension of a finely ground particular material, which process comprises (a) preparing an aqueous suspension comprising at least 20% by weight of the particulate material comprising calcium carbonate in coarse particular form; (b) grinding the suspension formed in step (a) in the presence of a polycarboxylate dispersing agent for the particular material in a grinding process where the pH is not less than 10 to produce an aqueous suspension wherein at least 90% by weight of the particles or the particulate material have an e.s.d. less than 2 .mu.m and 60% by weight have an e.s.d. less than 1 .mu.m; (c) adding an additive comprising an anionic polycarboxylate dispersing agent to the suspension of ground material formed in step (b). The process is characterized in that the aqueous suspension formed in step (c) has a pH which lies within the inclusive range 8.5 to 9.
    Type: Grant
    Filed: June 1, 1998
    Date of Patent: July 11, 2000
    Assignee: Imerys Minerals Limited
    Inventors: Richard Bown, David Robert Skuse
  • Patent number: 6077322
    Abstract: Methods and additive compounds for retarding the dispersion in water of bitumen-in-water emulsions, and in particular ORIMULSION, are disclosed. Methods include applied mixing at high speed and changing the pH of the emulsion. Additives include salts and flocculants.
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: June 20, 2000
    Assignee: The Babcock & Wilcox Company
    Inventor: Shih-Yung Shiao
  • Patent number: RE37002
    Abstract: .[.There is disclosed an aqueous dispersed solution as a standard solution for determining lipid levels, having a dispersion form and a particle size, which are similar to those of serum lipids. A lipid-dispersed solution is obtained by evaporating an organic solvent from a mixture prepared by adding cholesterol, a phospholipid, a bile acid or bile acid salt, and a neutral lipid and/or a cholesterol ester in the organic solvent, swelling the resultant thin-film like mixture with water or buffer heated at a temperature higher than a phase transition temperature of the lecithin, and then dispersing the solution by a physical shear force. There can be easily obtained a solution having a cholesterol concentration of about less than 1,000 mg/dl, which is extremely stable and can be stored for a long period of time..]. .Iadd.There is disclosed an aqueous dispersed solution as a standard solution for determining lipid levels, having a dispersion form and a particle size, which are similar to those of serum lipids.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: December 26, 2000
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tomohiro Yamamoto, Toshihiko Yoshioka, Shiro Nankai