Specified Combination Of Agitation Steps (e.g., Mixing To Make Subcombination Composition Followed By Homogenization) Patents (Class 516/929)
  • Patent number: 8758822
    Abstract: The present invention relates to a method for manufacturing uniform size polymeric nanoparticles containing poorly soluble drugs, and more particularly, to a method for manufacturing uniform size polymeric nanoparticles containing poorly soluble drugs, including a first step of dissolving a biodegradable polymer in a non-volatile polar organic solvent, a second step of adding poorly soluble drugs to water and the biodegradable polymer solution to produce a dispersion, and a third step of adding the dispersion to emulsifier solutions in a batch under the condition of low mechanical energy level stirring.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: June 24, 2014
    Assignee: Korea Research Institute of Bioscience and Biotechnology
    Inventors: Bong Hyun Chung, Yong Taik Lim, Jung Hyun Han
  • Patent number: 8628232
    Abstract: A method for introducing inhibitor into a fluid to be treated by forming a dispersion comprising droplets, particles, or gas bubbles of inhibitor dispersed in a continuous phase of a carrier, wherein forming the dispersion comprises subjecting a mixture of the inhibitor and the carrier to a shear rate of greater than about 20,000 s?1 in a high shear device comprising at least one generator comprising a rotor and a complementarily-shaped stator, wherein the rotor and the stator each comprise grooves, and wherein the grooves of the stator and the grooves of the rotor of each generator are disposed in alternating directions, and using at least a portion of the dispersion to inhibit corrosion.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 14, 2014
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory G. Borsinger, Aziz Hassan
  • Patent number: 8465198
    Abstract: A method for introducing inhibitor into a fluid to be treated, the method including forming a dispersion comprising droplets, particles, or gas bubbles of inhibitor dispersed in a continuous phase of a carrier, wherein forming the dispersion comprises subjecting a mixture of the inhibitor and the carrier to a shear rate of greater than about 20,000 s?1; and using at least a portion of the dispersion to inhibit corrosion.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: June 18, 2013
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Patent number: 8282266
    Abstract: A method for introducing inhibitor into a fluid to be treated by forming a dispersion comprising droplets, particles, or gas bubbles of the inhibitor dispersed in a continuous phase of a carrier, wherein the droplets, particles, or gas bubbles have a mean diameter of less than 5 ?m, and wherein either the carrier is the fluid to be treated or the method further comprises introducing the dispersion into the fluid to be treated. A system for inhibiting an undesirable component, the system comprising at least one high shear mixing device comprising at least one generator comprising a rotor and a stator separated by a shear gap, wherein the high shear mixing device is capable of producing a tip speed of the rotor of greater than 22.9 m/s, and a pump for delivering a mixture of a carrier and an inhibitor to the high shear mixing device.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: October 9, 2012
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Patent number: 8267572
    Abstract: This invention relates to a method for the mechanically protective production of finely dispersed micro-/nanoemulsions with narrow droplet size distribution, whereby drops are produced on the surface of a membrane or of a filter fabric, and the drops are detached from the membrane or filter fabric surface by motion of the membrane or of the filter fabric in a first immiscible liquid phase in which pronounced stretching flow components in particular, besides shear flow components, bring about the detachment of the drops formed on the membrane surface especially efficiently and protectively. The invention also relates to a device for implementing the method according to the invention with a membrane or filter unit that is positioned to move, in particular to be able to rotate, in a housing with a gap that may be eccentric toward the inner wall of the housing and/or provided with flow baffles that produce stretching flow components.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: September 18, 2012
    Assignees: ETH-Zurich Institut fur Lebensmittelwissenschaft, Laboratorium fur Lebensmittelverfahren-Stechnik ETH-Zentrum/LFO, Kinematica AG, Ion Bond AG, Processtech GmbH
    Inventors: Erich J. Windhab, Verena Schadler, Beat Troxler, Andreas Kurt Dürig, Fred-Rainer Grohmann
  • Patent number: 7816411
    Abstract: The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: October 19, 2010
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Laura J. Silva, David John Hesse, Michael Alan Marchiando, Micheal Jay Lamont, Dongming Qiu, Terence Andrew Dritz, Kristina M. Pagnotto, Richard Stevenson, Steven T. Perry, Maddalena Fanelli, Ravi Arora, Bin Yang, Sean Patrick Fitzgerald, Timothy J. Sullivan, Kai Tod Paul Jarosch, Thomas Yuschak
  • Patent number: 7683098
    Abstract: Methods for manufacturing nanomaterial dispersions, such as nanomaterial concentrates, and related nanotechnology are provided. The nanomaterial concentrates provided can be more cheaply stored and transported compared to non-concentrate nanomaterial forms.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 23, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventor: Tapesh Yadav
  • Patent number: 7652073
    Abstract: An oil-in-water-in-oil emulsion (O/W/O) comprising a first oil-in-water emulsion dispersed in a second oil, and a method of preparing the same. The O/W/O emulsion can be used as a drive fluid in an enhanced oil recovery process. The O/W/O emulsion of this invention may also be used as a lubricant, and has the beneficial property of being resistant to shear forces.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: January 26, 2010
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Ramesh Varadaraj
  • Patent number: 7652074
    Abstract: An oil-in-water-in-oil emulsion (O/W/O) comprising a first oil-in-water emulsion dispersed in a second oil, and a method of preparing the same. The O/W/O emulsion can be used as a drive fluid in an enhanced oil recovery process. The O/W/O emulsion of this invention may also be used as a lubricant, and has the beneficial property of being resistant to shear forces.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: January 26, 2010
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Ramesh Varadaraj
  • Patent number: 7622509
    Abstract: The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 24, 2009
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Laura J. Silva, David John Hesse, Michael Alan Marchiando, Michael Jay Lamont, Dongming Qiu, Terence Andrew Dritz, Kristina M. Pagnotto, Richard Stevenson, Steven T. Perry, Maddalena Fanelli, Ravi Arora, Bin Yang, Sean Patrick Fitzgerald, Timothy J. Sullivan, Kai Tod Paul Jarosch, Thomas Yuschak
  • Patent number: 7446130
    Abstract: Ionic colloidal crystals (ordered multicomponent colloids formed by attractive electrostatic interactions) may be produced by controlling the surface potential and relative size of multiple populations of colloidal particles in suspension. Such suspensions are dried or otherwise caused to precipitate out the particles in ordered arrays. The crystal structure of the arrays may be controlled by appropriate choices of particle materials, sizes, and charge ratios.
    Type: Grant
    Filed: April 27, 2003
    Date of Patent: November 4, 2008
    Assignee: Massachusetts Institute of Technology
    Inventors: Garry R. Maskaly, Yet-Ming Chiang, W. Craig Carter, R. Edwin Garcia
  • Patent number: 7351749
    Abstract: A process which may be continuous is provided for manufacture of personal care product compositions. The process involves feeding a first water phase which is a concentrate containing most if not all water soluble ingredients of the composition into a blending tube. A second phase which can be oily or aqueous and a third water phase, the latter being essentially pure water, are also fed into the blending tube. All of the phases are transported through the tube at a flow rate of about 5 to about 5,000 lbs./minute and at a pressure of about 10 to about 5,000 psi. Preferably the tube leads into a homogenizer such as a sonolator.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: April 1, 2008
    Assignee: Unilever Home & Personal Care USA, division of Conopco, Inc.
    Inventors: Peter Anthony Divone, Walter Anthony Biercevicz, Joseph James Regan, Christy Ann Bridges, Kimberly Ann Priest, Matthew Jungblut
  • Patent number: 7214717
    Abstract: A fractionable polydisperse stable double oil-in-water emulsion, having 50 to 95 wt. % relative to the total weight of the double emulsion, droplets of an invert monodisperse emulsion Ei dispersed in a continuous aqueous phase. The continuous aqueous phase includes a polysaccharide thickening agent in a proportion of 1 to 10 wt. % relative to the total weight of the continuous aqueous phase, a water-soluble ethylene oxide and propylene oxide block copolymer as surfactant, and an osmotic pressure balancing agent. The emulsion Ei has a viscosity not higher than the viscosity of the continuous aqueous phase and has 50 to 95 wt. %, relative to the total weight of Ei, droplets of an internal aqueous phase dispersed in an oily phase. The internal aqueous phase includes an active hydrophilic substance and the oily phase includes poly glycerol polyricinoleate as surfactant.
    Type: Grant
    Filed: September 4, 2000
    Date of Patent: May 8, 2007
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Jérôme Michel Jaques Bibette, Fernando Leal Calderon, Philippe Gorria
  • Patent number: 6660778
    Abstract: The invention concerns a method for emulsifying, without grinding, a silicone in water in the presence of a surfactant, at a temperature less than 60° C. and under shearing at less than 100 s−, comprising steps which consist in: a) preparing a primary oil-in-water emulsion including said surfactant and said silicone under shearing at less than 100 s−, by adding an aqueous phase to an oily phase comprising said silicone; b) enriching the resulting emulsion with an enriching oily phase comprising said silicone by mixing, under shearing at less than 100 s−, and c) if required, repeating one or several times the operation at step b) until the desired concentration in surfactant and/or silicone in the final emulsion is obtained and/or until the desired particle size distribution is obtained.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: December 9, 2003
    Assignee: Rhodia Chimie
    Inventors: Nicolas Durand, Hervé Maze, Jean-Michel Mercier
  • Patent number: 6562872
    Abstract: An emulsion of perfluoroorganic compounds (PFOC) comprises a rapidly eliminable perfluorocarbon (PFC) and a slowly eliminable perfluorinated cyclic tertiary amine, perfluoro-N-4-(methylcyclohexyl)-piperidine and additionally comprises not less then three rapidly eliminable and three slowly eliminable PFOC admixtures with the critical temperature of dissolution in hexane (CTDH) close to that of main PFOC. The PFOC emulsion is stabilized with a polyoxyethylene-polyoxypropylene copolymer having low viscosity to provide high dynamic oxygen capacity and enhancing oxygen delivery to tissues. To prepare the emulsion the stabilizing agent is heated up to 75° C., all components are saturated with carbon dioxide gas to minimize the reactogenicity in intravessel injection as a means of compensation for mass blood loses, perfusion of organs cut of blood flow, treating air-and fat embolism, obliterating vascular injuries of extremities and preventing toxic injuries caused by various xenobiotics.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: May 13, 2003
    Assignee: Otkrytoe Aktsionernoe Obschestvo Naucho-Proizvodstven-Naya Firma “Perftoran”
    Inventors: Evgeny Iliich Maevsky, Genrikh Romanovich Ivanitsky, Kirill Nikolaevich Makarov, Galina Mikhailovna Kulakova, Vladimir Viktorovich Arkhipov, Viktor Vasilievich Moroz, Ljudmila Nikolaevna Starovoitova, Raisa Yakovlevna Senina, Sergei Jurievich Pushkin, Albina Ivanovna Ivashina
  • Patent number: 6438998
    Abstract: Disclosed are apparatus and method for ultrasonically dispersing a silica sol such as is used in a process of manufacturing a silica glass by a sol-gel method. The apparatus includes a sol feeder for holding a sol to be dispersed, a sol container for containing the ultrasonically dispersed sol, a medium tank having a liquid-phase ultrasonic medium, an ultrasonic vibrator for generating ultrasonic waves within the tank, and a sol pipe for providing a sol feeding path connecting the sol feeder and the sol container to each other, the sol pipe having a portion submerged under the ultrasonic medium in the medium tank. The portion of the sol pipe submerged under the ultrasonic medium has a shape bent in a zigzagged fashion.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: August 27, 2002
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Jeong-Hyun Oh, Keun-Deok Park, Dong-Joon Kim, Young-Min Baik
  • Patent number: 5967964
    Abstract: The present invention provides production methods for aqueous dispersion slurry of inorganic particles which are so stable as not to increase in viscosity, gel or sediment even if stored for a long time and whose average particle diameter is 0.01 to 2 .mu.m. As such production method, 2 production methods are available:A production method (A) having a preliminary dispersion process in which the inorganic particles are added to ad dispersed in an aqueous medium and a main dispersion process in which dispersed slurry out of the preliminary dispersion process are collided with each other under a pressure of 100 to 3,000 kg/cm.sup.2 ; andA production method (B) in which the inorganic particles are added to an aqueous medium within a kneading tank of a kneader in which mixing blades rotate around respective subsidiary spindles and the subsidiary spindles revolves around a spindle and dispersed at a solid concentration of 30 to 70 wt %.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: October 19, 1999
    Assignee: JSR Corporation
    Inventors: Masayuki Hattori, Nobuyuki Ito
  • Patent number: 5938581
    Abstract: The invention concerns a process for preparing a secondary emulsion consisting of droplets of a phase A, dispersed in a phase B, A being immiscible in B, starting with a polydispersed primary emulsion of identical formulation and consisting of droplets of the said phase A dispersed in the said phase B, the droplets of the secondary emulsion having a diameter in all cases which is less than the diameter of the droplets of the primary emulsion, characterized in that the starting primary emulsion is viscoelastic and in that the said starting primary emulsion is subjected to a controlled shear such that the same maximum shear is applied to the entire emulsion.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: August 17, 1999
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Jerome Michel Bibette, Thomas Mason