Liquid Phase Fischer-tropsch Reaction Patents (Class 518/700)
  • Patent number: 8623927
    Abstract: Disclosed are a catalyst for synthesis of methanol from synthesis gas and a method for preparing the same. The catalyst includes a Cu—Zn—Al oxide containing CuO, ZnO and Al2O3 in a predetermined ratio or Cu—Zn—Al—Zr oxide containing CuO, ZnO, Al2O3 and ZrO2 in a predetermined ratio, in combination with a cerium-zirconium oxide obtained by a sol-gel process. As compared to the existing Cu—Zn—Al catalysts for synthesizing methanol, the catalyst disclosed herein inhibits formation of byproducts and improves yield of methanol. Therefore, it is possible to improve methanol purification efficiency and carbon conversion efficiency.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: January 7, 2014
    Assignees: Hyundai Heavy Industries Co., Ltd., Korea Research Institute of Chemical Technology
    Inventors: Suk-Hwan Kang, Jong Wook Bae, Ki Won Jun, Keh-Sik Min, Seok-Lyong Song, Sam-Heon Jeong
  • Patent number: 8623925
    Abstract: Techniques, methods and systems for preparation liquid fuels from hydrocarbon and carbon dioxide are disclosed. The present invention can transform hydrocarbon and carbon dioxide generated from organic feed stocks or other industrial emissions into renewable engineered liquid fuels and store them in a cost-efficient way. The method of the present invention includes: supplying hydrocarbon and carbon dioxide to a heated area of a reaction chamber in controlled volumes; forming carbon monoxide by the energy provided by the heated area; transporting carbon monoxide and hydrogen to an reactor in controlled volumes; supplying additional hydrogen to the reactor; regulating the pressure in the reactor by adjusting the controlled volumes in order to achieve a predetermined object; forming the liquid fuel in the reactor according to the predetermined object; and, storing the liquid fuel in a storage device.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: January 7, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8618181
    Abstract: Chemical production processes are described herein. The chemical production processes generally include providing municipal solid waste; subjecting the municipal solid waste to plasma pyrolysis to form an intermediate for chemical production, wherein the intermediate includes carbon monoxide and hydrogen; and transferring the intermediate from the plasma pyrolysis to a chemical or liquid fuel production process.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: December 31, 2013
    Assignee: Fina Technology, Inc.
    Inventors: James N. Waguespack, James R. Butler
  • Patent number: 8618182
    Abstract: C5+ hydrocarbon synthesis by contracting a synthesis gas with a catalyst naming at least one metal from group VIII deposited on a support formed by at least one oxide, said catalyst being prepared using a process of at least: i) contracting at least the support with at least one solution containing at least one precursor of metal from group VIII; ii) contracting at least the support with at least one organic compound formed from at least one cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits; iii) at least one calcining to obtain at least the metal from group VIII in the oxide form; i) and ii) being carried out separately, in any order, or simultaneously.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: December 31, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Fabrice Diehl, Anne Griboval-Constant, Andrei Khodakov, Alan Jean-Marie, Eric Monflier
  • Patent number: 8617501
    Abstract: The invention relates to a process for finally removing sulphur-containing, nitrogen-containing and halogen-containing impurities contained in a synthesis gas, said process including: a) a joint step for hydrolysing COS and HCN contained in the gas and for collecting the halogen-containing compounds, using a TiO2-based catalyst, b) a washing step using a solvent, c) a step for desulphurization on a collecting or adsorbing mass. The synthesis gas purified in accordance with the process of the invention contains less than 10 ppb by weight, less than 10 ppb by weight of nitrogen-containing impurities and less than 10 ppb by weight of halogen-containing impurities.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: December 31, 2013
    Assignee: IFP Energies nouvelles
    Inventors: David Chiche, Nicolas Boudet, Jean Christophe Viguie, Marc Antoine Lelias, Olivier Ducreux
  • Patent number: 8618016
    Abstract: Iron- and manganese-containing heterogeneous catalyst, and a process for producing it, including the following steps: thermal decomposition of gaseous iron pentacarbonyl to give carbonyl iron powder having spherical primary particles; treatment of carbonyl iron powder with hydrogen, resulting in the metallic spherical primary particles at least partly agglomerating; surface oxidation of the iron particles to form iron oxide; contacting the particles with an aqueous solution of a manganese compound; drying in the presence of oxygen and subsequent calcination in the absence of oxygen, resulting in oxygen-comprising manganese compounds on the particles; and finally reaction of these with the iron oxide to form a mixed oxide of the formula MnxFe3-xO4, where 0<x?2. Process for preparing olefins by reacting carbon monoxide with hydrogen in the presence of a catalyst, wherein the abovementioned iron- and manganese-comprising heterogeneous catalyst is used as catalyst.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: December 31, 2013
    Assignee: BASF SE
    Inventors: Jochen Steiner, Kerem Bay, Vera Werner, Jürgen Amann, Stefan Bunzel, Claudia Moβbacher, Joachim Müller, Ekkehard Schwab, Markus Weber
  • Patent number: 8614257
    Abstract: Facilities and processes for generating ethanol from municipal solid waste (MSW) in an economical way via generating a syngas, passing the syngas through a catalytic synthesis reactor, separating fuel grade ethanol, extracting energy at particular strategic points, and recycling undesired byproducts.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: December 24, 2013
    Assignee: Fulcrum BioEnergy, Inc.
    Inventors: Stephen H. Lucas, Peter G. Tiverios, James R. Jones, Jr.
  • Patent number: 8614164
    Abstract: Iron- and copper-containing heterogeneous catalyst, and a process for producing it, including the following steps: thermal decomposition of gaseous iron pentacarbonyl to give carbonyl iron powder having spherical primary particles; treatment of carbonyl iron powder with hydrogen, resulting in the metallic spherical primary particles at least partly agglomerating; surface oxidation of the iron particles to form iron oxide; contacting the particles with an aqueous solution of a copper compound; drying in the presence of oxygen and subsequent calcination in the absence of oxygen, resulting in oxygen-comprising copper compounds on the particles; and finally reaction of these with the iron oxide to form a mixed oxide of the formula CuxFe3-xO4, where 0<x?1. Process for preparing olefins by reacting carbon monoxide with hydrogen in the presence of a catalyst, wherein the abovementioned iron- and copper-comprising heterogeneous catalyst is used as catalyst.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: December 24, 2013
    Assignee: BASF SE
    Inventors: Jochen Steiner, Kerem Bay, Vera Werner, Jürgen Amann, Stefan Bunzel, Claudia Moβbacher, Joachim Müller, Ekkehard Schwab, Markus Weber
  • Patent number: 8609738
    Abstract: The present invention relates to a process for producing aliphatic and aromatic C2-C6 hydrocarbons by submitting a reformed gas to Fischer-Tropsch synthesis. The reformed gas used in the present process is produced by autothermal dry reforming of a hydrocarbon feed over a Ni/La catalyst and essentially consists of syngas (H2 and CO), oxygen (O2) and optionally a further component selected from the group consisting of methane (CH4), carbon dioxide (CO2) and inert gas.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: December 17, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Agaddin Mamedov, Saleh Al-Sayari
  • Patent number: 8604088
    Abstract: Facilities and processes for generating ethanol from municipal solid waste (MSW) in an economical way via generating a syngas, passing the syngas through a catalytic synthesis reactor, separating fuel grade ethanol, extracting energy at particular strategic points, and recycling undesired byproducts.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: December 10, 2013
    Assignee: Fulcrum Bioenergy, Inc.
    Inventors: Stephen H. Lucas, Peter G. Tiverios, James R. Jones, Jr.
  • Patent number: 8604089
    Abstract: Facilities and processes for generating ethanol from municipal solid waste (MSW) in an economical way via generating a syngas, passing the syngas through a catalytic synthesis reactor, separating fuel grade ethanol, extracting energy at particular strategic points, and recycling undesired byproducts.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: December 10, 2013
    Assignee: Fulcrum Bioenergy, Inc.
    Inventors: Stephen H. Lucas, Peter G. Tiverios, James R. Jones, Jr.
  • Publication number: 20130324622
    Abstract: A method for the production of dimethyl ether is disclosed which utilizes: a dimethyl ether synthesis catalyst that converts synthesis gas to a dimethyl ether containing stream, wherein the dimethyl ether containing stream is directed to an absorption column containing water as a scrubbing agent and operating in a temperature range from 1° C.-20° C. and pressure range from 20 psig to 500 psig, and wherein the scrubbing liquid resulting from the exposure of the dimethyl ether containing stream to the absorption column is directed to a flash evaporation unit operating at 25° C.-100° C. and pressure range ?15 psig to 15 psig to produce a product stream rich in dimethyl ether.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Applicant: Cool Planet Biofuels, Inc.
    Inventors: Michael Cheiky, James Hillier
  • Patent number: 8598238
    Abstract: A process for the preparation of hydrocarbon products comprising the steps of (a) providing a synthesis gas comprising hydrogen, carbon monoxide and carbon dioxide; (b) reacting the synthesis gas to an oxygenate mixture comprising methanol and dimethyl ether in presence of one or more catalysts which together catalyse a reaction of hydrogen and carbon monoxide to oxygenates at a pressure of at least 4 MPa; (c) withdrawing from step (b) the oxygenate mixture comprising amounts of methanol, dimethyl ether, carbon dioxide and water together with unreacted synthesis gas and introducing the entire amount of the oxygenate mixture without further treatment into a catalytic oxygenate conversion step (d); (d) reacting the oxygenate mixture in presence of a catalyst being active in the conversion of oxygenates to higher hydrocarbons; (e) withdrawing an effluent from step (d) and separating the effluent into a tail gas, a liquid hydrocarbon phase containing the higher hydrocarbons produced in step.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: December 3, 2013
    Assignee: Haldor Topsoe A/S
    Inventors: Finn Joensen, Poul Erik Højlund Nielsen, Esben Lauge Sørensen
  • Patent number: 8598240
    Abstract: A Fischer-Tropsch process for converting a syngas to hydrocarbon products in the presence of a permeable composite fibrous catalytic sheet comprised of at least three distinct solid phases. A first solid phase is a 3-dimensional porous network of a non-conductive porous ceramic material. A second solid phase is an electrically conductive phase comprised of randomly oriented electrically conductive fibers. A third phase is comprised of catalytic particles dispersed on said 3-dimensional porous network, said conductive fibers, or both. A fourth phase can be present, which fourth phase is comprised one or more conductive species or one or more non-conductive species embedded in said first solid phase.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: December 3, 2013
    Inventor: Juzer Jangbarwala
  • Patent number: 8592492
    Abstract: In the production of fuel such as ethanol from carbonaceous feed material such as biomass, a stream comprising hydrogen and carbon monoxide is added to the raw gas stream derived from the feed material, and the resulting combined stream is converted into fuel and a gaseous byproduct such as by a Fischer-Tropsch reaction. The gaseous byproduct may be utilized in the formation of the aforementioned stream comprising hydrogen and carbon monoxide.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: November 26, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Shrikar Chakravarti, Raymond Francis Drnevich, Dante Patrick Bonaquist, Gregory Panuccio
  • Publication number: 20130310468
    Abstract: A method and apparatus for converting natural gas from a source, such as a wellhead, pipeline, or a storage facility, into hydrocarbon liquid stable at room temperature, comprising a skid or trailer mounted portable gas to liquids reactor. The reactor includes a preprocessor which desulfurizes and dehydrates the natural gas, a first stage reactor which transforms the preprocessed natural gas into synthesis gas, and a liquid production unit using a Fischer-Tropsch or similar polymerization process. The hydrocarbon liquid may be stored in a portable tank for later transportation or further processed on site.
    Type: Application
    Filed: February 15, 2013
    Publication date: November 21, 2013
    Applicant: GREENWAY INNOVATIVE ENERGY, INC.
    Inventor: F. Conrad Greer
  • Patent number: 8586640
    Abstract: A hydrocarbon synthesis reaction apparatus which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including hydrogen and carbon monoxide as the main components, and a slurry having solid catalyst particles suspended in a liquid, the hydrocarbon synthesis reaction apparatus is provided with: a reactor which contains the slurry; a synthesis gas introduction part which introduces the synthesis gas into the reactor; and a synthesis gas heating part which is provided in the synthesis gas introduction part to heat the synthesis gas introduced into the reactor to the decomposition temperature of carbonyl compounds or higher.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: November 19, 2013
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yasuhiro Onishi, Eiichi Yamada
  • Patent number: 8569388
    Abstract: The invention relates to a process for preparing olefins from synthesis gas, wherein the synthesis gas is contacted with a catalyst which contains cobalt, manganese and a third element selected from the group consisting of aluminium, gallium, indium, thallium, tin, lead and bismuth. Further, the invention relates to a process for preparing such catalyst, and to the catalyst so obtained.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: October 29, 2013
    Assignee: Shell Oil Company
    Inventor: Michiel Johannes Franciscus Maria Verhaak
  • Patent number: 8569386
    Abstract: A hydrocarbon synthesis reaction apparatus which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including a hydrogen and a carbon monoxide as the main components, and a slurry having solid catalyst particles suspended in a liquid, the apparatus is provided with: a reactor in which the synthesis gas contacts with the slurry; and an unreacted gas supply device which draws unreacted gas from the reactor, then pressurizes the unreacted gas, and supplies the unreacted gas to a constituent device which constitutes the hydrocarbon synthesis reaction apparatus.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: October 29, 2013
    Assignees: Japan Oil, Gas and Metals National, Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yasuhiro Onishi, Yuzuru Kato, Eiichi Yamada
  • Patent number: 8569387
    Abstract: A hydrocarbon compound synthesis reaction unit which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including a hydrogen and a carbon monoxide as the main components, and a slurry having a solid catalyst suspended in liquid hydrocarbons, the hydrocarbon compound synthesis reaction unit is provided with: a reactor which contains the slurry inside, into which the synthesis gas is introduced, and from which the gas after the reaction is discharged from the top thereof; an internal separation device provided inside the reactor to separate the catalyst and the synthesized liquid hydrocarbons in the slurry; and an external separation device provided outside the reactor to separate the catalyst and the liquid hydrocarbons in the slurry which is extracted from the reactor.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: October 29, 2013
    Assignees: Japan Oil, Gas and Metals National, Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yasuhiro Onishi, Yuzuru Kato, Eiichi Yamada, Atsushi Murata, Osamu Wakamura, Kentarou Morita
  • Patent number: 8563460
    Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 22, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557728
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has one or more holes extending therethrough, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst or catalyst unit preferably has one or more flutes miming along its length. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557878
    Abstract: The present invention relates to processes and apparatuses for hydromethanating a vanadium-containing carbonaceous feedstock while recovering at least a portion of the vanadium content originally present in the carbonaceous feedstock.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: October 15, 2013
    Assignee: Greatpoint Energy, Inc.
    Inventors: Alkis S. Rappas, Robert A. Spitz
  • Patent number: 8557725
    Abstract: A method for producing a regenerated Fischer-Tropsch synthesis catalyst obtained by regenerating a spent catalyst used in a Fischer-Tropsch synthesis reaction, comprising a steaming step of bringing the above spent catalyst into contact with a mixed gas comprising 1 to 30% by volume of steam and an inert gas at a pressure of atmospheric pressure to 5 MPa and a temperature of 150 to 350° C., the above spent catalyst being a spent catalyst in which cobalt and/or ruthenium is supported on a carrier comprising silica with an average pore diameter measured by a nitrogen adsorption method of 4 to 25 nm, and of which activity represented by an initial carbon monoxide conversion is 40 to 95%, based on the activity of a corresponding unused catalyst.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: October 15, 2013
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Hideki Ono, Yoshiyuki Nagayasu, Kazuaki Hayasaka
  • Patent number: 8557729
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has two or more flutes running along its length, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst may be used particularly in reactions where hydrogen is a reactant such as hydroprocessing, hydrogenation, water-gas shift reactions, methanation, hydrocarbon synthesis by the Fischer-Tropsch reaction, methanol synthesis and ammonia synthesis.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: Daniel Lee Cairns, Mileta Babovic, Terence James Fitzpatrick, Elizabeth Margaret Holt, Colin William Park, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557880
    Abstract: The present invention relates to a multistage adiabatic process for performing the Fischer-Tropsch synthesis at low temperatures, in which the synthesis is performed in 5 to 40 series-connected reaction zones under adiabatic conditions.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: October 15, 2013
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Ralph Schellen, Leslaw Mleczko, Evin Hizaler Hoffmann, Stephan Schubert, Rushikesh Apte
  • Patent number: 8557879
    Abstract: A method for producing an activated Fischer-Tropsch synthesis catalyst comprising a hydrogen reduction step of subjecting a catalyst comprising 3 parts by mass to 50 parts by mass, as a metal atom, of a cobalt compound and/or a ruthenium compound, based on 100 parts by mass of a carrier containing a porous inorganic oxide, supported on the carrier, to reduction in a gas containing molecular hydrogen at a temperature of 300° C. to 600° C.; and a CO reduction step of subjecting the catalyst to reduction in a gas containing carbon monoxide and containing no molecular hydrogen at a temperature of 200° C. to 400° C.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: October 15, 2013
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yoshiyuki Nagayasu, Kazuaki Hayasaka, Hideki Ono
  • Publication number: 20130267614
    Abstract: There is disclosed a biogas to liquid fuel converter. In an embodiment, the biogas to liquid fuel converter includes a gas cleaning system, a cargo container including a syngas production system and a methanol synthesis system to produce methanol. In another embodiment, a method of making a liquid fuel includes converting a landfill gas or a sewage digester gas using a biogas to liquid fuel converter.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 10, 2013
    Inventors: Peter Coorey, Wesley C. Broomham
  • Patent number: 8552073
    Abstract: A process (10) for co-producing power and hydrocarbons includes gasifying (16, 70) coal to produce a synthesis gas (36) and a combustion gas (86) both comprising at least CO1H2 and CO2 and being at elevated pressure, separating CO2 (18, 48) from the synthesis gas, and synthesizing (20, 22) hydrocarbons from the synthesis gas. Power (1 14) is generated from the combustion gas, including by combusting (78) the combustion gas in the presence of oxygen and in the presence of at least a portion of the separated CO2 as moderating agent to produce a hot combusted gas (106) which includes CO2. The CO2 is recycled (1 12) or recovered from the combusted gas. In certain embodiments, the process (10) produces a CO2 exhaust stream (134) for sequestration or capturing for further use.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: October 8, 2013
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Jan Hendrik Duvenhage Boshoff, Isabella Lodewina Greeff, Andre Peter Steynberg
  • Patent number: 8552074
    Abstract: The present invention provides a process for preparing methanol, dimethyl ether, and low carbon olefins from syngas, wherein the process comprises the step of contacting syngas with a catalyst under the conditions for converting the syngas into methanol, dimethyl ether, and low carbon olefins, characterized in that, the catalyst contains an amorphous alloy consisting of components M and X wherein the component X represents an element B and/or P, the component M represents two or more elements selected from Group IIIA, IVA, VA, IB, IIB, IVB, VB, VIB, VIIB, VIII and Lanthanide series of the Periodic Table of Elements. According to the present process, the syngas can be converted into methanol, dimethyl ether, and low carbon olefins in a high CO conversion, a high selectivity of the target product, and high carbon availability.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: October 8, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Qiang Fu, Xiaoxin Zhang, Yibin Luo, Xuhong Mu, Baoning Zong
  • Patent number: 8546454
    Abstract: Disclosed herein is a process for the production of fuel grade DME from carbonaceous fuels, including a pressurized multi-stage progressively expanding fluidized bed gasifier and an oxyblown autothermal reformer to produce a synthesis gas (syngas) with desirable hydrogen to carbon monoxide molar ratio, which then undergoes gas-phase DME one-step direct synthesis in a fluid pluralized bed reactor over an attrition resistant bifunctional catalyst. The crude DME thus obtained is purified in a two column distillation unit to produce a fuel grade DME having a purity greater than 99.98 mole %.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: October 1, 2013
    Assignee: Unitel Technologies, Inc.
    Inventors: Sarabjit S. Randhava, Richard L. Kao, Todd L. Harvey
  • Publication number: 20130245131
    Abstract: The present invention relates to processes for the recovery of ethanol from a crude ethanol product obtained from the hydrogenation of a mixed oxygenate stream comprising ethyl acetate and acetaldehyde. The crude ethanol product is separated in at least one distillation column to product ethanol. The mixed oxygenate stream may be obtained from syngas.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Radmila Jevtic, Victor J. Johnston, Heiko Weiner
  • Patent number: 8536233
    Abstract: Process for producing liquid hydrocarbons from a heavy feedstock such as biomass, carbon, lignite, or heavy petroleum residue comprising: A partial oxidation b) of the heavy feedstock, producing a synthesis gas SG1, with an H2/CO ratio<1; A steam reforming c) of a light feedstock that comprises hydrocarbons having at most 4 carbon atoms, for the production of a synthesis gas SG2 with an H2/CO ratio>3; A Fischer-Tropsch conversion into liquid hydrocarbons of a synthesis gas SG, mixture of at least a portion of SG1 and at least a portion of SG2, in proportions such that SG has an H2/CO ratio of between 1.2 and 2.5. The light feedstock comprises hydrocarbons having less than 10 carbon atoms C1-C10 are obtained from a pretreatment of the heavy feedstock and/or are produced in the Fischer-Tropsch stage and/or during a downstream hydrocracking stage.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: September 17, 2013
    Assignee: IFP Energies Nouvelles
    Inventor: Alexandre Rojey
  • Patent number: 8536234
    Abstract: A method and apparatus for the generation of synthetic motor fuels and additives to oil fuels, C1-C4 alcohols, hydrogen, methane, synthesized gas (H2+CO2) by hydrothermal treatment of carbonaceous compounds by providing a two-stage carbon gasification process operated under the supercritical conditions of H2O and CO2, including a first stage gasification reactor having a reaction zone for the conversion of carbonaceous compounds and a second stage reactor for the conversion of the products of the first stage reactor; feeding a aqueous suspension of carbonaceous compound in an amount of at least 30% by weight and an alkali metal or alkaline-earth metal catalyst or reactive OH-species from an electrolyzer through said first stage gasification reactor as a supercritical fluid at a volume velocity of 0.01-0.05 g of carbon per 1 cm3 per hour, at a carbon/catalyst mole ratio of between about 70/1 and 90/1, at a temperature of 390-450° C.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: September 17, 2013
    Assignee: Amerol Enterprises, LLC
    Inventors: Valerii Kukhar, Valeriy Bortyshevskyy, Nataliia Khimach, Viktor Burdeynyy, Rayisa Korzh, Svitlana Melnykova, Dmytro Kamens'kyh
  • Patent number: 8530528
    Abstract: Improved reaction efficiencies are achieved by the incorporation of enhanced hydrothermally stable catalyst supports in various water-forming hydrogenation reactions or reactions having water-containing feeds. Examples of water-forming hydrogenation reactions that may incorporate the enhanced hydrothermally stable catalyst supports include alcohol synthesis reactions, dehydration reactions, hydrodeoxygenation reactions, methanation reactions, catalytic combustion reaction, hydrocondensation reactions, and sulfur dioxide hydrogenation reactions. Advantages of the methods disclosed herein include an improved resistance of the catalyst support to water poisoning and a consequent lower rate of catalyst attrition and deactivation due to hydrothermal instability. Accordingly, higher efficiencies and yields may be achieved by extension of the enhanced catalyst supports to one or more of the aforementioned reactions.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 10, 2013
    Assignee: Clariant Corporation
    Inventors: Joe D. Allison, Byron G. Johnson
  • Patent number: 8530366
    Abstract: A method of preparing a spray dried catalyst by combining spray dried catalyst particles with wax so the spray dried catalyst particles are coated with wax, yielding wax coated catalyst particles, and shaping the wax coated catalyst to provide shaped wax coated catalyst. A method of activating Fischer-Tropsch catalyst particles containing oxides by contacting the catalyst particles with a reducing gas in an activation vessel to produce an activated catalyst, wherein contacting is performed in the absence of a liquid medium under activation conditions. A system for activating a Fischer-Tropsch catalyst containing an activation reactor configured to introduce an activation gas to a fixed or fluidized bed of the Fischer-Tropsch catalyst in the absence of a liquid medium and at least one separation device configured to separate a gas stream comprising entrained catalyst fines having an average particle size below a desired cutoff size from the activation reactor.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: September 10, 2013
    Assignee: Rentech, Inc.
    Inventors: Harold A. Wright, Belma Demirel, Sergio Mohedas, Bahman Rejai, Ray Huang, Deena Ferdous, Jesse W. Taylor, Dawid J. Duvenhage, Sara L. Rolfe
  • Patent number: 8524787
    Abstract: The disclosure relates to petrochemistry, gas chemistry, coal chemistry, particularly to a synthesis of hydrocarbons C5 and higher from CO and H2 under the Fischer-Tropsch reaction; the invention relates to a process and a system for producing synthetic liquid hydrocarbons. A process for producing synthetic liquid hydrocarbons is provided by catalytic converting syngas under the Fischer-Tropsch reaction on a fixed catalyst bed in a vertical shell and tube reactor with coolant supply into shell wherein as soon as the syngas conversion degree achieves 60-80%, a pressure gradient along the tubes is reduced below 0.1 bar/m and this value is maintained during the whole process. A reactor for Fischer-Tropsch synthesis is provided comprising tubes with catalyst in a shell, the ratio of the tube diameter at the tube outlet to the diameter at the inlet is from 1.5/1 to 2.5/1.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: September 3, 2013
    Assignee: Infra Technologies Ltd.
    Inventors: Vadim Sergeevich Ermolaev, Vladimir Zalmanovich Mordkovich, Igor Grigorievich Solomonik, Igor Vladimirovich Derevich, Lilia Vadimovna Sineva, Eduard Borisovich Mitberg
  • Patent number: 8524160
    Abstract: A catalyst separation system is provided with: a reactor where hydrocarbons are synthesized by a chemical reaction of a synthesis gas including carbon monoxide gas and hydrogen gas as main components, and a catalyst slurry having solid catalyst particles suspended in a liquid; filters which separate the hydrocarbons and the catalyst slurry; and a gas-liquid separator which separates the liquid hydrocarbons flowing out of the filter into gas hydrocarbons and liquid hydrocarbons.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: September 3, 2013
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yasuhiro Onishi, Eiichi Yamada
  • Patent number: 8519013
    Abstract: An object of the present invention is providing a method for producing formic acid under mild reaction conditions and by a simple procedure. As a means for achieving the object, the method for producing formic acid of the present invention is characterized by a reaction between carbon dioxide and hydrogen in the presence of an ionic liquid. According to the present invention, it is possible to generate formic acid effectively, because the method does not require that carbon dioxide be brought into a supercritical state and because no basic substances are required to be added to the reaction system.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: August 27, 2013
    Inventors: Masaru Nakahara, Nobuyuki Matsubayashi, Yoshiro Yasaka
  • Patent number: 8519011
    Abstract: Disclosed is a process for converting synthesis gas to liquid hydrocarbon mixtures useful in the production of fuels and petrochemicals. The synthesis gas is contacted with at least two layers of synthesis gas conversion catalyst wherein each synthesis gas conversion catalyst layer is followed by a layer of hydrocracking catalyst and hydroisomerization catalyst or separate layers of hydrocracking and hydroisomerization catalysts. The process can occur within a single reactor, at an essentially common reactor temperature and an essentially common reactor pressure. The process provides a high yield of naphtha range liquid hydrocarbons and a low yield of wax.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: August 27, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Robert J. Saxton, Charles L. Kibby, Kandaswamy Jothimurugesan, Tapan Das
  • Patent number: 8519012
    Abstract: Disclosed is a process for storing solar energy in organic compounds. The process comprises providing a water source and a carbon source. Water present in the water source is activated using solar energy. Activated water is reacted with the carbon source to form an organic compound comprising hydrogen and carbon. The organic compound has higher energy content than the carbon source. In a specific embodiment the organic compound is used as a fuel in an electricity-generating device, such as a fuel cell. In this embodiment the preferred organic compound is methanol.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: August 27, 2013
    Assignee: Antecy B.V.
    Inventor: Paul O'Connor
  • Patent number: 8513313
    Abstract: This invention relates to a hydrocarbon synthesis process. More particularly, but not exclusively, this invention relates to a Fischer Tropsch Process employing an activated catalyst and to the use of such an activated catalyst, wherein the Fischer Tropsch Process conditions favor the attainment of a low acid selectivity. More particularly the invention relates to a three-phase low temperature Fischer Tropsch (LTFT) process wherein a feed of H2 and CO are converted to hydrocarbons and possible oxygenates thereof by contacting the H2 and CO in the presence of an iron-based Fischer Tropsch catalyst in a reaction zone, wherein the molar ratio of H2:CO in the feed is from 0.5 and less than 1.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: August 20, 2013
    Assignee: Sasol Technology (Pty) Limited
    Inventors: Johannes Jacobus Huyser, Matthys Josephus Janse Van Vuuren
  • Patent number: 8513315
    Abstract: A process of form hydrocarbons boiling to the gasoline range and reducing or eliminating net CO2 production during isosynthesis over a ZnO—Cr2O3 plus ZSM-5 catalyst by adding from about 5% to about 15% CO2 to the synthesis gas mixture prior to contact to with catalyst.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 20, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Charles L. Kibby
  • Patent number: 8513314
    Abstract: Improved design of a catalytic reactor for the production of methanol at equilibrium conditions whereby methanol as it is formed is separated from the gaseous phase into the liquid phase within the reactor, without reducing the catalytic activity of the methanol catalysts This is achieved by adjusting the boiling point of a liquid cooling agent being in indirect contact with the catalyst particles and by providing a specific ratio of catalyst bed volume to cooling surface area. Thereby, condensation of methanol as it is formed in the gaseous phase takes place at the cooling surface arranged evenly distributed within the reactor and within a very limited region of the catalyst bed.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: August 20, 2013
    Assignee: Haldor Topsoe A/S
    Inventor: Max Thorhauge
  • Patent number: 8513312
    Abstract: This invention relates to a Fischer Tropsch process using a catalyst activated in accordance with the invention. More particularly the invention relates to a three phase Low Temperature Fischer Tropsch process wherein CO and H2 are converted to hydrocarbons and possibly oxygenates thereof by contacting syngas including CO and H2 in the presence of an iron based Fischer Tropsch catalyst, wherein the ratio of H2:CO in the feed is between 2.5 and 1, and wherein the iron based Fischer Tropsch catalyst is activated according to the steps of: (a) providing an iron catalyst including iron in a positive oxidation state; and (b) contacting the iron catalyst in a reactor with a reducing gas selected from CO and a combination of H2 and CO; at a temperature of at least 245° C. and below 280° C.; at a reducing gas pressure of above 0.5 MPa and not more than 2.2 MPa; and at a GHSV of total gas fed to the reactor of at least 6000 ml(N)/g cat/h, thereby reducing the iron that is in a positive oxidation step in the catalyst.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: August 20, 2013
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Johannes Jacobus Huyser, Riaan Bekker, Matthys Josephus Janse Van Vuuren, Ryno Kotze
  • Publication number: 20130210935
    Abstract: A method of operating a process for catalytically converting one or more reactants to one or more products using a fluid bed reactor containing a catalyst which deactivates over time includes, during a catalyst campaign, in a step A, gradually increasing an operating temperature of the reactor to counteract the negative effect of catalyst deactivation on a conversion rate of the one or more reactants. The operating temperature is not allowed to exceed a selected maximum operating temperature. Thereafter, in a step B, catalyst is added which has the tendency to increase the conversion rate of the one or more reactants into the reactor, and the operating temperature of the reactor is reduced to counteract to at least some extent the effect of the added catalyst on the conversion rate of the one or more reactants. The operating temperature remains above a selected minimum operating temperature during step B. Steps A and B are repeated until the end of the catalyst campaign or until the end of a production run.
    Type: Application
    Filed: October 10, 2011
    Publication date: August 15, 2013
    Inventor: Herman Gerhardus Nel
  • Patent number: 8506910
    Abstract: A process and system for producing high octane fuel from carbon dioxide and water is disclosed. The feedstock for the production line is industrial carbon dioxide and water, which may be of lower quality. The end product can be high octane gasoline, high cetane diesel or other liquid hydrocarbon mixtures suitable for driving conventional combustion engines or hydrocarbons suitable for further industrial processing or commercial use. Products, such as dimethyl ether or methanol may also be withdrawn from the production line. The process is nearly emission free and reprocesses all hydrocarbons not suitable for liquid fuel to form high octane products. The heat generated by exothermic reactions in the process is fully utilized as is the heat produced in the reprocessing of hydrocarbons not suitable for liquid fuel.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 13, 2013
    Assignee: CRI EHF
    Inventors: Shwetank Singh, Omar Freyr Sigurbjornsson, Kim-Chinh Tran
  • Patent number: 8506895
    Abstract: A Fischer-Tropsch synthesis three-phase suspension bed reactor (“suspension bed” also called “slurry bed”) and its supplemental systems, may include: 1) structure and dimension design of F-T synthesis reactor, 2) a gas distributor located at the bottom of the reactor, 3) structure and arrangement of a heat exchanger members inside the reactor, 4) a liquid-solid filtration separation device inside reactor, 5) a flow guidance device inside reactor, 6) a condensate flux and separation member located in the gas phase space at the top of reactor, 7) a pressure stabilizer, a cleaning system for the separation device; an online cleaning system for the gas distributor; an ancillary system for slurry deposition and a pre-condensate and mist separation system located at the outlet of upper reactor. This reactor is suitable for industrial scale application of Fischer-Tropsch synthesis.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: August 13, 2013
    Assignee: Synfuels China Technology Co. Ltd.
    Inventors: Jinsheng Wang, Xu Hao, Dongxun Liu, Liang Bai, Liren Cao, Yongwang Li
  • Publication number: 20130197109
    Abstract: An apparatus for generating a large volume of gas from a liquid stream is disclosed. The apparatus includes a first channel through which the liquid stream passes. The apparatus also includes a layer of catalyst particles suspended in a solid slurry for generating gas from the liquid stream. The apparatus further includes a second channel through which a mixture of converted liquid and generated gas passes. A heat exchange channel heats the liquid stream. A wicking structure located in the second channel separates the gas generated from the converted liquid.
    Type: Application
    Filed: January 30, 2013
    Publication date: August 1, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Ward E. TeGrotenhuis, Karim M. Ayman, Paul H. Humble, Yong Wang
  • Patent number: 8497309
    Abstract: Herein disclosed is a method of reacting one or more components in a liquid medium to form an organic product that may include feeding a carbonaceous gas and a liquid medium to a high shear device; processing the gas and the liquid medium under shearing conditions in the high shear device, resulting in an emulsion comprising at least some of the carbonaceous gas dispersed in the liquid medium, wherein the dispersed carbonaceous gas comprises gas bubbles with a mean diameter of less than about 1 ?m; and reacting the emulsion to produce the organic product.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: July 30, 2013
    Assignee: H R D Corporation
    Inventors: Aziz Hassan, Abbas Hassan, Rayford G. Anthony, Gregory Borsinger