Plural Zones Each Having A Fischer-tropsch Reaction Patents (Class 518/706)
  • Patent number: 7425524
    Abstract: A multigrade automotive gear lubricant comprising a base oil having a traction coefficient less than 0.021. A method for saving energy using a gear lubricant, comprising blending a multigrade gear lubricant by adding a base oil having a traction coefficient less than 0.021, and using the gear lubricant in an axle or differential. A process for making an energy saving automotive gear lubricant having a kinematic viscosity at 100° C. greater than 10 cSt. A gear lubricant comprising a FT derived base oil having a VI greater than 150 and a traction coefficient less than 0.015. A finished lubricant, comprising a FT derived base oil having a traction coefficient less than 0.015. A base oil having a traction coefficient less than 0.011 and a 50 wt % boiling point greater than 582° C.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: September 16, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Michael J. Haire, John A. Zakarian, John M. Rosenbaum, Nancy J. Bertrand, Stephen J. Miller, Trevor Miller, Vivek Palekar, Ajit Ramchandra Pradhan
  • Patent number: 7420004
    Abstract: A process for producing synthetic hydrocarbons that reacts carbon dioxide, obtained from seawater of air, and hydrogen obtained from water, with a catalyst in a chemical process such as reverse water gas shift combined with Fischer Tropsch synthesis. The hydrogen is produced by nuclear reactor electricity, nuclear waste heat conversion, ocean thermal energy conversion, or any other source that is fossil fuel-free, such as wind or wave energy. The process can be either land based or sea based.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: September 2, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Dennis R. Hardy, Timothy Coffey
  • Patent number: 7396972
    Abstract: A method for producing an olefin stream is provided based on conversion of an initial natural gas stream into a synthesis gas. The resulting synthesis gas is enriched with CO2 previously separated from the natural gas stream. The synthesis gas is then used to form a methanol composition, which can then be used as feedstock for a methanol-to-olefin conversion reaction.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: July 8, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Michael Peter Nicoletti, Eric D. Nelson, Christopher D. W. Jenkins
  • Publication number: 20080146683
    Abstract: Method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in at least two vertically extending shafts housed within a common reactor shell, each shaft being divided into a plurality of vertically extending channels at least some of which are in slurry flow communication and the slurry body being present in at least some of the channels. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in at least some of the channels of the shafts, thereby to form a non-gaseous and/or a gaseous product. Gaseous product, if present, and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
    Type: Application
    Filed: March 17, 2006
    Publication date: June 19, 2008
    Inventors: Andre Peter Steynberg, Berthold Berend Breman, Derk Willem Frederik Brilman
  • Patent number: 7384985
    Abstract: This invention is directed to a process for producing methanol. The methanol product that is produced according to this invention is achieved with a high conversion of synthesis gas. The high conversion of synthesis gas is achieved by flowing a liquid layer across a plurality of catalyst beds countercurrent to the gas flow. The gas containing methanol product exiting each bed flows through the liquid layer. The liquid acts to extract methanol from the gas, as well as cool the gas.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: June 10, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: James R. Lattner
  • Patent number: 7375142
    Abstract: A carbonaceous feedstock to alcohol conversion process in which carbon dioxide and a portion of the hydrogen produced are removed from the syngas stream issuing from a feedstock reformer, to yield a reduced hydrogen, carbon monoxide and methane syngas stream. The hydrogen and the carbon dioxide are passed through a Fischer Tropsch reactor which is catalyzed to favor the production of methanol. The methanol produced in the Fischer-Tropsch reactor is passed with the reduced hydrogen syngas through a second Fischer-Tropsch reactor which is catalyzed to favor the production of ethanol. Also disclosed, without limitation, are a unique catalyst, a method for controlling the content of the syngas formed in the feedstock reformer, and a feedstock handling system.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: May 20, 2008
    Assignee: Pearson Technologies, Inc.
    Inventor: Stanley R. Pearson
  • Patent number: 7247656
    Abstract: This disclosure discusses problems associated with using natural gas to produce a variety of synthetic hydrocarbon products by production processes that require syngas feedstocks with varying H2/CO and (H2?CO2)/(CO+CO2) ratios. A number of gas separation membranes are used to vary the composition of the feed streams to different hydrocarbon synthesis units so that different synthetic hydrocarbon products can be produced. The process supplies syngas to an integrated hydrocarbon processing system comprising a number of hydrocarbon synthesis units. Gas (usually a portion of a raw syngas stream) is routed through the separation membrane units, multiple H2-rich and H2-lean streams are produced. These H2-rich and H2-lean streams can then be combined in a controlled fashion to produce feed streams of the desired compositions for the various hydrocarbon synthesis units. A variety of liquid synthetic hydrocarbon products can be produced from a given syngas source as required by market demands.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: July 24, 2007
    Assignee: L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude
    Inventors: Chang-Jie Guo, Paul Wentink
  • Patent number: 7232848
    Abstract: An apparatus for converting a gaseous and/or liquid feed fluid to gaseous and/or liquid products using a solid catalyst comprises a reactor, a liquid phase disposed within the reactor volume, a fixed catalyst at least partially disposed in the liquid phase, a cooling system having a cooling element in thermal contact with the liquid phase, a feed inlet positioned to feed the feed fluid into the reactor volume, and a fluid outlet in fluid communication with the liquid phase. The catalyst is contained in a catalyst container and the container may be adjacent to said cooling element, extend through said cooling element, or may surround the catalyst container. The catalyst may be a Fischer-Tropsch catalyst.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: June 19, 2007
    Assignee: ConocoPhillips Company
    Inventors: Sergio R. Mohedas, Rafael L. Espinoza, Jianping Zhang
  • Patent number: 7226954
    Abstract: The invention relates to an integrated process for producing liquid fuels, the process comprising the steps of: a) subjecting syngas with a hydrogen/carbon monoxide ratio between about 0.5 to 2.0 to Fischer-Tropsch reaction conditions in the presence of a first catalyst; b) optionally removing water and/or heavy hydrocarbons from the product stream; and c) subjecting the product from step a) or b) together with syngas of a hydrogen/carbon monoxide ratio higher than that of step a) or hydrogen to Fischer-Tropsch reaction conditions at higher temperatures than during step a) in the presence of a second catalyst, said second catalyst being selected such as to provide a higher activity than said first catalyst; wherein said first catalyst is selected such as to provide low methane selectivity and high olefins and heavy hydrocarbons selectivity. According to the invention, a third synthesis step or additional synthesis steps is added subsequent to the synthesis step c).
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: June 5, 2007
    Assignee: Research Institute Petroleum Industry (RIPI)
    Inventors: Ahmad Tavasoli, Ali Karimi, Kambiz Sadagiani Zadeh, Abas Ali Kodadadi, Yadollah Mortazavi, Shahram Sharifnia
  • Patent number: 7217741
    Abstract: Fischer-Tropsch synthesis is performed using a compact catalytic reactor unit (10) defining channels in which is a gas-permeable catalyst structure (16), the channels extending between headers (18). The synthesis occurs in at least two stages, as the reactor unit provides at least two successive channels (14, 14a) for the Fischer-Tropsch synthesis connected by a header, the gas flow velocity through the first channel being sufficiently high that no more than 65% of the carbon monoxide undergoes conversion. The gases are cooled (25) in the header between the two stages, so as to condense water vapor, and then pass through the second channel at a sufficiently high gas flow velocity that no more than 65% of the remaining carbon monoxide undergoes conversion. This lowers the partial pressure of water vapor and so suppresses oxidation of the catalyst.
    Type: Grant
    Filed: November 27, 2003
    Date of Patent: May 15, 2007
    Assignee: Compactgtl PLC
    Inventors: Michael Joseph Bowe, Clive Derek Lee-Tuffnell
  • Patent number: 7214721
    Abstract: A reactor system, plant and a process for the production of methanol from synthesis gas is described in which the reactor system comprises: (a) a first reactor adapted to be maintained under methanol synthesis conditions having inlet means for supply of synthesis gas and outlet means for recovery of a first methanol-containing stream, said first reactor being charged with a first volume of a methanol synthesis catalyst through which the synthesis gas flows and on which in use, partial conversion of the synthesis gas to a product gas mixture comprising methanol and un-reacted synthesis gas will occur adiabatically; and (b) a second reactor adapted to be maintained under methanol synthesis conditions having inlet means for supply of the gaseous first methanol-containing stream, outlet means for recovery of a second methanol-containing stream and cooling means, said second reactor being charged with a second volume of a methanol synthesis catalyst through which the gaseous first methanol-containing stream flows
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: May 8, 2007
    Assignee: Davy Process Technology Limited
    Inventor: Philip Henry Donald Eastland
  • Patent number: 7208530
    Abstract: A process and apparatus for producing a synthesis gas for use as a gaseous fuel or as feed into a Fischer-Tropsch reactor to produce a liquid fuel in a substantially self-sustaining process. A slurry of particles of carbonaceous material in water, and hydrogen from an internal source, are fed into a hydro-gasification reactor under conditions whereby methane rich producer gases are generated and fed into a steam pyrolytic reformer under conditions whereby synthesis gas comprising hydrogen and carbon monoxide are generated. A portion of the hydrogen generated by the steam pyrolytic reformer is fed through a hydrogen purification filter into the hydro-gasification reactor, the hydrogen therefrom constituting the hydrogen from an internal source. The remaining synthesis gas generated by the steam pyrolytic reformer is either used as fuel for a gaseous fueled engine to produce electricity and/or process heat or is fed into a Fischer-Tropsch or similar reactor under conditions whereby a liquid fuel is produced.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: April 24, 2007
    Assignee: The Regents of the University of California
    Inventors: Joseph N. Norbeck, Colin E. Hackett, James E. Heumann, Uy Q. Ngo, Nguyen T. Tran, Bilge Yilmaz
  • Patent number: 7144923
    Abstract: Methanol is synthesized from pre-heated methanol synthesis gas in one or more adiabatic synthesis stages with cooling of the resultant gas after each stage. Further methanol synthesis is then effected on the resultant partially reacted synthesis gas in a bed of synthesis catalyst cooled by means of a coolant flowing co-currently through tubes disposed in the catalyst bed. After cooling methanol is separated from the unreacted gas. Part of the unreacted gas is combined with make-up gas and used as the coolant fed to the aforesaid tubes, thus producing the pre-heated synthesis gas to be fed to the adiabatic synthesis stages.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: December 5, 2006
    Assignee: Johnson Matthey PLC
    Inventor: Terence James Fitzpatrick
  • Patent number: 7138001
    Abstract: Low-energy hydrogen production is disclosed. A reforming exchanger is placed in parallel with a partial oxidation reactor in a new hydrogen plant with improved efficiency and reduced steam export, or in an existing hydrogen plant where the hydrogen capacity can be increased by as much as 20–30 percent with reduced export of steam from the hydrogen plant.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: November 21, 2006
    Assignee: Kellogg Brown & Root LLC
    Inventors: Stanislaus A. Knez, Avinash Malhotra, David P. Mann, Martin J. Van Sickels
  • Patent number: 7115670
    Abstract: A process for the conversion of synthesis gas to higher hydrocarbons by synthesis gas, at an elevated temperature and pressure, with a suspension of a particulate Fischer-Tropsch catalyst, in a system comprising at least one high shear mixing zone and a reactor vessel wherein the process comprises: (a) passing the suspension and the gaseous stream through the high shear mixing zone wherein the gaseous stream is broken down into gas bubbles and/or irregularly shaped gas voids; (b) discharging suspension having gas bubbles and/or irregularly shaped gas voids dispersed therein from the high shear mixing zone into the reactor vessel; and (c) maintaining the temperature of the suspension discharged into the reactor vessel at the desired reaction temperature by means of an internal heat exchanger positioned within the suspension in the reactor vessel. At least 5% of the exothermic heat of reaction is removed from the system by means of the internal heat exchanger.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: October 3, 2006
    Assignees: BP Exploration Operating Company Limited, Davy Process Technology Limited
    Inventors: John Richard Hensman, David Newton
  • Patent number: 7115669
    Abstract: A gas-agitated multiphase reactor system that is effective for enabling maximum reactor productivity or minimizing reactor volume comprising at least two stages with or without recycle, wherein inlet gas superficial velocity is at least 20 cm/sec at Fischer-Tropsch synthesis, yielding a total syngas conversion of greater than about 90%, while syngas conversion in each reactor is less than 60%. More specifically, the total reactor volume is held to a minimum such that minimum reactor volume is less than 0.02 cubic meters total reactor volume/(kg C5+/hr production).
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: October 3, 2006
    Assignee: ConocoPhillips Company
    Inventors: Jianping Zhang, Harold A. Wright
  • Patent number: 7071237
    Abstract: The invention relates to a method to start a process for producing normally gaseous, normally liquid and optionally normally solid hydrocarbons from a hydrocarbonaceous feed, which process involves the steps of: (i) compressing and optionally separating an oxygen containing gas; (ii) partial oxidation of the hydrocarbonaceous feed at elevated temperature and pressure using the compressed oxygen containing gas of step (i) to obtain synthesis gas and steam; (iii) catalytically converting the synthesis gas of step (ii) at elevated temperature and pressure to obtain the normally liquid and/or gaseous hydrocarbons and steam; and (iv) using steam obtained in step (ii) and/or step (iii) and optionally combusting of hydrocarbons for generating power for providing the pressurized oxygen containing gas for step (i), which method starts with using a hydrocarbonaceous feed fired boiler for providing steam for the generation of power for step (i) for compressing and optionally separating the pressurized oxygen containing
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: July 4, 2006
    Assignee: Shell Oil Company
    Inventors: Joachim Ansorge, Joannes Ignatius Geijsel
  • Patent number: 7067561
    Abstract: Fischer-Tropsch synthesis is performed on a CO/H*2 feed gas using a plurality of compact catalytic reactor modules (12) each defining catalytic reaction channels and coolant channels, in two successive stages, with the same number of reactor modules for each stage. The gas flow velocity in the first stage is sufficiently high that no more than 75% of the CO undergoes conversion. The gases are cooled (16) between successive stages so as to remove water vapour, and the pressure is reduced (20) before they are subjected to the second stage. In addition the reaction temperature for the second stage is lower than for the first stage, such that no more than 75% of the remaining carbon monoxide undergoes conversion during the second stage too. The deleterious effect of water vapour on the catalyst is hence suppressed, while the overall capacity of the plant (10) can be adjusted by closing off modules in each stage while keeping the numbers equal.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: June 27, 2006
    Assignee: GTL Microsystems AG
    Inventor: Michael Joseph Bowe
  • Patent number: 7037948
    Abstract: A method of increasing the production in an existing process plant for converting natural gas into a product, where the natural gas is first converted to a synthesis gas in a synthesis gas section, the synthesis gas is brought to reaction in a reactor for synthesis of the product, where non-converted synthesis gas and product are separated into two streams, where a product-rich stream is taken off the process, while a product-poor stream is re-circulated back as feed to the reactor together with fresh synthesis gas, and where part of the re-circulating stream is taken off the re-circulation loop as a purge gas, where the purge gas is separated into hydrogen-rich and hydrogen-poor streams, where hydrogen-rich streams are introduced in stages of the process where addition of hydrogen is desirable, and where the residual thermal value of the hydrogen-poor stream may be used for heating prior to the stream being discharged, wherein the synthesis gas from the synthesis gas section receives a hydrogen-rich stream f
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: May 2, 2006
    Assignee: Statoil ASA
    Inventors: Roger Hansen, Jostein Sogge, Bjorn Jarle Veland, Ola Olsvik
  • Patent number: 7030166
    Abstract: A process to optimize a slurry Fischer-Tropsch catalyst life and to further optimize removal of debris from a slurry Fischer-Tropsch process is provided. The process passes a part of a Fischer-Tropsch Reactor slurry inventory to another upstream Fischer-Tropsch Reactor where the Fischer-Tropsch reactors are connected in series. The process utilizes either multiple or a single transfer vessel and optionally, a motive gas.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: April 18, 2006
    Assignee: Syntroleum Corporation
    Inventors: James Leahy, Juan Inga
  • Patent number: 7019038
    Abstract: Methods for reducing the average molecular weight of liquid hydrocarbons in a Fischer-Tropsch reactor are disclosed. The preferred embodiments of the present invention are characterized by feeding a hydrocarbon stream, which lowers the average molecular weight of the hydrocarbon liquids inside the reactor, and more preferably by recycling a portion of low-molecular weight hydrocarbon products back into the reactor. Lowering the molecular weight of the hydrocarbon liquids inside the reactor increases the mass transfer and solubility, and diffusivity of the reactants in the hydrocarbons present in the slurry.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: March 28, 2006
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Harold A. Wright, Jianping Zhang
  • Patent number: 7012103
    Abstract: A process for producing hydrocarbons comprises providing a multi-tubular reactor having at least 100 tubes units containing a catalyst, each tube being between 2 and 5 meters tall and in thermal contact with a cooling fluid; feeding hydrogen and carbon monoxide to each tube at a linear gas superficial velocity less than about 60 cm/s; and converting the gas feedstream to hydrocarbons on the catalyst, wherein the yield of hydrocarbons in each tube is greater than 100 (kg hydrocarbons)/hr/(m3 reaction zone). Each tube may have an internal diameter greater than 2 centimeters. The catalyst may be active for Fischer Tropsch synthesis and may comprise cobalt or iron. The maximum difference in the radially-averaged temperature between two points that are axially spaced along the reactor is less than 15° C., preferably less than 10° C. The catalyst loading or intrinsic activity may vary along the length of the reactor.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: March 14, 2006
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Jianping Zhang, Harold A. Wright, Todd H. Harkins
  • Patent number: 6992114
    Abstract: CO2 emissions from Fischer-Tropsch facilities are controlled by using multiple reactors. A process for the conversion of syngas using multiple Fischer-Tropsch reactors comprises reacting at least a portion of a first syngas in a first Fischer-Tropsch reactor to form a first hydrocarbonaceous product and a second syngas. The second syngas is mixed with a H2-containing stream to form an adjusted syngas. At least a portion of the adjusted syngas is reacted in a second Fischer-Tropsch reactor to form a second hydrocarbonaceous product and a third syngas. At least a portion of the first and second hydrocarbonaceous products are blended to obtain a blended hydrocarbonaceous product.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: January 31, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis J. O'Rear, Charles L. Kibby
  • Patent number: 6946493
    Abstract: The present invention provides a process for managing hydrogen in a hydrocarbon gas to liquid plant. The process includes feeding a syngas stream produced by a partial oxidation reactor to a Fischer-Tropsch reactor, thereby converting the syngas to hydrocarbon liquids. It also includes passing a substantially oxygen-free feed stream comprising hydrocarbon gas and water to a steam reformer, thereby producing a hydrogen-rich stream. The H2/CO ratio in the syngas feed stream can be adjusted to a desired value by introducing a first portion of the hydrogen-rich stream to the syngas feed stream. A second portion of the hydrogen-rich stream can be passed to one or more hydrogen users, e.g., a catalyst regeneration unit, in the GTL plant.
    Type: Grant
    Filed: March 15, 2003
    Date of Patent: September 20, 2005
    Assignee: ConocoPhillips Company
    Inventors: Sergio R. Mohedas, Stephen R. Landis, Rafael L. Espinoza, Ralph T. Goodwin, III, Barbara A. Belt
  • Patent number: 6946494
    Abstract: A process for the heterogeneous synthesis of chemical compounds such as methanol and ammonia through catalytic conversion of the respective gaseous reactants that are made to pass through a first (2) and a second (3) reaction zone connected in series with each other, in which they react in pseudoisothermal conditions, distinguishes itself in that in the first reaction zone (2) the gaseous reactants are made to flow through a fixed mass of an appropriate catalyst in which a plurality of substantially box-like, plate-shaped heat exchangers (21), arranged side-by-side and crossed by a heat exchange operating fluid, is dipped.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: September 20, 2005
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo
  • Patent number: 6921778
    Abstract: The invention relates to a process for converting a synthesis gas into liquid hydrocarbons used in at least two reactors that are arranged in series and that contain a catalytic suspension of at least one solid catalyst in suspension in a liquid phase, in which said reactors are essentially perfectly mixed, the last reactor is at least in part fed by at least a portion of at least one of the gaseous fractions that are collected at the outlet of at least one of the other reactors, at least one reactor is fed by a flow of catalytic suspension that is obtained directly from another reactor, and at least one flow of catalytic suspension that is obtained from a reactor is at least in part separated so as to obtain a liquid product that is essentially free of catalyst and a catalytic suspension that is high in catalyst, which is recycled.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: July 26, 2005
    Assignees: Institut Francais du Petrole, AGIP Petroli S.p.A., ENI S.p.A.
    Inventors: Ari Minkkinen, Reynald Bonneau, Alexandre Rojey
  • Patent number: 6914082
    Abstract: A gas-agitated multiphase reactor system for the synthesis of hydrocarbons gives high catalyst productivity and reactor capacity. The system includes operating a multi-phase reactor in the well-mixed gas flow regime, with a Peclet number less than 0.175 and a single pass conversion ranging from 35% to 75%, wherein the inlet superficial gas velocity decreases with the decreasing of the reactor aspect ratio, and is preferably at least 20 cm/sec.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: July 5, 2005
    Assignee: ConocoPhillips Company
    Inventors: Jianping Zhang, Rafael L. Espinoza, Sergio Mohedas
  • Patent number: 6897246
    Abstract: A process for reducing C2-C9 olefin formation by recycling them to a Fischer-Tropsch hydrocarbon synthesis process and promoting recycled olefins chain growth comprises contacting a gas feed comprising a mixture of H2 and CO with a catalyst in a reactor system at conditions effective to produce a hydrocarbon product stream including C2-C9 olefins, separating a C2-C9 olefins-rich stream from the hydrocarbon product stream to form a light olefin recycle stream and recycling the light olefin recycle stream to the reactor system at a point in the reactor system where the H2:CO ratio is low relative to the H2:CO ratio in the rest of the reactor system. Depending on whether the initial H2:CO ratio is greater or less than the usage ratio of the selected catalyst, the recycled olefins can be returned to the system up- or downstream of the reactor system.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: May 24, 2005
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Ajoy P. Raje, Doug S. Jack
  • Patent number: 6894081
    Abstract: Process for the catalytic production of methanol under pressure using a synthesis gas which at least contains hydrogen, carbon monoxide, carbon dioxide and also undesired impurities, with at least one stage being equipped with a reactor, in which an absorption stage is connected upstream of each catalytic reaction system for the production of methanol, which contains catalyst material suitable as absorbent for the synthesis of methanol, the absorption stage being operated at a temperature which is below the temperature required for the catalytic conversion to methanol.
    Type: Grant
    Filed: October 19, 2002
    Date of Patent: May 17, 2005
    Assignee: Uhde GmbH
    Inventor: Hans-Joachim Bahnisch
  • Patent number: 6800664
    Abstract: A gas-agitated multiphase reactor system with multiple reaction zones comprising gas-liquid or gas-liquid-solid mixtures that can maximize the production rate while allowing better control of the temperature distribution and better control of the liquid and solid phases in the reactors. Still more particularly, this invention relates to a method for operating a pair of linked gas-agitated slurry reaction zones such that the hydrodynamic behavior and reactor performance of such reactor system are improved compared to that of a conventional slurry bed reactor.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: October 5, 2004
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Jianping Zhang, Sergio R. Mohedas, James D. Ortego, Jr.
  • Patent number: 6794418
    Abstract: A method for increasing production in an existing processing plant for converting natural gas into a product, wherein the natural gas is first converted into a synthesis gas in a synthesis gas section, the synthesis gas is reacted in a reactor for synthesis of the product, where non-converted synthesis gas and product are separated into two streams, where a product-rich stream is taken out of the process, while a product-poor stream is recycled as feed to the reactor together with make-up synthesis gas, and where a portion of the recycle stream is taken out of the recycle loop as a purge gas, where the purge gas is separated into hydrogen-rich and hydrogen-poor streams, where hydrogen-rich streams are introduced into steps in the process where it is desirable to have a supplement of hydrogen, and where the residual thermal value of the hydrogen-poor stream is optionally used for heating before it is discharged. A modified processing plant for carrying out the method is also described.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: September 21, 2004
    Assignee: Statoil ASA
    Inventors: Jostein Sogge, Linda Bahr, Bjørn Jarle Veland, Ola Olsvik
  • Patent number: 6787576
    Abstract: Linear alpha olefins having from four to twenty carbon atoms and low amounts of oxygenates are synthesized, by producing a synthesis gas containing H2 and CO from natural gas and passing it over a non-shifting cobalt catalyst at reaction conditions of temperature, % CO conversion, and gas feed H2:CO mole ratio land water vapor pressure, effective for the mathematical expression 200−0.6T+0.03PH2O−0.6XCO−8(H2:CO) to have a numerical value greater than or equal to 50. This process can be integrated into a conventional Fischer-Tropsch hydrocarbon synthesis process producing fuels and lubricant oils.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: September 7, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Rocco Anthony Fiato, Frank Hershkowitz, David Chester Long
  • Patent number: 6774148
    Abstract: The present invention relates to a process for the production of a blended syngas feed with a variable H2/CO ratio for use in a syngas conversion reactor. In this process a H2/CO ratio of from approximately 1.0 to 3.0 for the blended syngas feed is selected. A first syngas is formed with a H2/CO ratio of at least 2.0 by reacting methane with an oxygen source. A second syngas is formed with a H2/CO ratio of no more than 1.5 by reacting LPG with CO2. The first syngas and the second syngas are blended to form a blended syngas feed with the selected H2/CO ratio, and this blended syngas feed may be used in the syngas conversion reactor.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: August 10, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventor: Dennis J. O'Rear
  • Patent number: 6756411
    Abstract: A process for producing oxygenated products from an olefin-rich feedstock comprise reacting, in a hydroformylation stage, a Fischer-Tropsch derived olefinic product comprising linear and methyl branched olefins, with carbon monoxide and hydrogen in the presence of a catalytically effective quantity of a hydroforhylation catalyst and under hydroformylation reaction conditions, to produce oxygenated products comprising linear and methyl branched aldehydes and/or alcohols. The Fischer-Tropsch derived olefinic product is that obtained by subjecting a synthesis gas comprising carbon monoxide (CO) and hydrogen (H2) to Fischer-Tropsch reaction conditions in the presence of a Fischer-Tropsch catalyst.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: June 29, 2004
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Mark Justin Betts, Mark Eberhard Dry, Arie Geertsema, Gerhardus Johannes Hendricus Rall
  • Patent number: 6720358
    Abstract: The present invention relates to a method and system for water removal and optionally liquid product separation in slurry reactors operating at Fischer-Tropsch conditions. More particularly, the present invention includes a water stripping system that allows the reaction water to the stripped in an external vessel, with a relatively high rate of catalyst and wax circulation. In a preferred embodiment of the present invention, a method for removing water from a slurry reactor containing a water-rich slurry includes removing a portion of water-rich slurry from the slurry reactor, stripping water from the water-rich slurry using a dry gas to form a water-reduced slurry and a water-rich gas stream, and returning the water-reduced slurry back to the reactor.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: April 13, 2004
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Sergio Mohedas, Vincent Melquist
  • Patent number: 6703429
    Abstract: The present invention discloses a process for converting synthesis gas into hydrocarbonaceous products including the steps of: (a) subjecting a first portion of synthesis gas to a dual functional syngas conversion process to form a first effluent comprising a first hydrocarbonaceous product including aromatics and iso-paraffins; (b) subjecting a second portion of synthesis gas to a Fischer-Tropsch synthesis process to form a second effluent comprising a second hydrocarbonaceous product including linear paraffins and linear olefins; and (c) alkylating the linear olefins with the iso-paraffins to produce high octane gasoline range alkylate.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: March 9, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis J. O'Rear, Charles L. Kibby
  • Patent number: 6686398
    Abstract: By a method for the methanol synthesis from hydrogen, carbon monoxide and carbon dioxide under pressure, comprising at least one methanol reactor filled with catalyst, whereby in the presence of a plurality of stages, at least one stage is equipped with a compressor, and with a system for carrying out the method, the aim is to overcome the specified drawbacks, and in particular to make it possible to save heat exchanger surface area and/or to increase the yield, while particularly taking into account the changing activity of the catalyst. This is achieved according to the method in that in at least one synthesis stage, the gas mixture intended for us in a methanol reactor filled with catalyst is heated in an additional trimmer heater immediately before it added to said methanol reactor, whereby a corresponding system is characterized in that in at least one synthesis stage, provision is made for a trimmer heater (5) for heating the gas mixture directly impinging upon the methanol reactor (10).
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: February 3, 2004
    Assignee: Uhde GmbH
    Inventor: Hans-Joachim Bähnisch
  • Patent number: 6667348
    Abstract: A gas distribution grid for a slurry reactor includes a plurality of gas injectors horizontally arrayed across, and extending through, an otherwise gas and liquid impervious plate. The injectors have a throat open at both ends, with a gas pressure reducing bore at one end which is the entrance end and with the other end opening into an upward opening cone. Flow diverting means in the injectors prevents slurry solids from entering the throat and being attrited by the high velocity gas jet exiting the bore into the throat. It is preferred that the gas injectors not protrude above the top surface of the grid and flat space is eliminated by means such as angular fillers, to prevent solids accumulation top of the grid. A chamfer may be present at the junction of the bore and throat to prevent unrestricted expansion of the gas jet entering the throat. This is useful for injecting gas into a reactive hydrocarbon synthesis slurry in a slurry reactor, with reduced catalyst attrition and deactivation.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: December 23, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Min Chang, Constantine Anastasios Coulaloglou, Edward Ching-Sheng Hsu
  • Patent number: 6642281
    Abstract: There is provided an improved system and process for the catalytic hydrogenation of carbon monoxide to form a mixture of hydrocarbons utilizing a plurality of reactors in series. Synthesis gas entering the system under pressure is partially converted in at least one initial stage reactor and the effluent therefrom introduced into a final stage reactor. In the at least one initial stage reactor, a portion of the catalyst is continuously or periodically removed with some hydrocarbons and treated to renew, or renew and enhance it, and returned. The treatment comprises reducing the hydrocarbon context of the withdrawn mixture, heating to a temperature above at least one of the metals in the catalyst thereby forming a melt, removing any slag forming on the melt, cooling the melt and reducing the particle size of the resulting solid to a fine powder of renewed catalyst.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: November 4, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: David Chester Long, Michel A. Daage, Russell John Koveal
  • Patent number: 6627666
    Abstract: A process is described in which the waste gas from the production of acetylene is employed in the Fischer-Tropsch synthesis of hydrocarbon liquids. The process consists of the steps of collecting the waste gas, compressing it to the proper pressure, passing the compressed gas into a reactor containing a Fischer-Tropsch catalyst under the proper conditions of temperature, pressure, and space velocity, and collecting the liquid products thereby formed from the waste gas stream.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: September 30, 2003
    Assignee: Rentech Inc.
    Inventor: Peter S. Pedersen
  • Patent number: 6608113
    Abstract: A process and a device are for the methanol synthesis from hydrogen, carbon monoxide and carbon dioxide under pressure, in particular for increasing the yield of processes already in use. Desulphurized natural gas is charged in a reformer and the synthesis gas is subsequently admitted to a methanol synthesis. There are the advantages that a favorable possibility for refitting existing plants is provided, and synthesis gas from external sources can be used. This is accomplished in the process in that after passing through the reformer, a side stream from the synthesis gas stream is supplied to a methanol pre-reactor. The methanol produced in the pre-reactor is supplied to the methanol stream exiting from the methanol synthesis of the main stream. A stream of synthesis gas non-reacted in the methanol pre-reactor is recycled into the main stream upstream of the methanol synthesis.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: August 19, 2003
    Assignee: Krupp Uhde GmbH
    Inventor: Hans-Joachim Bähnisch
  • Patent number: 6593377
    Abstract: A mixture of natural gas and air is converted to a C5-C19 diesel fuel-grade liquid hydrocarbon. The natural gas and air mixture is supplied to the input of a catalytic partial oxidation reactor. The carbon-containing gas output of the catalytic partial oxidation reactor is connected as an input to a first Fischer-Tropsch reactor, to thereby form a first diesel fuel grade C5-C19 liquid hydrocarbon output. A carbon-containing gas output of the first Fischer-Tropsch reactor is connected to the input of a second Fischer-Tropsch reactor, to thereby form a second diesel fuel grade C5-C19 liquid hydrocarbon output. The catalytic partial oxidation reactor contains a platinum group catalyst, a promoted platinum group catalyst, a rhodium catalyst, or a platinum promoted rhodium catalyst. Each of the Fischer-Tropsch reactors contain a catalyst that is made up of from about 3 to about 60 parts-by-weight cobalt and from about 0.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: July 15, 2003
    Assignee: Blue Star Sustainable Technologies Corporation
    Inventors: Steven Thomas Harford, Alessandro Giorgio Borsa, Nicholas Ernest Vanderborgh
  • Patent number: 6562306
    Abstract: An apparatus for producing dimethyl ether comprising: a slurry-bed reactor filled with a dimethyl ether synthesis catalyst and a medium oil therefor; a condenser for condensing a gasified medium oil discharged from the reactor; an adsorber for removing a catalyst-deactivation ingredient from the medium oil condensed in the condenser; and recycle means for recycling the medium oil to the slurry-bed reactor.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: May 13, 2003
    Assignee: NKK Corporation
    Inventors: Tsutomu Shikada, Takashi Ogawa, Masatsugu Mizuguchi, Masami Ono
  • Publication number: 20030045591
    Abstract: The present invention discloses a process for converting synthesis gas into hydrocarbonaceous products including the steps of: (a) subjecting a first portion of synthesis gas to a dual functional syngas conversion process to form a first effluent comprising a first hydrocarbonaceous product including aromatics and iso-paraffins; (b) subjecting a second portion of synthesis gas to a Fischer-Tropsch synthesis process to form a second effluent comprising a second hydrocarbonaceous product including linear paraffins and linear olefins; and (c) alkylating the linear olefins with the iso-paraffins to produce high octane gasoline range alkylate.
    Type: Application
    Filed: August 23, 2001
    Publication date: March 6, 2003
    Inventor: Dennis J. O'Rear
  • Publication number: 20020198267
    Abstract: A reactor system, plant and a process for the production of methanol from synthesis gas is described in which the reactor system comprises:
    Type: Application
    Filed: May 30, 2002
    Publication date: December 26, 2002
    Inventor: Philip Henry Donald Eastland
  • Patent number: 6495610
    Abstract: Methanol and higher hydrocarbons are produced by synthesising the hydrocarbons from a synthesis gas containing hydrogen, carbon monoxide and carbon dioxide by the Fischer-Tropsch reaction, separating the higher hydrocarbons, and synthesising methanol from the residual gas. Preferably hydrogen is separated from the synthesis gas prior to the Fischer-Tropsch reaction and at least part of the separated hydrogen is added to the residual gas prior to methanol synthesis.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: December 17, 2002
    Assignee: Imperial Chemical Industries PLC
    Inventor: Frank Clifford Brown
  • Patent number: 6486219
    Abstract: An improved method for the production of methanol and hydrocarbons from a methane-containing gas, such as natural gas. The improved method integrates a hydrocarbon synthesis unit with a methanol synthesis unit. The invention combines a syngas stream from a steam reformer, a syngas stream from an oxidation reformer and additional carbon dioxide to form an optimal syngas composition that is directed to a methanol synthesis reactor. The invention also integrates other process parameters and process components of a methanol and hydrocarbon synthesis process plant to effectively convert most of the carbon in the natural gas to commercial-value products. The invention is also directed to a method of making olefin from the methanol produced by the process of the invention.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: November 26, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Gary F. Janda, Keith H. Kuechler
  • Patent number: 6486217
    Abstract: A gas distribution grid for a slurry reactor includes a plurality of gas injectors horizontally arrayed across, and extending through, an otherwise gas and liquid impervious plate. The injectors have a throat open at both ends, with a gas pressure reducing bore at one end which is the entrance end and with the other end opening into an upward opening cone. Flow diverting means in the injectors prevents slurry solids from entering the throat and being attrited by the high velocity gas jet exiting the bore into the throat. It is preferred that the gas injectors not protrude above the top surface of the grid and flat space is eliminated by means such as angular fillers, to prevent solids accumulation top of the grid. A chamber may be present at the junction of the bore and throat to prevent unrestricted expansion of the gas jet entering the throat. This is useful for injecting gas into a reactive hydrocarbon synthesis slurry in a slurry reactor, with reduced catalyst attrition and deactivation.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: November 26, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Min Chang, Constantine Anastasios Coulaloglou, Edward Ching-Sheng Hsu
  • Patent number: 6479557
    Abstract: A process for the preparation of at least two organic products from a synthesis gas by (i) converting a first synthesis gas feed to a first organic product and a first by-product; (ii) converting a second synthesis gas feed to a second organic product and a second by-product; (iii) separating the first and/or second by-product from, respectively, the first and/or second organic product, and (iv) mixing the separated first and/or second by-product with, respectively, the second and/or first organic product. Preferably, the first organic product is paraffinic hydrocarbons or oxygenates and the second organic product is olefinic hydrocarbons or oxygenates.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: November 12, 2002
    Assignee: Shell Oil Company
    Inventors: Jean-Paul Lange, Ian Ernest Maxwell, Bob Scheffer
  • Patent number: RE40419
    Abstract: A process and apparatus for producing a synthesis gas for use as a gaseous fuel or as feed into a Fischer-Tropsch reactor to produce a liquid fuel in a substantially self-sustaining process. A slurry of particles of carbonaceous material in water, and hydrogen from an internal source, are fed into a hydro-gasification reactor under conditions whereby methane rich producer gases are generated and fed into a steam pyrolytic reformer under conditions whereby synthesis gas comprising hydrogen and carbon monoxide are generated. A portion of the hydrogen generated by the steam pyrolytic reformer is fed through a hydrogen purification filter into the hydro-gasification reactor, the hydrogen therefrom constituting the hydrogen from an internal source. The remaining synthesis gas generated by the steam pyrolytic reformer is either used as fuel for a gaseous fueled engine to produce electricity and/or process heat or is fed into a Fischer-Tropsch or similar reactor under conditions whereby a liquid fuel is produced.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: July 1, 2008
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Colin E. Hackett