Rhodium Containing Catalyst Patents (Class 518/716)
  • Patent number: 10882800
    Abstract: Aspects of the invention relate to improvements in the flexibility with which oxygen and hydrogen, for example from electrolysis, may be supplied to processes having both gasification and methanation steps, as well as improvements in how such processes may be operated in response to variations in carbonaceous feeds. Offsets, between the ideal quantity of hydrogen and the quantity available from a given source may be compensated for by adjusting one or more operations of the process, and in particular such operation(s) that ultimately impact the quantity of CO and/or CO2 available downstream of the gasifier for conversion to methane in an RNG product stream.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: January 5, 2021
    Assignee: Gas Technology Institute
    Inventors: Andrew Kramer, James Seaba, David Lamont
  • Patent number: 10495686
    Abstract: In one embodiment, an integrated circuit is disclosed. The integrated includes a general purpose processor, an interface circuit, and a calibration adapter circuit. The general purpose processor circuit generates calibration test inputs based on user instruction. The analog interface circuit may include a calibration bus circuit. The calibration bus circuit may receive the calibration test input from the general purpose processor circuit. The calibration adapter circuit is coupled to the calibration bus circuit and the general purpose processor circuit and transmits the calibration test inputs to the calibration bus circuit.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: December 3, 2019
    Assignee: Altera Corporation
    Inventors: Wai Tat Wong, Edwin Yew Fatt Kok, Wilfred Wee Kee King, Tee Wee Tan
  • Patent number: 10065178
    Abstract: A method for preparing a silica-modified catalyst support is described including: (i) applying an alkyl silicate to the surface of a porous support material in an amount to produce a silica content of the silica-modified catalyst support, expressed as Si, in the range 0.25 to 15% by weight, (ii) optionally drying the resulting silicate-modified support, (iii) treating the support with water, (iv) drying the resulting water-treated support, and (v) calcining the dried material to form the silica-modified catalyst support.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: September 4, 2018
    Assignee: Johnson Matthey PLC
    Inventors: Alejandro Martin Antonini, Richard John Mercer, Adel Fay Neale
  • Patent number: 10002720
    Abstract: Methods of making metal oxide-graphene composites are disclosed. The methods can include, for example, providing a composition including graphene oxide and at least one substrate, the composition being dispersed in a liquid medium. The methods can also include, for example, providing a composition including graphene oxide and at least one substrate, heating the composition, and cooling the composition. Compositions useful for performing the methods and composites obtained by the process are also disclosed.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: June 19, 2018
    Assignee: EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Chongjun Zhao, Xiangmao Dong, Shudi Min, Zhuomin Zhang, Kun Wang, Jianbo Dong, Xiuzhen Qian, Xin Chen
  • Patent number: 9815046
    Abstract: The present invention relates to a method for producing the activated catalyst for Fischer-Tropsch synthesis comprising: a first step of reducing a catalyst for Fischer-Tropsch synthesis; a second step of preparing liquid hydrocarbon in which a part or all of molecular oxygen is eliminated; and a third step of introducing the reduced catalyst prepared in the first step into the liquid hydrocarbon prepared in the second step while blocking its contact with air. Since the reduced catalyst used for Fischer-Tropsch synthesis is introduced into liquid hydrocarbon from which molecular oxygen is removed or coated by liquid hydrocarbon, the catalyst for Fischer-Tropsch synthesis activated based on the present invention maintains a high activity even if exposed to the air for a long time, thereby easily facilitating the long-term storage and long-distance transfer of the reduced catalyst.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: November 14, 2017
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kyoung Su Ha, Geun Jae Kwak, Min Hee Woo, Yun Jo Lee, Ki Won Jun
  • Patent number: 9573121
    Abstract: Compositions and methods for preparing a catalyst composition containing mesoporous materials are described herein. In particular, various embodiments described herein relate to the preparation of catalytic compositions containing a mesoporous zeolite and one or more catalytic nanoparticles dispersed therein. In various embodiments described herein, such catalyst compositions can be used in various catalytic conversion processes, such as hydrocracking.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: February 21, 2017
    Assignee: Rive Technology, Inc.
    Inventor: Javier Garcia-Martinez
  • Patent number: 9463443
    Abstract: A method for preparing a silica-modified catalyst support is described including: (I) applying an alkyl silicate to the surface of a porous support material in an amount to produce a silica content of the silica-modified catalyst support, expressed as Si, in the range 0.25 to 15% by weight, (ii) optionally drying the resulting silicate-modified support, (iii) treating the support with water, (iv) drying the resulting water-treated support, and (v) calcining the dried material to form the silica-modified catalyst support.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: October 11, 2016
    Assignee: Johnson Matthey PLC
    Inventors: Alejandro Martin Antonini, Richard John Mercer, Adel Fay Neale
  • Patent number: 9290826
    Abstract: A process to upgrade heavy oil and convert the heavy oil into lower boiling hydrocarbon products is provided. The process employs a catalyst slurry comprising catalyst particles with an average particle size ranging from 1 to 20 microns. In the upgrade process, spent slurry catalyst in heavy oil is generated as an effluent stream, which is subsequently recovered/separated from the heavy oil via membrane filtration. In one embodiment, dynamic filtration is used for the separation of the heavy oil from the catalyst particles. Valuable metals can be recovered from catalyst particles for subsequent re-use in a catalyst synthesis unit, generating a fresh slurry catalyst.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: March 22, 2016
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Andre R. Da Costa, Christopher Alan Powers, Bruce Reynolds, Oluwaseyi Abiodun Odueyungbo
  • Patent number: 9272267
    Abstract: The present invention relates to a catalyst for oxygenate synthesis for synthesizing an oxygenate from a mixed gas containing hydrogen and carbon monoxide, the catalyst for oxygenate synthesis containing: a component (A): rhodium, a component (B): manganese, a component (C): an alkali metal, and a component (D): a component (D1), component (D2) or component (D3), wherein the component (D1) is one or more substances selected from the group consisting of titanium, vanadium and chromium, the component (D2) is an element belonging to group 13 of the periodic table, and the component (D3) is one or more substances selected from the group consisting of magnesium and lanthanoids. According to the present invention, an oxygenate can be synthesized efficiently from a mixed gas containing hydrogen and carbon monoxide.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 1, 2016
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventor: Toshihito Miyama
  • Patent number: 9136118
    Abstract: An iridium-doped carbon nanotube has an atomic ratio of iridium to carbon on a surface thereof ranging from 1×10?4 to 3.5×10?4 as measured by X-ray photoelectron spectroscopy. A working electrode including the aforesaid iridium-doped carbon nanotube and a sensor including the working electrode are also disclosed in the present invention.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: September 15, 2015
    Assignee: I Shou University
    Inventors: Shih-Han Wang, Ming-Tsai Liang, Ping-Chao Huang, Chien-Ching Yu, Kuan-Jung Chen
  • Patent number: 9073025
    Abstract: A catalyst loading system comprising: a vessel comprising at least one gas distribution nozzle at or near the bottom of the vessel, a top fluid distributor located at or near the top of the vessel, a catalyst inlet through which catalyst is introduced into the vessel, a first contact point at which catalyst introduced into the vessel first contacts the contents of the vessel, and a discharge outlet whereby catalyst exits the vessel. Methods of preparing catalyst slurry for introduction into a downstream reactor or in-situ activation within the vessel utilizing the catalyst loading system are also disclosed.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: July 7, 2015
    Assignee: RES USA, LLC
    Inventors: Mark Anselmo, Derek Bridgford, Nick Cozzi, Sergio Mohedas, Matt Greer, Paul Morton
  • Patent number: 9023899
    Abstract: Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt deposited on hybrid supports. The hybrid supports contain an acidic zeolite component and a silica-containing material. It has been found that the use of the hybrid Fischer-Tropsch catalysts in synthesis gas conversion reactions results in high C5+ productivity, high CO conversion rates and low olefin formation.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 5, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kandaswamy Jothimurugesan, Robert James Saxton
  • Publication number: 20150018438
    Abstract: The present invention relates to: a catalyst activation method for Fischer-Tropsch synthesis; a catalyst regeneration method for Fischer-Tropsch synthesis; and a method for producing a liquid or solid hydrocarbon by using the Fischer-Tropsch synthesis reaction. The temperatures required for a metal carbide producing and activating reaction is markedly lower than existing catalyst activation temperatures, and the catalyst can be activated under conditions that are the same as Fischer-Tropsch synthesis reaction conditions, and thus there is no need for separate reduction equipment in the reactor, and a Fischer-Tropsch synthesis catalyst which has been used for a long time can be regenerated within the reactor without the catalyst being isolated or extracted from the reactor.
    Type: Application
    Filed: March 7, 2013
    Publication date: January 15, 2015
    Inventors: Kyoung Su Ha, Geun Jae Kwak, Jae Hoon Jung, Joo Young Cheon, Min Hee Woo, Yun Jo Lee, Ki Won Jun
  • Publication number: 20140296357
    Abstract: Provided are a support for supporting a metal, a metal-supported catalyst, a methanation reaction apparatus, and a method relating thereto that realize effective methanation of carbon monoxide. The support for supporting a metal includes a carbonized material obtained by carbonizing raw materials containing an organic substance and a metal, in which the support is used for supporting a metal that exhibits a catalytic activity for a methanation reaction of carbon monoxide. The metal-supported catalyst includes: a support formed of a carbonized material obtained by carbonizing raw materials containing an organic substance and a metal; and a metal that exhibits a catalytic activity for a methanation reaction of carbon monoxide, the metal being supported on the support.
    Type: Application
    Filed: November 1, 2012
    Publication date: October 2, 2014
    Applicant: National University Corporation gunma University
    Inventors: Jun-ichi Ozaki, Hiroki Takahashi, Takuya Takahashi, Naokatsu Kannari, Rieko Kobayashi, Naoto Saito
  • Publication number: 20140250770
    Abstract: A unique process and catalyst is described that operates efficiently for the direct production of a high cetane diesel type fuel or diesel type blending stock from stoichiometric mixtures of hydrogen and carbon monoxide. This invention allows for, but is not limited to, the economical and efficient production high quality diesel type fuels from small or distributed fuel production plants that have an annual production capacity of less than 10,000 barrels of product per day, by eliminating traditional wax upgrading processes. This catalytic process is ideal for distributed diesel fuel production plants such as gas to liquids production and other applications that require optimized economics based on supporting distributed feedstock resources.
    Type: Application
    Filed: February 27, 2014
    Publication date: September 11, 2014
    Applicant: Greyrock Energy, Inc.
    Inventors: Robert Schuetzle, Dennis Schuetzle
  • Publication number: 20140194542
    Abstract: Catalytic process for the partial conversion of a gaseous mixture containing carbon monoxide and hydrogen into a mixture of hydrocarbons, including bringing the said gaseous mixture into contact with a solid catalyst, the solid catalyst having a porous support with a composite material including SiC and a titanium carbide and/or a titanium oxide, and an active phase. The support is prepared in the form of grains, beads, or extrudates, or in the form of cylinders or sheets of cellular foam.
    Type: Application
    Filed: May 31, 2012
    Publication date: July 10, 2014
    Inventors: Francis Luck, Charlotte Pham, Patrick Nguyen, Cuong Pham-Huu, Benoit De Tymowski
  • Publication number: 20140187654
    Abstract: The present invention relates to a catalyst for oxygenate synthesis for synthesizing an oxygenate from a mixed gas containing hydrogen and carbon monoxide, the catalyst for oxygenate synthesis containing: a component (A): rhodium, a component (B): manganese, a component (C): an alkali metal, and a component (D): a component (D1), component (D2) or component (D3), wherein the component (D1) is one or more substances selected from the group consisting of titanium, vanadium and chromium, the component (D2) is an element belonging to group 13 of the periodic table, and the component (D3) is one or more substances selected from the group consisting of magnesium and lanthanoids. According to the present invention, an oxygenate can be synthesized efficiently from a mixed gas containing hydrogen and carbon monoxide.
    Type: Application
    Filed: August 22, 2012
    Publication date: July 3, 2014
    Applicant: SEKISUI CHEMICAL CO., LTD.
    Inventor: Toshihito Miyama
  • Patent number: 8614258
    Abstract: Use a transition metal-containing, Keggin-type heteropoly compound as a catalyst to convert synthesis gas to an alcohol, especially a C1-C6 alcohol.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: December 24, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Palanichamy Manikandan, Sreenivasa Rao, David G. Barton
  • Patent number: 8598239
    Abstract: Use a transition metal-containing, Anderson-type heteropoly compound catalyst to convert synthesis gas to an oxygenate, especially an alcohol that contains from one carbon atom to six carbon atoms.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: December 3, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Palanichamy Manikandan, David G. Barton, Dean M. Millar
  • Publication number: 20130281554
    Abstract: This invention relates to a catalyst for oxygenate synthesis to use for synthesizing an oxygenate from mixed gas containing hydrogen and carbon monoxide, the catalyst comprising, an (A) component: rhodium, a (B) component: manganese, a (C) component: an alkali metal, and a (Z) component: magnesium oxide.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 24, 2013
    Inventors: SEKISUI CHEMICAL CO., LTD., COLORADO SCHOOL OF MINES
  • Patent number: 8506910
    Abstract: A process and system for producing high octane fuel from carbon dioxide and water is disclosed. The feedstock for the production line is industrial carbon dioxide and water, which may be of lower quality. The end product can be high octane gasoline, high cetane diesel or other liquid hydrocarbon mixtures suitable for driving conventional combustion engines or hydrocarbons suitable for further industrial processing or commercial use. Products, such as dimethyl ether or methanol may also be withdrawn from the production line. The process is nearly emission free and reprocesses all hydrocarbons not suitable for liquid fuel to form high octane products. The heat generated by exothermic reactions in the process is fully utilized as is the heat produced in the reprocessing of hydrocarbons not suitable for liquid fuel.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 13, 2013
    Assignee: CRI EHF
    Inventors: Shwetank Singh, Omar Freyr Sigurbjornsson, Kim-Chinh Tran
  • Patent number: 8461220
    Abstract: A method is provided for converting synthesis gas to liquid hydrocarbon mixtures useful as distillate fuel and/or lube base oil containing no greater than about 25 wt % olefins and containing no greater than about 5 wt % C21+ normal paraffins. The synthesis gas is contacted with a synthesis gas conversion catalyst comprising a Fischer-Tropsch synthesis component and an acidic component in an upstream catalyst bed thereby producing a wax-free liquid containing a paraffin component and an olefin component. The olefin component is saturated by contacting the liquid with an olefin saturation catalyst in a downstream catalyst bed.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: June 11, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Robert J. Saxton, Kandaswamy Jothimurugesan, Tapan K. Das
  • Publication number: 20130045865
    Abstract: A catalyst composition contains an active metal on a support including a high surface area substrate and an interstitial compound, for example molybdenum carbide. Pt—Mo2C/Al2O3 catalysts are described. The catalyst systems and compositions are useful for carrying out reactions generally related to the water gas shift reaction (WGS) and to the Fischer-Tropsch Synthesis (FTS) process.
    Type: Application
    Filed: January 31, 2012
    Publication date: February 21, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Levi T. Thompson, Neil Schweitzer, Joshua Schaidle
  • Publication number: 20120122674
    Abstract: The present invention relates to petrochemistry and gas chemistry, and discloses a support for catalysis of exothermic processes, particularly the Fischer-Tropsch process, methanol synthesis, hydrogenation and purification of exhaust gases. The support comprises metallic aluminium in the form of a mixture of dispersed powders of flaky and spherical aluminium and the support is in the form of pellets, preferably cylinders, tablets, balls, obtained by extrusion, pelletization, tabletting, rounding or liquid molding. The catalyst prepared on the support comprises an active metal selected from the group consisting of Co, Fe, Ni, Ru, Rh, Pt, Pd, Cu and mixtures thereof.
    Type: Application
    Filed: August 3, 2010
    Publication date: May 17, 2012
    Applicant: INFRA TECHNOLOGIES LTD.
    Inventors: Vladimir Zalmanovich Mordkovich, Lilia Vadimovna Sineva, Igor Grigorievich Solomonik, Vadim Sergeevich Ermolaev, Eduard Borisovich Mitberg
  • Publication number: 20110306685
    Abstract: A method is provided for converting synthesis gas to liquid hydrocarbon mixtures useful as distillate fuel and/or lube base oil containing no greater than about 25 wt % olefins and containing no greater than about 5 wt % C21+ normal paraffins. The synthesis gas is contacted with a synthesis gas conversion catalyst comprising a Fischer-Tropsch synthesis component and an acidic component in an upstream catalyst bed thereby producing a wax-free liquid containing a paraffin component and an olefin component. The olefin component is saturated by contacting the liquid with an olefin saturation catalyst in a downstream catalyst bed.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Inventors: Charles L. Kibby, Robert J. Saxton, Kandaswamy Jothimurugesan, Tapan K. Das
  • Patent number: 8063110
    Abstract: Process for the conversion of carbon oxide(s) and hydrogen-containing feedstocks to oxygen containing hydrocarbon compounds in the presence of a particulate rhodium-based catalyst, by reacting carbon oxide(s) and hydrogen in the presence of a particulate rhodium-based catalyst in a conversion reactor to form oxygen containing hydrocarbon compounds. At least one paraffinic aliphatic monohydric alcohol of the formula R-OH where R is a hydrocarbon radical having 1 or 3 to 5 carbon atoms is/are separated from the other oxygenates produced in the conversion reactor, and is/are then sent back to the conversion reactor.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: November 22, 2011
    Assignee: BP Chemicals Limited
    Inventor: Martin Philip Atkins
  • Patent number: 7973087
    Abstract: A process is disclosed for converting a feed comprising synthesis gas to liquid hydrocarbons within a single reactor at essentially common reaction conditions. The synthesis gas contacts a catalyst bed comprising a mixture of a synthesis gas conversion catalyst on a support containing an acidic component and a dual functionality catalyst including a hydrogenation component and a solid acid component. The hydrocarbons produced are liquid at about 0° C., contain at least 25% by volume C10+ and are substantially free of solid wax.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: July 5, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Kandaswamy Jothimurugesan, Tapan K. Das, Robert J. Saxton, Allen W. Burton, Jr.
  • Publication number: 20110118368
    Abstract: A process is disclosed for converting a feed comprising synthesis gas to liquid hydrocarbons within a single reactor at essentially common reaction conditions. The synthesis gas contacts a catalyst bed comprising a mixture of a synthesis gas conversion catalyst on a support containing an acidic component and a dual functionality catalyst including a hydrogenation component and a solid acid component. The hydrocarbons produced are liquid at about 0° C., contain at least 25% by volume C10+ and are substantially free of solid wax.
    Type: Application
    Filed: October 12, 2010
    Publication date: May 19, 2011
    Inventors: Charles L. Kibby, Kandaswamy Jothimurugesan, Tapan K. Das, Robert J. Saxton, Allen W. Burton
  • Patent number: 7939571
    Abstract: Process for the conversion of carbon oxide(s) and hydrogen-containing feedstocks to C2-oxygenates in the presence of a particulate catalyst, by reacting carbon oxide(s) and hydrogen in the presence of a particulate rhodium-based catalyst in a conversion reactor to form C2-oxygenates. A saturated monocarboxylic acid having from 1 to 3 carbon atoms and/or an ester of a saturated monocarboxylic acid having from 1 to 3 carbon atoms with a monohydiic aliphatic paraffinic alcohol having from 1 to 4 carbon atoms are separated from the ethanol and acetaldehyde produced in the conversion reactor and is/are sent back to the conversion reactor.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: May 10, 2011
    Assignee: BP Chemicals Limited
    Inventor: Martin Philip Atkins
  • Patent number: 7858667
    Abstract: Methods for producing alcohols from CO or CO2 and H2 utilizing a palladium-zinc on alumina catalyst are described. Methods of synthesizing alcohols over various catalysts in microchannels are also described. Ethanol, higher alcohols, and other C2+ oxygenates can produced utilizing Rh—Mn or a Fisher-Tropsch catalyst.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: December 28, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Jianli Hu, Robert A. Dagle, Jamelyn D. Holladay, Chunshe Cao, Yong Wang, James F. White, Douglas C. Elliott, Don J. Stevens
  • Patent number: 7829602
    Abstract: The disclosed invention relates to a process and apparatus for converting natural gas to higher molecular weight hydrocarbons. The process includes steam reforming to form synthesis gas followed by a Fischer-Tropsch reaction to convert the synthesis gas to the high molecular weight hydrocarbons. The reforming and Fischer-Tropsch reactions are conducted in microchannel reactors. The higher molecular weight hydrocarbons may be further treated to form hydrocarbon products such as middle distillate fuels, lubricating oils, and the like. The apparatus includes vessels containing SMR microchannel reactors and Fischer-Tropsch microchannel reactors. A composition comprising a mixture of olefins and paraffins is disclosed.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: November 9, 2010
    Assignee: Velocys, Inc.
    Inventors: Robert Dwayne Litt, Wayne W. Simmons
  • Patent number: 7825164
    Abstract: A process is disclosed for converting a feed comprising synthesis gas to liquid hydrocarbons within a single reactor at essentially common reaction conditions. The synthesis gas contacts a catalyst bed comprising a mixture of a synthesis gas conversion catalyst on a support containing an acidic component and a dual functionality catalyst including a hydrogenation component and a solid acid component. The hydrocarbons produced are liquid at about 0° C., contain at least 25% by volume C10+ and are substantially free of solid wax.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: November 2, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Kandaswamy Jothimurugesan, Tapan K. Das, Robert J. Saxton, Allen W. Burton
  • Publication number: 20100234477
    Abstract: A catalyst and process is described for the conversion of hydrogen and one or more oxides of carbon in which the catalyst comprises an elemental carbon-containing support. Also described is a process for reducing agglomeration in carbon nanotubes, in which carbon nanotubes are suspended in a liquid and simultaneously treated by ultrasound and agitation. The method can be used to prepare carbon nanotube-supported catalysts that show high activity towards the conversion of feedstocks comprising hydrogen and one or more oxides of carbon.
    Type: Application
    Filed: February 16, 2006
    Publication date: September 16, 2010
    Applicant: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian China BP P.L.C.
    Inventors: Xinhe Bao, Wei Chen, Xiulian Pan, Zhongli Fan, Yunjie Ding, Hongyuan Luo
  • Publication number: 20100179234
    Abstract: The present invention discloses a transition metal nano-catalyst, a method for preparing the same, and a process for Fischer-Tropsch synthesis using the catalyst. The transition metal nano-catalyst comprises transition metal nanoparticles and polymer stabilizers, and the transition metal nanoparticles are dispersed in liquid media to form stable colloids. The transition metal nano-catalyst can be prepared by mixing and dispersing transition metal salts and polymer stabilizers in liquid media, and then reducing the transition metal salts with hydrogen at 100-200° C. The nano-catalyst can be used for F-T synthesis reaction. The process for F-T synthesis using the nano-catalyst comprises contacting a reactant gas mixture comprising carbon monoxide and hydrogen with the catalyst and reacting. The catalyst can rotate freely in three-dimensional space under reaction conditions, and have excellent catalystic activity at a low temperature of 100-200° C.
    Type: Application
    Filed: April 30, 2008
    Publication date: July 15, 2010
    Applicant: Synfuels China Technology Co., Ltd.
    Inventors: Yuan Kou, Ning Yan, Chaoxian Xiao, Zhipeng Cai, Yongwang Li
  • Publication number: 20090170963
    Abstract: The present invention relates to an improved process in term of selectivity and catalyst activity and operating life for the conversion of hydrocarbons to ethanol and optionally acetic acid in the presence of a particulate catalyst, said conversion proceeding via a syngas generation intermediate step.
    Type: Application
    Filed: June 29, 2006
    Publication date: July 2, 2009
    Inventor: Martin Philip Atkins
  • Publication number: 20090124710
    Abstract: The present invention relates to an improved process for the conversion of carbon oxide(s) and hydrogen containing feedstocks to oxygen containing hydrocarbon compounds in the presence of a particulate catalyst.
    Type: Application
    Filed: May 18, 2006
    Publication date: May 14, 2009
    Inventor: Martin Philip Atkins
  • Patent number: 7393877
    Abstract: In a process for the conversion of carbon monoxide to C2+ hydrocarbons in the presence of hydrogen and of a catalyst comprising a metal and a support comprising silicon carbide, the support comprises more than 50% by weight of silicon carbide in the beta form. A process for the conversion of carbon monoxide to C2+ hydrocarbons in the presence of hydrogen and of a catalyst the effluent thus obtained are also disclosed.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: July 1, 2008
    Assignees: Total France, Total S.A.
    Inventors: Sabine Savin-Poncet, Marc-Jacques Ledoux, Cuong Pham-Huu, Jacques Bousquet, Behrang Madani
  • Publication number: 20080139676
    Abstract: The invention relates to a catalytically active composition for the selective methanation of carbon monoxide which comprises at least one element selected from the group consisting of ruthenium, rhodium, nickel and cobalt as active component and a support material based on carbon. The invention further provides for the use of this catalytically active composition for the selective methanation of carbon monoxide and in the production of hydrogen for fuel cell applications.
    Type: Application
    Filed: January 19, 2006
    Publication date: June 12, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Christian Kuhrs, Markus Holzle, Till Gerlach, Michael Hesse
  • Publication number: 20080108715
    Abstract: The invention relates to a process for removing carbon monoxide from a hydrogenous gas stream by reacting the carbon monoxide with hydrogen to give methane and water in the presence of a heterogeneous catalyst. In this process, the catalyst is present in the form of a thin-layer catalyst on a support material. The invention further relates to an apparatus for carrying out the process.
    Type: Application
    Filed: January 9, 2006
    Publication date: May 8, 2008
    Applicant: BASF AKTIENGESELLSCHAFT
    Inventors: Mathias Haake, Stefan Kotrel, Michael Karcher, Rudi Blummel
  • Patent number: 7351750
    Abstract: Natural gas is reacted with steam for generating carbon monoxide and hydrogen in a first catalytic reactor. The resulting gas mixture is used to perform Fischer-Tropsch synthesis in a second catalytic reactor. After performing Fischer-Tropsch synthesis, the remaining hydrogen is separated from a hydrocarbon-rich stream using a hydrogen-permeable membrane, and the hydrocarbon-rich stream is returned to be subjected to steam reforming. Preferable, the hydrogen-rich stream is supplied to a combustion channel for providing heat for the endothermic steam-reforming reaction. The overall process converts natural gas to longer-chain hydrocarbons and can provide a carbon conversion of more than 80%.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: April 1, 2008
    Assignee: CompactGTL PLC
    Inventor: Michael Joseph Bowe
  • Patent number: 7329691
    Abstract: A composition and method for a Catalytic Partial Oxidation (CPO) of methane to synthesis gas. The catalyst allows the process to proceed at low residence time providing a long time thermal stability. The perovskite structure [AzA?1-z][B1-x-yNix Rhy] O3-? of the catalyst is obtained using mainly La, Sr, as A and A? cation sites (A, A?: actinide and/or lanthanide, elements and/or elements from Group I and II) and mainly Fe, Ni, as B cation sites (B: transition metal element and/or element from Group III to V).
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: February 12, 2008
    Assignee: L'Air Liquid, Societe Anonyme A Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Francesco Basile, Giuseppe Fornasari, Angelo Vaccari, Pascal Del Gallo, Daniel Gary
  • Publication number: 20080033068
    Abstract: A process for producing oxygenated products from a Fischer-Tropsch derived olefinic feedstock, includes reacting the feedstock, in a hydroformylation reaction stage, with carbon monoxide and hydrogen at an elevated reaction temperature and at a superatmospheric reaction pressure in the presence of a hydroformylation catalyst system. The catalyst system comprises a mixture, combination or complex of a transition metal, T, where T is selected from the transition metals of Group VIII of the Periodic Table of Elements; carbon monoxide, CO; hydrogen, H2; as a primary ligand, a monodentate phosphorus ligand; and as a secondary ligand, a bidentate phosphorus ligand which confers resistance on the catalyst system to poisoning arising from the presence of undesired components in the Fischer-Tropsch derived feedstock.
    Type: Application
    Filed: November 17, 2004
    Publication date: February 7, 2008
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Petrus Wilhelmus Nicolaas Maria Van Leeuwen, Edyta B. Walczuk, Neil Eugene Grimmer, Paulas Clemens Jozef Kamer
  • Patent number: 7163963
    Abstract: This invention is generally related to the field of Fischer-Tropsch catalysts. In particular, the present invention is related to a Fischer-Tropsch catalyst and method of making same. More particularly, the present invention discloses a catalyst comprising a support and at least one catalytically active metal wherein the support comprises a transition alumina including theta-alumina, delta-alumina, or combinations thereof, and a surface coverage comprising at least one rare-earth oxide.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: January 16, 2007
    Assignee: ConocoPhillips Company
    Inventor: Dan Fraenkel
  • Patent number: 7001867
    Abstract: The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions. In particular, preferred embodiments of the present invention comprise rare earth catalyst supports, catalyst compositions having rare earth supports, and methods of preparing and using the catalysts and supports. Accordingly, the present invention also encompasses an improved method for converting a hydrocarbon containing gas and an oxygen containing gas to a gas mixture comprising hydrogen and carbon monoxide, i.e., syngas, using the rare earth catalyst supports in accordance with the present invention. In addition, the present invention contemplates an improved method for converting hydrocarbon gas to liquid hydrocarbons using the novel syngas catalyst supports and compositions described herein.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: February 21, 2006
    Assignee: ConocoPhillips Company
    Inventors: Yaming Jin, Tianyan Niu, Harold A. Wright
  • Patent number: 6962947
    Abstract: A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: November 8, 2005
    Assignee: ConocoPhillips Company
    Inventors: Harold A. Wright, Ajoy P. Raje, Rafael L. Espinoza
  • Publication number: 20040235966
    Abstract: The present invention concerns a process for the preparation of liquid hydrocarbons which process involves contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles having a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.
    Type: Application
    Filed: June 17, 2004
    Publication date: November 25, 2004
    Inventors: Bharat Lajjaram Bhatt, Dirk Coenraad Engel, Edward Clyde Heydorn, Matthijs Maria Gerardus Senden
  • Publication number: 20040214905
    Abstract: The invention provides a process for the production of mainly C5+ hydrocarbons, which process involves contacting carbon monoxide and hydrogen at a temperature in the range of from about 180° C. to about 270° C. and elevated pressure in the presence of a catalyst composition having cobalt, manganese and at least one of rhenium and/or ruthenium on a titania carrier. The invention also relates to a catalyst composition having cobalt, manganese and rhenium on a titania carrier.
    Type: Application
    Filed: May 21, 2004
    Publication date: October 28, 2004
    Inventors: Jacobus Johannes Cornelis Geerlings, Hans Michiel Huisman
  • Publication number: 20040214904
    Abstract: A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a &ggr;-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a &ggr;-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5.
    Type: Application
    Filed: May 21, 2004
    Publication date: October 28, 2004
    Applicant: Sasol Technology (UK) Limited
    Inventors: Alan H. Singleton, Rachid Oukaci, James G. Goodwin
  • Patent number: 6800579
    Abstract: There is provided a process for regenerating the activity of used metal catalysts for the hydrogenation of carbon monoxide comprising decreasing the hydrocarbon content thereof, calcining under an oxidant-containing atmosphere, impregnating with a solution of at least one of a metal compound, calcining under an oxidant-containing atmosphere and activating by contacting with a hydrogen-contacting gas at elevated temperatures to form an active catalyst. The process regenerates and enhances both supported and dispersed active metal (DAM) catalysts. Used catalysts enhanced by the process are initially treated to decrease their hydrocarbon content. The treatment may be carried out in a single reactor, or by carrying out up to all steps after catalyst may be withdrawn from a reactor and returned to at least one reactor, both preferably during operation thereof. Up to all steps may be effected in a subsequent reactor, or in specialized apparatus.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: October 5, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michel Daage, Russell John Koveal, Min Chang
  • Publication number: 20040192792
    Abstract: The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions to prepare synthesis gas and ultimately C5+ hydrocarbons. In particular, preferred embodiments of the present invention comprise catalyst systems comprising a core and an outer region disposed on said core, wherein a substantial amount of the catalytic metal is located in the outer region of the catalyst support matrix. In addition, the catalyst systems are able to maintain high conversion and selectivity values with very low catalytically active metal loadings. The catalyst systems are appropriate for improved syngas, oxidative dehydrogenation and other partial oxidation reactions, including improved reaction schemes for the conversion of hydrocarbon gas to C5+ hydrocarbons.
    Type: Application
    Filed: December 29, 2003
    Publication date: September 30, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Tianyan Niu, Harold A. Wright, Shuibo Xie, Mary E. Wolf