Ingredient Is A Nitrogen Containing Compound Patents (Class 521/128)
  • Publication number: 20140031444
    Abstract: The present invention relates to polyurethanes obtained by mixing to give a reaction mixture of (a) polyisocyanate, (b) polymeric compounds having groups reactive toward isocyanates, (c) catalysts comprising incorporable amine catalysts, (d) phosphoric esters, polyphosphates, phosphonic esters, and/or phosphorous esters, and optionally (e) blowing agents, (f) chain extenders and/or crosslinking agents, and (h) auxiliaries and/or additives, and completing the reaction of the reaction mixture to give the polyurethane. The invention further relates to a process for producing these polyurethanes and to their use in automobile interiors.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 30, 2014
    Applicant: BASF SE
    Inventors: Iran OTERO MARTINEZ, Udo HADICK, Andre MEYER
  • Patent number: 8637584
    Abstract: An isocyanate reactive composition for making a polyurethane foam includes a tertiary amine urethane catalyst comprising a di(C1-C4)alkyl fatty alkyl amine and a polyester polyol. The use of one or more of fatty alkyl tertiary amine serves to reduce hydrolysis of the polyester polyol in the isocyanate reactive composition.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: January 28, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gary Dale Andrew, Juan Jesus Burdeniuc, Goran Zarkov
  • Publication number: 20140024733
    Abstract: A polyether polyol based on renewable materials is obtained by the in situ production of a polyether from a hydroxyl group-containing vegetable oil, at least one alkylene oxide and a low molecular weight polyol having at least 2 hydroxyl groups. The polyol is produced by introducing the hydroxyl group-containing vegetable oil, a catalyst and an alkylene oxide to a reactor and initiating the alkoxylation reaction. After the alkoxylation reaction has begun but before the reaction has been 20% completed, the low molecular weight polyol having at least 2 hydroxyl groups is continuously introduced into the reactor. After the in situ made polyether polyol product having the desired molecular weight has been formed, the in situ made polyether polyol is removed from the reactor. These polyether polyols are particularly suitable for the production of flexible polyurethane foams.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: Bayer MaterialScience LLC
    Inventors: Jack R. Reese, Stanley L. Hager, Micah Moore
  • Publication number: 20140005288
    Abstract: A stable polyol pre-mix composition comprises a blowing agent, a polyol, a surfactant, and a catalyst composition comprising an oxygen-containing amine catalyst. The oxygen-containing amine catalyst may be, an alkanol amine, an ether amine, or a morpholine group. containing compound such as, 2.(2.dimethylaminoethoxy)ethanol or N.N.N?.trimethylaminoethylethanolamine. A stabilized thermosetting foam blend comprises: (a) a polyisocyanate and, optionally, isocyanate compatible raw materials; and (b) a polyol pre. mix composition. A method for stabilizing thermosetting foam blends comprises combining: (a) a polyisocyanate and, optionally, isocyanate compatible raw materials; and (b) a polyol pre. mix composition. A polyurethane or polyisocyanurate foam having uniform cell structure with little or no foam collapse comprises a mixture of: (a) a polyisocyanate and, optionally, one or more isocyanate compatible raw materials; and (b) a polyol pre-mix composition.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 2, 2014
    Applicant: Arkema Inc.
    Inventors: Benjamin Bin Chen, Joseph S. Costa, Laurent Abbas, Haiming Liu, Sri R. Seshadri
  • Patent number: 8618014
    Abstract: Catalyst compositions for use in forming polyurethane products include a gelling catalyst, a trimerization catalyst, and a cure accelerator. The gelling catalyst is a tertiary amine, mono(tertiary amino) urea, bis(tertiary amino) urea, or a combination of any of these. Any known trimerization catalyst may be used. The cure accelerator may be a diol having at least one primary hydroxyl group, and having from five to 17 chain backbone atoms chosen from carbon, oxygen, or both between the hydroxyl groups, provided that at least five of the backbone atoms are carbon. Alternatively or in addition, the cure accelerator may be a polyol having three or more hydroxyl groups, at least two of which are primary, and having molecular weights between 90 g/mole and 400 g/mole. Delayed initiation of the polyurethane-forming reaction and/or reduced demold time for producing the polyurethane part can be obtained by using these catalyst compositions.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 31, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gary Dale Andrew, Mark Leo Listemann, Patrick Gordon Stehley, James Douglas Tobias, John William Miller
  • Patent number: 8598245
    Abstract: Methods of forming an insulating material comprising combining a polysilazane, a cross-linking compound, and a gas-generating compound to form a reaction mixture, and curing the reaction mixture to form a modified polysilazane. The gas-generating compound may be water, an alcohol, an amine, or combinations thereof. The cross-linking compound may be an isocyanate, an epoxy resin, or combinations thereof. The insulating material may include a matrix comprising one of a reaction product of a polysilazane and an isocyanate and a reaction product of a polysilazane and an epoxy resin. The matrix also comprises a plurality of interconnected pores produced from one of reaction of the polysilazane and the isocyanate and from reaction of the polysilazane and the epoxy resin. A precursor formulation that comprises a polysilazane, a cross-linking compound, and a gas-generating compound is also disclosed.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: December 3, 2013
    Assignee: Alliant Techsystems Inc.
    Inventors: Robert S. Larson, Michael E. Fuller
  • Publication number: 20130316164
    Abstract: Combinations of gelatinous elastomer and polyurethane foam may be made by introducing a plasticized triblock copolymer resin and/or a diblock copolymer resin at least partially cured into gel particles into a mixture of polyurethane foam forming components including a polyol and an isocyanate. The plasticized copolymer resin is polymerized to form a cured gelatinous elastomer or gel, which is then reduced in size, for instance to give an average particle size of 10 millimeters or less. Polymerizing the polyol and the isocyanate forms polyurethane foam. The polyurethane reaction is exothermic and can generate sufficient temperature to at least partially melt the styrene-portion of the triblock copolymer resin thereby extending the crosslinking and in some cases integrating the triblock copolymer within the polyurethane polymer matrix. The gel component has higher heat capacity than polyurethane foam and thus has good thermal conductivity and acts as a heat sink.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Peterson Chemical Technology, Inc.
    Inventors: Bruce W. Peterson, Mark L. Crawford
  • Patent number: 8580864
    Abstract: The present invention provides trimerization catalyst compositions having an ?,?-unsaturated carboxylate salt and methods to produce a polyisocyanurate/polyurethane foam using such trimerization catalyst compositions.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: November 12, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Torsten Panitzsch, John Elton Dewhurst
  • Publication number: 20130295371
    Abstract: Combinations of gelatinous elastomer containing one or more phase change materials, known as “phase change gel”, and polyurethane foam may be made by introducing at least partially cured phase change gel particles comprising plasticized triblock copolymer resin and/or diblock copolymer resin and one or more phase change materials, into a mixture of polyurethane foam-forming components including a polyol and an isocyanate. The phase change gel can be crosslinked to form a cured gelatinous gel, which is then reduced in size before introduction. After the foam-forming components polymerize to make polyurethane foam, the phase change gel particles are discrete visible particles dispersed throughout the foam. The polyurethane reaction is exothermic and can generate sufficient temperature to at least partially melt the styrene-portion of the triblock copolymer resin thereby extending the crosslinking.
    Type: Application
    Filed: July 1, 2013
    Publication date: November 7, 2013
    Inventors: Bruce W. Peterson, Mark L. Crawford
  • Publication number: 20130296449
    Abstract: Combinations of open cell flexible foams with polyurethane gel-like polymers, in forms such as layers of different forms and shapes, solid sheets, perforated sheets, and particles, and methods of making the combinations are described using a variety of procedures. Alternatively, the resin to make the polyurethane gel-like polymers may be infused into the polyurethane foams. The open cell flexible foam may partially or wholly comprise polyurethane foam and latex foam.
    Type: Application
    Filed: July 1, 2013
    Publication date: November 7, 2013
    Inventors: Bruce W. Peterson, Mark L. Crawford
  • Patent number: 8552077
    Abstract: The present invention provides trimerization catalyst compositions and methods to produce a polyisocyanurate/polyurethane foam using such trimerization catalyst compositions. The catalyst composition is the contact product of at least one ?,?-unsaturated carboxylate salt and at least one second carboxylate salt.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: October 8, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Torsten Panitzsch, John Elton Dewhurst, Gamini Ananda Vedage
  • Patent number: 8530534
    Abstract: The present invention provides trimerization catalyst compositions having a sterically hindered carboxylate salt and methods to produce a polyisocyanurate/-polyurethane foam using such trimerization catalyst compositions.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: September 10, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Torsten Panitzsch, John Elton Dewhurst
  • Patent number: 8530533
    Abstract: The present invention relates to a rigid polyurethane foam comprising reinforcing materials which can be obtained by mixing (a) isocyanates which have a viscosity at 25° C. of less than 500 mPas with (b) compounds having groups which are reactive toward isocyanates, (c) blowing agents comprising water, (d) catalysts and, if appropriate, (e) further additives to form a reaction mixture and applying the reaction mixture to a reinforcing material, wherein the compounds (b) having groups which are reactive toward isocyanates comprise a polyetherol (b1) having a functionality of 4 or more and a viscosity at 25° C. of 10 000 mPas or less and a polyetherol (b2) having a functionality of 3 or less and a viscosity at 25° C. of 500 mPas or less. The present invention further relates to a process for producing such rigid polyurethane foams and the use of the rigid polyurethane foams for the insulation of liquefied natural gas tanks.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: September 10, 2013
    Assignee: BASF SE
    Inventors: Pit Lehmann, Katrin Thane, Cheul Hyeon Hwang
  • Patent number: 8513318
    Abstract: A method for producing a rigid polyurethane foam, which comprises reacting a polyol with a polyisocyanate in the presence of an amine catalyst and a blowing agent, wherein as the amine catalyst, at least one amine compound having at least one type of substituent selected from the group consisting of a hydroxyl group, a primary amino group and a secondary amino group in its molecule, or N-(2-dimethylaminoethyl)-N?-methylpiperazine, is used, and as the blowing agent, 1,1,1,3,3-pentafluoropropane (HFC-245fa) and/or 1,1,1,3,3-pentafluorobutane (HFC-365mfc) is used.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: August 20, 2013
    Assignee: Tosoh Corporation
    Inventors: Hiroyuki Kiso, Katsumi Tokumoto, Yutaka Tamano
  • Publication number: 20130210947
    Abstract: A process for producing water-absorbing polymer particles with high free swell rate and high permeability by polymerization of an aqueous monomer solution or suspension to give an aqueous polymer gel, wherein a thermal blowing agent essentially free of inorganic acid anions is mixed into the polymer gel, and subsequent thermal drying of the polymer gel.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 15, 2013
    Applicant: BASF SE
    Inventor: BASF SE
  • Publication number: 20130197114
    Abstract: A composition and process useful to make flexible polyurethane foams and in particular flexible molded polyurethane foams is disclosed. The usage of dipolar aprotic liquids such as DMSO, DMI, sulfolane, N-methyl-acetoacetamide, N,N-dimethylacetoacetamide as well as glycols containing hydroxyl numbers OH#?1100 as cell opening aides for 2-cyanoacetamide or other similar molecules containing active methylene or methine groups to make a polyurethane foam is also disclosed. The advantage of using cell opener aids results in a) no foam shrinkage; b) lower use levels of cell opener; c) foam performance reproducibility d) optimum physical properties. In addition, combining the acid blocked amine catalyst together with the cell opener and the cell opener aid results in a less corrosive mixture as well as provides a method that does not require mechanical crushing for cell opening.
    Type: Application
    Filed: June 27, 2012
    Publication date: August 1, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller
  • Publication number: 20130197113
    Abstract: The present invention generally relates to polyurethane foam composition. In one embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of one or more liquid and/or solid fire-retardants. In another embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of one or more intumescent materials (e.g., expandable graphite (EG)). In still another embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of expandable graphite.
    Type: Application
    Filed: March 13, 2013
    Publication date: August 1, 2013
    Inventor: Preferred Solutions, Inc.
  • Patent number: 8466207
    Abstract: Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is “pre-reacted” with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the “pre-reacted” resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: June 18, 2013
    Assignee: Sandia Corporation
    Inventors: Leroy L. Whinnery, Jr., Steven H. Goods, Dawn M. Skala, Craig C. Henderson, Patrick N. Keifer
  • Publication number: 20130137787
    Abstract: This invention disclosure relates to a process to make flexible open cell polyurethane foam with optimum mechanical properties and lowest chemical emissions. Using the selection of tertiary amine catalysts together with a group of carboxylic acids according to this disclosure can produce foam products with optimum properties and lowest chemical emanations.
    Type: Application
    Filed: June 1, 2012
    Publication date: May 30, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Courtney Thompson Thurau, Renee Jo Keller, Allen Robert Arnold, JR.
  • Patent number: 8445556
    Abstract: The present invention provides a process to preparing a polyurethane or polyurethane/urea closed cell foam. This foam, when compared to neoprene foam, exhibits a low water absorption and an additional quality of chlorine content of not greater than 0.5% based on the total weight of the closed cell foam.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: May 21, 2013
    Assignee: Rubberlite, Inc.
    Inventor: Rick Speas
  • Patent number: 8445555
    Abstract: The present invention provides trimerization catalyst compositions having at least one carbanion compound and methods to produce a polyisocyanurate/polyurethane foam using such trimerization catalyst compositions.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: May 21, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Torsten Panitzsch, John Elton Dewhurst
  • Patent number: 8426482
    Abstract: Invention relates to a process for producing viscoelastic flexible polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups, wherein as b) a mixture of bi) from 25 to 70% by weight of a hydroxyl-comprising natural oil or fat or a reaction product of a hydroxyl-comprising natural oil or fat with alkylene oxides, bii) from 3 to 30% by weight of at least one polyether having a hydroxyl number of from 100 to 800 mg KOH/g and a functionality of 3-5 selected from the group consisting of polyether prepared by addition of alkylene oxides onto an amine, biii) 20-50% by weight of at least one polyether alcohol having a hydroxyl number of from 10 to 80 mg KOH/g and a functionality of 2-5, where the proportion of ethylene oxide is 5-25% by weight, based on the weight of the polyether alcohol, and at least part of the ethylene oxide is added on at the end of the polyether chain, biv) >0-8% by weight of at least one polyether alcoh
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: April 23, 2013
    Assignee: BASF SE
    Inventors: Ansgar Frericks, Heinz-Dieter Lutter, Edmund Stadler, Heinz-Juergen Schroeder, Kirsten Simon, Andre Meyer, Franck Pomeris
  • Patent number: 8399532
    Abstract: Embodiments of the disclosure include aromatic polyol compositions, resin blend compositions, and spray foam compositions.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: March 19, 2013
    Assignee: Invista North America S.A R.L.
    Inventor: David K. Mulkey
  • Publication number: 20130065978
    Abstract: Polyurethane foam compositions and processes to make flexible polyurethane foams are disclosed. Polyurethane foam is produced in the presence of additives comprising guanidine derivatives. Improvements in physical properties such as air flow, dimensional stability, tensile, tear, elongation and foam hardness is observed when these additives are present in polyurethane formulations. In addition, these additives can minimize polymer degradation under humid ageing conditions resulting in foam products with better mechanical properties.
    Type: Application
    Filed: June 27, 2012
    Publication date: March 14, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller, You-Moon Jeon
  • Patent number: 8372892
    Abstract: Polyurethane foams are made and attached to a substrate having an open cavity, but reacting prepolymer and polyol components in the presence of certain carbamate blowing agents. This process allows for very fast curing, good quality, adherent foamy to be produced on, for example, vehicle parts and assemblies, for acoustical or vibration dampening and for structural reinforcement.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: February 12, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Huzeir Lekovic, Ali El-Khatib, Frank Vincent Billotto, Rifat Tabakovic, Ali Ozasahin
  • Publication number: 20120302652
    Abstract: A process for producing high resilience flexible polyurethane foams. The process includes forming a mixture of (a) isocyanate prepolymer, (b) polymeric compounds having isocyanate-reactive groups, (c) castor oil, (d) optionally chain-extending and/or crosslinking agents, (e) catalysts, (f) blowing agents, and optionally (g) additives, and reacting the mixture to form the flexible polyurethane foam. More than 5 wt % of (c) is used, based on the total weight of components (b) to (g), and (a) is obtained by mixing diphenylmethane diisocyanate (a1) and polyol 1 (a2) and also optionally further polyols, chain extenders and/or crosslinkers, where (a2) includes a polyalkylene oxide polyol having a hydroxyl number of 30 to 60, an average functionality of 2.3 to 3.2 and a propylene oxide fraction, based on the alkylene oxide content, of 70 to 100 wt %. A polyurethane foam obtained by the process, and the use of such a foam as an auto seat.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 29, 2012
    Applicant: BASF SE
    Inventors: Andre Meyer, Heinz-Dieter Lutter, Christoph Leseberg, Annika Johann-Krone
  • Publication number: 20120295090
    Abstract: This invention relates to a process for producing superabsorbent foams comprising the steps of foaming an aqueous mixture comprising at least one monoethylenically unsaturated monomer bearing acid groups, at least one blowing agent, at least one crosslinker and at least one surfactant, polymerizing the foamed mixture and drying the polymerized mixture, to the foams and also to their use for absorbing aqueous fluids.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 22, 2012
    Applicant: BASF SE
    Inventors: Antje Ziemer, Anna Kowalski, Ernst Jürgen Bauer, Stefan Bruhns
  • Publication number: 20120296295
    Abstract: This invention relates to a feminine hygiene absorbent article comprising superabsorbent foams obtainable by foaming an aqueous mixture comprising at least one monoethylenically unsaturated monomer bearing acid groups, at least one blowing agent, at least one crosslinker and at least one surfactant, polymerizing the foamed mixture and drying the polymerized mixture, to the foams and also to their use for absorbing aqueous fluids.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 22, 2012
    Inventors: Brian Francis GRAY, Achille DI CINTIO, Giovanni CARLUCCI, Antje ZIEMER, Anna KOWALSKI, Ernst Juergen BAUER, Stefan BRUHNS
  • Publication number: 20120264838
    Abstract: Methods of forming an insulating material comprising combining a polysilazane, a cross-linking compound, and a gas-generating compound to form a reaction mixture, and curing the reaction mixture to form a modified polysilazane. The gas-generating compound may be water, an alcohol, an amine, or combinations thereof The cross-linking compound may be an isocyanate, an epoxy resin, or combinations thereof The insulating material may include a matrix comprising one of a reaction product of a polysilazane and an isocyanate and a reaction product of a polysilazane and an epoxy resin. The matrix also comprises a plurality of interconnected pores produced from one of reaction of the polysilazane and the isocyanate and from reaction of the polysilazane and the epoxy resin. A precursor formulation that comprises a polysilazane, a cross-linking compound, and a gas-generating compound is also disclosed.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Applicant: ALLIANT TECHSYSTEMS INC.
    Inventors: Robert S. Larson, Michael E. Fuller
  • Publication number: 20120264841
    Abstract: A process for producing a rigid polyurethane foam by reacting an organic polyisocyanate with a polyol component containing a compound with at least two hydrogen atoms which are reactive toward isocyanate groups in the presence of a blowing agent, a catalyst, and optionally auxiliaries and additives, wherein the polyol component contains, by weight: 20 to 60 parts of a polyether alcohol having a functionality of 3.5 to 5.5 and a hydroxyl number of from 400 to 550 mg KOH/g; 1 to 20 parts of a polyether alcohol based on an aliphatic amine and having a functionality of 3.5 to 4.5 and a hydroxyl number of 450 to 900 mg KOH/g; 10 to 30 parts of a polyether alcohol and/or aromatic polyester alcohol having functionalities of 1.5 to 3 and a hydroxyl number of from 150 to 450 mg KOH/g; and optionally 1 to 5 parts of water.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 18, 2012
    Applicant: BASF SE
    Inventors: Zeljko Tomovic, Olaf Jacobmeier, Gunnar Kampf
  • Patent number: 8258196
    Abstract: To provide a method for producing a rigid polyurethane foam, whereby it is possible to reduce the density without causing deterioration in dimensional stability, and a rigid polyurethane foam. A method for producing a rigid polyurethane foam, which comprises a step of reacting a polyol having a hydroxyl value of from 200 to 800 mgKOH/g with a polyisocyanate compound in the presence of an amino-modified silicone, a catalyst, a blowing agent and a surfactant.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: September 4, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Katsuhiko Shimizu, Teruhiko Yasuda, Hiroshi Wada
  • Publication number: 20120220677
    Abstract: The invention provides polyurethane and polyisocyanurate foams and methods for the preparation thereof. More particularly, the invention relates to closed-celled, polyurethane and polyisocyanurate foams and methods for their preparation. The foams are characterized by a fine uniform cell structure and little or no foam collapse. The foams are produced with a polyol premix composition which comprises a combination of a hydrohaloolefin blowing agent, a polyol, a silicone surfactant, and a non-amine catalyst used alone or in combination with an amine catalyst.
    Type: Application
    Filed: February 20, 2012
    Publication date: August 30, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: DAVID J. WILLIAMS, MARY C. BOGDAN, CLIFFORD P. GITTERE, ANDREW J. POSS
  • Publication number: 20120208913
    Abstract: Foamable polystyrene compositions with enhanced blowing agent solubility and methods of making such polystyrene compositions by incorporating a polar additive in styrenic polymer or copolymers.
    Type: Application
    Filed: January 11, 2012
    Publication date: August 16, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Wei Wang, Jose M. Sosa, David W. Knoeppel
  • Patent number: 8242184
    Abstract: To provide a process for producing a flexible polyurethane foam, which comprises reacting a polyol compound and a polyisocyanate compound in an open system substantially without using a silicone foam stabilizer. A process for producing a flexible polyurethane foam, which comprises reacting a polyol composition (I) containing at least a polyol compound and containing at least one of a polyol compound (A) and a monool compound (X) obtained by ring-opening polymerization of an alkylene oxide with an initiator by using a double metal cyanide complex catalyst, and a polyisocyanate composition (II) in the presence of a urethane-forming catalyst made of a metal catalyst and an amine catalyst, and a blowing agent, in an open system substantially without using a silicone foam stabilizer.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: August 14, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Takayuki Sasaki, Daisuke Kaku
  • Publication number: 20120201806
    Abstract: Disclosed are compositions-of-matter composed of a continuous elastomeric matrix and a liquid; the matrix entrapping the liquid therein in the form of closed-cell droplets dispersed throughout the matrix. The disclosed compositions-of-matter are characterized by a low tensile/compressive modulus and are capable of retaining the liquid for exceedingly long periods of time. Further disclosed are processes for forming the compositions-of-matter and uses thereof.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 9, 2012
    Applicant: Technion Research & Development Foundation Ltd.
    Inventors: Michael S. Silverstein, Inna Gurevitch
  • Publication number: 20120184636
    Abstract: Process for the preparation of beads of expandable vinyl aromatic polymers by means of polymerization in aqueous suspension, which comprises polymerizing at least one vinyl aromatic monomer in aqueous suspension in the presence of a peroxide initiator system, active at a temperature higher than 800 C, an expanding agent, and in the presence of:—an amide having the general formula R1CONHCH2—CH2NHCOR2 (I) a flame retardant system comprising a brominated additive with a bromine content higher than 30% by weight.
    Type: Application
    Filed: August 6, 2010
    Publication date: July 19, 2012
    Applicant: POLIMERI EUROPA S.p.A.
    Inventors: Dario Ghidoni, Alessandra Simonelli, Antonio Ponticiello, Andrea La Piccirella
  • Patent number: 8222311
    Abstract: Disclosed is a novel hydroxyalkylated polyalkylene polyamine composition, and a method for preparing the hydroxyalkylated polyalkylene polyamine composition at low cost. Further disclosed is a method for producing a polyurethane resin by using the hydroxyalkylated polyalkylene polyamine composition containing at least two hydroxyalkylated polyalkylene polyamines represented by the following general formula (1): In the formula (1), R1 to R5 are independently a C1 to C3 alkyl group or a substituent represented by the following general formula (2): wherein R6 and R7 are independently a hydrogen atom or a C1 to C4 alkyl group, and p is an integer from 1 to 3; and R5 and R1, R2, R3, or R4 may arbitrarily bond together to form a ring; at least one of R1 to R5 is a substituent represented by the general formula (2) but all of R1 to R5 cannot be substituents represented by the general formula (2) at the same time; n and m are independently an integer from 1 to 5; and a is an integer from 1 to 6.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: July 17, 2012
    Assignee: Tosoh Corporation
    Inventors: Takahiro Masuda, Yutaka Tamano
  • Publication number: 20120178839
    Abstract: A composition and process useful to make flexible polyurethane foams and in particular flexible molded polyurethane foams is disclosed. The usage of dipolar aprotic liquids such as DMSO, DMI, sulfolane, N-methyl-acetoacetamide, N,N-dimethylacetoacetamide as well as glycols containing hydroxyl numbers OH#?1100 as cell opening aides for 2-cyanoacetamide or other similar molecules containing active methylene or methine groups to make a polyurethane foam is also disclosed. The advantage of using cell opener aids results in a) no foam shrinkage; b) lower use levels of cell opener; c) foam performance reproducibility d) optimum physical properties. In addition, combining the acid blocked amine catalyst together with the cell opener and the cell opener aid results in a less corrosive mixture as well as provides a method that does not require mechanical crushing for cell opening.
    Type: Application
    Filed: July 8, 2011
    Publication date: July 12, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, You-Moon Jeon, Renee Jo Keller
  • Publication number: 20120164045
    Abstract: This disclosure involves an adsorption-desorption material, e.g., crosslinked polyvinyl-amine material having an Mw from about 500 to about 1×106, total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles per gram of crosslinked material, and/or linear polyvinyl-amine material having an Mw from about 160 to about 1×106, total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles per gram of linear material. This disclosure also involves processes for preparing the crosslinked polyvinyl-amine materials and linear polyvinyl-amine materials, as well as selective removal of CO2 and/or other acid gases from a gaseous stream using the polyvinyl-amine materials.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 28, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki
  • Publication number: 20120164043
    Abstract: An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having an Mw from about 500 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material, and linear organo-amine polymeric materials having an Mw from about 160 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material. This disclosure also relates to processes for preparing the crosslinked and linear organo-amine materials, as well as to selective removal of CO2 and/or other acid gases from a gaseous stream using the adsorption-desorption materials.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 28, 2012
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki, Stephen M. Cundy
  • Publication number: 20120156469
    Abstract: The invention relates to a method for producing a flameproof polyurethane (PUR) spray foam, especially a rigid PUR spray foam, to a spray foam body so produced and to the use thereof for heat insulation.
    Type: Application
    Filed: August 17, 2010
    Publication date: June 21, 2012
    Applicant: BAYER MATERIALSCIENCE AG
    Inventors: Stephan Schleiermacher, Torsten Heinemann, Frithjof Hannig, Roger Scholz, Hans-Guido Wirtz, Heike Niederelz
  • Patent number: 8188029
    Abstract: Foamed polyurethane articles, such as a sponges, sheets, tapes or ribbons, blocks or other molded, extruded or cast article which foamed polyurethane articles exhibit an antimicrobial benefit and are particularly useful in the formation of cleaning articles. Processes for the manufacture of such cleaning articles based on hydrophilic polyurethane foams exhibit an antimicrobial benefit and their use are also described.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: May 29, 2012
    Assignee: Reckitt Benckiser LLC
    Inventors: Farid Ahmad Nekmard, Diane Joyce Burt, James Chi-Cheng Feng, Paul Hermann
  • Patent number: 8148441
    Abstract: A method for manufacturing a polishing pad made from a polyurethane resin foam having very uniform, fine cells therein and a polishing pad obtained by that method provides a polishing pad having better polishing characteristics (especially, in planarization) while providing improved dressability while maintaining the planarization characteristics and polishing speed of a conventional polishing pad. The polyurethane resin foam is a cured product obtained by reacting an isocyanate-terminated prepolymer with an aromatic polyamine chain extender having a melting point of 70° C. or lower, for example.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: April 3, 2012
    Assignee: Toyo Tire & Rubber Co., Ltd.
    Inventors: Masato Doura, Takeshi Fukuda, Kazuyuki Ogawa, Atsushi Kazuno, Hiroshi Seyanagi, Masahiko Nakamori, Takatoshi Yamada, Tetsuo Shimomura
  • Publication number: 20120071576
    Abstract: Polyurethane foam compositions and processes to make flexible polyurethane foams are disclosed. Polyurethane foam is produced in the presence of additives comprising guanidine derivatives. Improvements in physical properties such as air flow, dimensional stability, tensile, tear, elongation and foam hardness is observed when these additives are present in polyurethane formulations. In addition, these additives can minimize polymer degradation under humid ageing conditions resulting in foam products with better mechanical properties.
    Type: Application
    Filed: July 8, 2011
    Publication date: March 22, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller, You-Moon Jeon
  • Publication number: 20120041088
    Abstract: To provide a foaming additive for producing a polyurethane foam, which is capable of solving a problem of deterioration of moldability due to deterioration of the initial foaming property of a foam, and a method for producing a rigid polyurethane foam by using it.
    Type: Application
    Filed: April 23, 2010
    Publication date: February 16, 2012
    Inventors: Masaki Ishida, Yutaka Tamano
  • Publication number: 20120028024
    Abstract: The present invention discloses a structure comprising a plurality of three dimensional cells, wherein each cell comprises exterior walls defining an interior void wherein the walls comprise a plurality of struts and windows, the struts forming borders for the plurality of windows, wherein the struts have a plurality of pores. The present invention further discloses a viscoelastic foam having a ratio of elastic modulus (E?) at 20° C. to 25% compression force deflection (CFD) of 25 to 125.
    Type: Application
    Filed: July 15, 2009
    Publication date: February 2, 2012
    Applicant: Dow Global Technologies inc.
    Inventors: Bernard Obi, Alan K. Schrock, Rogelio R. Gamboa, Asjad Shafi, Kaoru Aou
  • Publication number: 20120022176
    Abstract: The present invention generally relates to polyurethane foam composition. In one embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of one or more liquid and/or solid fire-retardants. In another embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of one or more intumescent materials (e.g., expandable graphite (EG)). In still another embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of expandable graphite.
    Type: Application
    Filed: September 14, 2009
    Publication date: January 26, 2012
    Applicant: PREFERRED SOLUTIONS, INC.
    Inventors: John A. Stahl, Jonathon S. Stahl
  • Patent number: 8093309
    Abstract: A foam includes a white color that is suitable for use in marine flotation devices. The foam includes a methylene diphenyl diisocyanate and polymethylene diphenyl diisocyanate. In some embodiments, the foam also includes a polyol, surfactant, catalyst, and blowing agent.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: January 10, 2012
    Assignee: Huntsman Petrochemical LLC
    Inventors: Ernest L. Rister, Jr., Alan J. Hamilton, Richard R. Romero
  • Patent number: 8076385
    Abstract: A flame retardant aqueous liquid composition containing water, guanidine sulfamate, a citric acid compound including a metal salt of citric acid, and a water soluble polymer. A flame retardant polyurethane foam is produced by a process including the steps of providing a mixture of the above flame retardant aqueous liquid composition with a polyol and an isocyanate, and reacting the mixture in the presence of a catalyst.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: December 13, 2011
    Assignee: Nankyo Efnica Co., Ltd.
    Inventor: Chiaki Ohama
  • Patent number: 8067476
    Abstract: Process for the preparation of foamed thermoplastic polyurethanes characterised in that the foaming of the thermoplastic polyurethane is carried out in the presence of thermally expandable microspheres.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: November 29, 2011
    Assignee: Huntsman International LLC
    Inventors: Dominicus Limerkens, Johan Van Dyck, Bart Van Edom, Rhona Watson