Cellular Product Derived From A -c-c(=x)-x Containing Reactant Wherein X Is A Chalcogen Atom, E.g., Phthalic Acid, Etc. Patents (Class 521/182)
  • Patent number: 10640629
    Abstract: The present disclosure provides an aerogel-containing composition including an aerogel, a water-soluble binder, a foaming agent, and a mixture of water and a polar organic solvent as a solvent, and an insulation blanket prepared using the same. In the aerogel-containing composition, the aerogel is uniformly dispersed in the composition, and when preparing a blanket, an insulation blanket having low thermal conductivity and flexibility of low density is prepared without concern of shrinkage of the substrate for a blanket and detachment of the aerogel during a drying process.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: May 5, 2020
    Assignees: LG CHEM, LTD., INHA UNIVERSITY RESEARCH AND BUSINESS
    Inventors: Ye Hon Kim, Hae Jin Hwang, Je Kyun Lee, Kyoung Jin Lee
  • Patent number: 10308875
    Abstract: A process for forming a flame retardant polymer, as well as the flame retardant polymer, are disclosed. A flame retardant polymer is a polymer that can be resistant to thermal degradation and/or thermal oxidation. A flame retardant polymer can be mixed or otherwise incorporated into a standard polymer to give flame retardancy to the standard polymer. The flame retardant polymers can include polycaprolactone functionalized with flame retardant substituents. The flame retardant substituents can include halides, substituted phosphoryl, and substituted phosphonyl.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: June 4, 2019
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Sarah K. Czaplewski, Brandon M. Kobilka, Jason T. Wertz
  • Patent number: 10285896
    Abstract: A device for facilitating or enhancing proprioceptive feedback during breathing and related exercises includes a user attachment component attachable to a user about the thorax. Two elongate tensile members are connected at proximal ends to the user attachment component at points essentially just below the armpits of a user. These two elongate tensile members are connectable at their distal ends to the feet of the user. Another two tensile members are connected at their proximal ends to a back portion or strap of the harness and at their distal ends to or about the user's hands.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: May 14, 2019
    Assignee: PHYSICALMIND INC.
    Inventors: Joan Breibart, Marika Molnar
  • Patent number: 10100166
    Abstract: A method of producing a polyethylene resin expanded molded product includes filling a mold with expanded polyethylene resin particles, wherein an internal pressure of 0.12 to 0.16 MPa is applied to the expanded polyethylene resin particles in the mold, and forming the polyethylene resin expanded molded product by heating the expanded polyethylene resin particles and fusing the expanded polyethylene resin particles. The expanded polyethylene resin particles includes 100 parts by weight of a polyethylene resin, 0.08 to 0.25 parts by weight of a cell nucleating agent, 0.3 to 0.8 parts by weight of a polyhydric alcohol fatty acid ester, and 0.01 to 10 parts by weight of a hydrophilic compound, each of the expanded polyethylene resin particles having a weight of 2.5 to 3.5 mg. The polyethylene resin expanded molded product has a density of 0.017 to 0.021 g/cm3 and a thickness of 10 to 40 mm.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: October 16, 2018
    Assignee: Kaneka Corporation
    Inventor: Yuki Hayase
  • Patent number: 9801779
    Abstract: A device for facilitating or enhancing proprioceptive feedback during breathing and related exercises includes a user attachment component attachable to a user about the thorax. Two elongate tensile members are connected at proximal ends to the user attachment component at points essentially just below the armpits of a user. These two elongate tensile members are connectable at their distal ends to the feet of the user. Another two tensile members are connected at their proximal ends to a back portion or strap of the harness and at their distal ends to or about the user's hands.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: October 31, 2017
    Assignee: PHYSICALMIND INC.
    Inventors: Joan Breibart, Marika Molnar
  • Patent number: 9381709
    Abstract: The present disclosure provides a polyester polymer product which contains partially or fully cobalt-neutralized organic sulphonic acid component and which is substantially free of ether and its preparation. The present disclosure also provides an oxygen scavenging composition made from a mixture of the polyester polymer product of the present disclosure, an organic oxidizable polymeric component and optionally at least one additional polyester component. The present disclosure further provides a packaging article defined by walls having an oxygen transmission rate (OTR) less than 0.2 cc·m?2 day?1 at 0.28 mm thickness and its preparation.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: July 5, 2016
    Assignee: RELIANCE INDUSTRIES LIMITED
    Inventors: Uday Shankar Agarwal, B. V. Venkatarishnan, Rajesh Jalan, Thaliyil Veedu Sreekumar, Srinivasacharya Ramacharya Ayodhya, Ashwin Kumar Jain, Shivamurthy Padadayya Jadimath, Pushap Sudan, Anant Gajanan KelKar
  • Patent number: 9096715
    Abstract: Polycondensates with long-chain linear methylene sequences, their production, a method for producing linear odd-numbered C>20 ?,?-dicarboxylic acids and derivatives thereof and applications of the polycondensates are described.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: August 4, 2015
    Assignee: BASF SE
    Inventors: Stefan Mecking, Dorothee Quinzler
  • Publication number: 20150144563
    Abstract: Articles containing soil adsorbing polymers, and more particularly, articles, for example nonwovens, such as paper towels, wovens, and/or sponges and/or article-forming components thereof that comprise a durably bonded soil adsorbing polymer, article-forming components used to make such articles, and processes for making same are provided.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Inventors: Robin Lynn McKIERNAN, Robert Joseph McCHAIN, Steven Daryl SMITH
  • Publication number: 20150144836
    Abstract: The invention is directed towards methods and compositions for preventing dusting problems in mineral supplement. The method involves treating the mineral supplement or a dust releasing material with a composition comprising polymerized organic acid.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: Ecolab USA Inc.
    Inventors: Daniel N. T. Hay, Peter A. Dimas
  • Patent number: 9023470
    Abstract: Polylactic acid resin expanded beads exhibiting excellent fusion bonding at the time of in-mold molding have such a crystal structure that gives a first time DSC curve when heated according to heat flux differential scanning calorimetry referenced in JIS K7122(1987) and a second time DSC curve when thereafter cooled and then again heated, the second time DSC curve having a fusion peak having a reference peak temperature and the first time DSC curve having at least one fusion peak with a peak temperature higher than the reference peak temperature and another at least one fusion peak with a peak temperature not lower temperature than the reference peak temperature.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: May 5, 2015
    Assignee: JSP Corporation
    Inventors: Mitsuru Shinohara, Masaharu Oikawa
  • Publication number: 20150119484
    Abstract: A method for producing particles, which contains: bringing a compressive fluid and a pressure plastic material into contact with each other to melt the pressure plastic material; and jetting a melt obtained by melting the pressure plastic material to form particles, wherein the jetting the melt is performed by a two-fluid nozzle or three-fluid nozzle.
    Type: Application
    Filed: April 30, 2013
    Publication date: April 30, 2015
    Inventors: Keiko Osaka, Chiaki Tanaka
  • Publication number: 20150111977
    Abstract: A filler composition for use in a casting formulation, where the filler composition includes a mineral filler, hollow plastic microspheres, and a food grade and non-flammable liquid, and where when the filler composition is mixed with a casting resin an OSHA 8-hour Permissible Exposure Limit set for Particulates Not Otherwise Regulated is not exceeded.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Inventors: Gregory S. Novak, John P. Simmons, Stephen Gleason
  • Patent number: 9012526
    Abstract: Disclosed is a water absorbent material and an interconnected cell porous body which can be optimally used as a flower arranging pedestal and a plant culture medium. The interconnected cell porous body is formed from a resin composition with a polylactic acid-based resin as the main component. The pore walls, formed by joining together the crushed powder fragments formed by crushing the foam of the aforementioned resin composition, form the interconnected cell structure of the aforementioned porous body. The apparent density greater of the interconnected cell porous body is than or equal to 0.01 g/cm3 and a less than or equal to 0.2 g/cm3; the 10% compression stress is greater than or equal to 0.02 MPa and less than or equal to 0.3 MPa; and the compression recovery rate is less than or equal to 95%. The water absorbent material comprises the interconnected cell porous body.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 21, 2015
    Assignee: Kaneka Corporation
    Inventors: Masaki Amano, Takeshi Sugiyama, Shinichi Fukunaga
  • Publication number: 20150099112
    Abstract: There is provided a resin foam excellent in deformation recovery performance after compressive deformation. The resin foam of the present invention has a stress retention to be defined below of not less than 70%: stress retention (%)=(compressive stress after 60 seconds)/(compressive stress after 0 seconds)×100 wherein a resin foam in a sheet form having a thickness of 1.0 mm is compressed in the thickness direction so that the resin foam has a thickness of 20% of the initial thickness, and the compression state is held; and the compressive stress immediately after compression is defined as “compressive stress after 0 seconds,” and the compressive stress 60 seconds after holding the compression state is defined as “compressive stress after 60 seconds.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 9, 2015
    Applicant: NITTO DENKO CORPORATION
    Inventors: Makoto Saitou, Kazumichi Kato, Kiyoaki Kodama, Naohiro Kato
  • Patent number: 8999499
    Abstract: A white porous polyester film of the present invention comprising a polyester-based monopolymer/copolymer blend, a crystalline polymer resin which is not miscible with a polyester and has a heat deformation temperature of 90° C. or higher, inorganic particles, a whitening agent, and a stabilizing agent has improved optical properties, and thus is useful as a film for use in printing, labeling, electronics, and display applications.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: April 7, 2015
    Assignee: SKC Co., Ltd
    Inventors: Heon Jung Shin, Jae Seog Ju, Min Ju Kim
  • Publication number: 20150093564
    Abstract: A method for making a shapeable article from poly(lactic acid) includes treating solid poly(lactic acid) that results in the solid poly(lactic acid) having a crystallinity of at least 20% by weight based on the weight of the solid poly(lactic acid) and a gas concentration of 6% to 16% by weight based on the weight of the solid poly(lactic acid); and heating the solid poly(lactic acid) having said minimum crystallinity and gas concentration to produce a cellular poly(lactic acid) article that is shapeable. The shapeable cellular poly(lactic acid) article is advantageous in that the article can be further shaped by heat and/or pressure (or vacuum), such as via thermoforming, into a variety of useful products.
    Type: Application
    Filed: December 9, 2014
    Publication date: April 2, 2015
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Vipin Kumar, Krishna V. Nadella, Stephen Michael Probert
  • Publication number: 20150079867
    Abstract: This invention relates to a polyester characterised by noteworthy workability properties even when mixed with other polymers and being capable of being converted into products such as for example films, fibres, non-woven fabrics, sheets, moulded, thermoformed, blow-moulded and expanded articles, characterised by great toughness and high elongation at failure values. This invention also relates to processes for production of the said polyesters.
    Type: Application
    Filed: April 11, 2013
    Publication date: March 19, 2015
    Applicant: Novamont S.p.A.
    Inventors: Tiziana Milizia, Roberto Vallero
  • Publication number: 20150065597
    Abstract: Disclosed is a method for producing a porous polymer film. This method includes the steps of: (I) irradiating a polymer film with an ion beam of accelerated ions so as to form a polymer film that has collided with the ions in the beam; and (II) chemically etching the polymer film formed in the step (I) so as to form openings and/or through holes corresponding to tracks of the colliding ions left in the polymer film. In the step (I), the polymer film is placed in an atmosphere with a pressure of 100 Pa or more, and the polymer film placed in the atmosphere is irradiated with the ion beam that has passed through a beam line maintained at a lower pressure than the pressure of the atmosphere and through a pressure barrier sheet disposed at an end of the beam line to separate the beam line from the atmosphere.
    Type: Application
    Filed: March 27, 2013
    Publication date: March 5, 2015
    Inventors: Satoru Furuyama, Junichi Moriyama, Yozo Nagai, Yosuke Yuri, Ikuo Ishibori, Takahiro Yuyama, Tomohisa Ishizaka, Susumu Okumura, Yasunari Maekawa, Hiroshi Koshikawa, Tetsuya Yamaki, Masaharu Asano
  • Publication number: 20150065591
    Abstract: The present disclosure provides a modified starch composition. The modified starch composition includes starch with a terminal siloxane having 100 parts by weight, water having 30-70 parts by weight, and a polyol having 5-35 parts by weight. The present disclosure also provides a starch composite foam material and method for preparing the same.
    Type: Application
    Filed: July 11, 2014
    Publication date: March 5, 2015
    Inventors: Sheng-Ju LIAO, Chih-Jen CHANG, Yen-Po LIU, Shihn-Juh LIOU, Yao-Chu CHUNG, Chien-Ming CHEN
  • Publication number: 20150057368
    Abstract: Methods to produce substantially closed cell foams with densities less than 0.75 g/cm3, and more preferably less than 0.5 g/cm3, without substantial loss of the polymer's weight average molecular weight, have been developed. The closed cells foams have an open cell content of generally less than 50%, and more preferably an open cell content of less than 20%, and the cells have a maximum diameter of less than 5 mm. The foam may include poly-4-hydroxybutyrate or a copolymer thereof. Preferably, the foam is derived by heating a foam polymer formula to a temperature above the melt temperature of the polymer to form a melt polymer system, adding a blowing agent to produce a foamable melt, extruding the foamable melt through a die to a lower pressure to cause foaming, cooling of the foam, and solidification of the foam. These foam structures can be used for fabrication of medical products.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Inventors: Dennis Connelly, Fabio Felix, David P. Martin, Jon Montcrieff, Said Rizk, Simon F. Williams
  • Publication number: 20150025166
    Abstract: A method for manufacturing a plastic dielectric having a plurality of holes and a plastic dielectric manufactured thereby. The method for manufacturing a plastic dielectric includes the steps of: (a) injecting a plastic material into an airtight container; (b) injecting inert gas into the airtight container at pressure of 5 to 9 MPa; (c) maintaining the temperature inside the airtight container at 20 to 50° C.; (d) leaving the airtight container for a predetermined period till an amount of inert gas dissolved in the plastic material becomes 6% wt or more and drawing the plastic material out of the airtight container; and (e) heating the plastic material at temperature of 40 to 110° C.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 22, 2015
    Inventors: Sung Woon CHA, Young Ho KIM
  • Patent number: 8937135
    Abstract: The present invention relates to biodegradable polymer mixtures comprising i) 40% to 95% by weight, based on the total weight of components i to ii, of at least one polyester based on aliphatic or aliphatic and aromatic dicarboxylic acids and aliphatic dihydroxy compounds; ii) 5% to 60% by weight, based on the total weight of said components i to ii, of polyalkylene carbonate, particularly polypropylene carbonate; iii) 0% to 60% by weight, based on the total weight of said components i to iii, of at least one biodegradable homo- or copolyester selected from the group consisting of polylactic acid, polycaprolactone and polyhydroxyalkanoate, and/or of an inorganic or organic filler; iv) 0% to 10% by weight, based on the total weight of said components i to ii, of an epoxy-containing copolymer based on styrene, acrylic ester and/or methacrylic ester, and v) 0% to 15% by weight of an additive selected from the group consisting of lubricant, antiblocking agent, antistat, UV absorber, UV stabilizer, thermal stabil
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: January 20, 2015
    Assignee: BASF SE
    Inventors: Tobias Heinz Steinke, Hans-Helmut Görtz, Jürgen Ahlers, Freddy Gruber, Gabriel Skupin
  • Publication number: 20150005403
    Abstract: The invention pertains to a process for manufacturing a glycerol-tricarboxylic acid polyester foam which comprises the steps of combining glycerol and a tri-carboxylic acid to provide a liquid reaction mixture and contacting the reaction mixture with a substrate under polymerization conditions, wherein the substrate has a top layer comprising one or more of metal, metal oxide, and metal halide. The invention also pertains to a glycerol-tricarboxylic polyester foam, in particular a glycerol-citric acid polyester foam, which has a closed cell foam structure wherein at least 90 vol. % of the foam, preferably at least 95% of the foam, is built up from cells having a diameter below 2 mm. The foamed polyester of the present invention is “green”, biodegradable, and non-toxic, and can be cleanly combusted. It finds application in, int. al., packaging materials, insulation materials, and materials with a short life cycle.
    Type: Application
    Filed: February 18, 2013
    Publication date: January 1, 2015
    Inventors: Gad Rothenberg, Albert Hendrikus Alberts
  • Patent number: 8865304
    Abstract: Biodegradable aliphatic polyester particles have: (A) an average particle diameter of 10 to 500 ?m, and (B) a quantity of heat of low-temperature crystallization calculated as an exotherm attending on crystallization, detected in the course of heating by DSC, of at least 1 J/g, and preferably: (C) a quantity of heat of crystal melting calculated as an endotherm attending on melting of a crystal, detected in the course of the heating, of less than 100 J/g, and (D) a difference between the quantity of heat of crystal melting and the quantity of heat of low-temperature crystallization of less than 90 J/g. A process for producing the particles comprises grinding a particular biodegradable aliphatic polyester having a weight average molecular weight of at least 50,000 at not lower than 0° C. and lower than the glass transition temperature of the polyester while applying high shearing force.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 21, 2014
    Assignee: Kureha Corporation
    Inventors: Kotaku Saigusa, Masahiro Yamazaki, Shunsuke Abe, Nanako Kuruhara, Hiroyuki Sato
  • Publication number: 20140308481
    Abstract: A method for manufacturing a porous flexible sheet according to the present disclosure includes forming a layer that includes a mixture including thermoplastic resin particles and inorganic particles and thermally fusing the thermoplastic particles to each other and to the inorganic particles while keeping at least a part of clearances between the particles.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 16, 2014
    Applicants: CASIO ELECTRONICS MANUFACTURING CO., LTD., CASIO COMPUTER CO., LTD.
    Inventor: Satoshi MITSUI
  • Publication number: 20140243439
    Abstract: Techniques, mixtures and improved porous materials (interconnected porous constructs) that are capable of maintaining a sufficient porosity while conferring improved mechanical and physical strength to the final construct. A sacrificial construct (for example, a sacrificial material such as polymethyl methacrylate (PMMA)) is used to obtain an inverse porosity of the construct it was molded into. The process provides a less porous end material that may be used as an arthroplasty device or surgical implant (for example, an interference screw of suture anchor) among many other applications. The process employs a sacrificial material to reduce the porosity of the final construct to about 35%.
    Type: Application
    Filed: January 10, 2014
    Publication date: August 28, 2014
    Applicant: Arthrex, Inc.
    Inventors: Christopher G. Papangelou, G. Joshua Karnes
  • Publication number: 20140235741
    Abstract: Polylactic acid-based resin expanded beads of the present invention are obtained by releasing a softened, pressurized foamable resin composition, which comprises a polylactic acid-based resin and a physical blowing agent, to a low pressure atmosphere to foam and expand the resin composition, wherein the polylactic acid-based resin satisfies the conditions (1) to (3) shown below, and exhibits excellent secondary expansion properties and fusion bonding properties. A polylactic acid-based resin expanded beads molded article obtained by in-mold molding of the polylactic acid-based resin expanded beads exhibits excellent mechanical properties. MT?30 mN??(1) log MT?0.93 log ??1.75??(2) CT1/2?600 sec??(3) where MT represents a melt tension [mN] at 190° C., ? represents a melt viscosity [Pa·s] at 190° C. and a shear speed of 20 sec?1, and CT1/2 represents a half crystallization time [sec] at 110° C.
    Type: Application
    Filed: August 30, 2012
    Publication date: August 21, 2014
    Applicant: JSP CORPORATION
    Inventors: Mitsuru Shinohara, Masaharu Oikawa
  • Publication number: 20140227506
    Abstract: Provided are foamed aromatic polyester-based resin particles for in-mold foam molding that have a long shelf life after production and can be used to produce an in-mold foam molded product having high mechanical strength and good appearance. The foamed aromatic polyester-based resin particles for in-mold foam molding contain an aromatic polyester-based resin and are characterized in that the content of residual carbon dioxide 7 hours after the particles are impregnated with carbon dioxide for 24 hours under the conditions of 25° C. and 1 MPa is 5% by weight or more.
    Type: Application
    Filed: August 28, 2012
    Publication date: August 14, 2014
    Inventors: Yusuke Kuwabara, Yosuke Kawamorita, Akira Isayama, Hiroki Owaki, Yuta Fukuzaki
  • Publication number: 20140217013
    Abstract: To provide a polyketone porous film having heat resistance and chemical resistance and useful as a filter for filtration having a high particle collection efficiency and as a battery or capacitor separator having a low permeation resistance to ion and the like. A polyketone porous film comprising from 10 to 100 mass % of a polyketone as a copolymer of carbon monoxide and one or more olefins, wherein the polyketone porous film has a pore formed only by a polyketone, the pore diameter uniformity parameter as a value obtained by dividing the standard deviation of the pore diameter in the pore by an average pore diameter is from 0 to 1.0, and the average through hole diameter of the polyketone porous film is from 0.01 to 50 ?m.
    Type: Application
    Filed: September 5, 2012
    Publication date: August 7, 2014
    Inventors: Daisuke Sato, Masayuki Kaneda, Takashi Komatsu
  • Publication number: 20140186312
    Abstract: The present inventions in various aspects provide elastic biodegradable polymers. In various embodiments, the polymers are formed by the reaction of a multifunctional alcohol or ether and a difunctional or higher order acid to form a pre-polymer, which is cross-linked to form the elastic biodegradable polymer. In preferred embodiments, the cross-linking is performed by functionalization of one or more OR groups on the pre-polymer backbone with vinyl, followed by photopolymerization to form the elastic biodegradable polymer composition or material. Preferably, acrylate is used to add one or more vinyls to the backbone of the pre-polymer to form an acrylated pre-polymer. In various embodiments, acrylated pre-polymers are co-polymerized with one or more acrylated co-polymers.
    Type: Application
    Filed: February 17, 2014
    Publication date: July 3, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher J. Bettinger, Joost P. Bruggeman, Lino da Silva Ferreira, Jeffrey M. Karp, Robert S. Langer, Christiaan Nijst, Andreas Zumbuehl, Jason Burdick, Sonia J. Kim
  • Patent number: 8765830
    Abstract: Disclosed is a polyimide foam made of an aromatic polyimide composed of a tetracarboxylic acid component, which is composed of 0 to 90% by mole of a 3,3?,4,4?-biphenyltetracarboxylic acid component and 100 to 10% by mole of a 3,3?,4,4?-benzophenone tetracarboxylic acid component and/or a 2,3,3?,4?-biphenyltetracarboxylic acid component, and a diamine component, which is composed of 50 to 97% by mole of m-phenylenediamine and 50 to 3% by mole of 4,4?-methylenedianiline. The polyimide foam can be produced easily, has uniform and fine cells, and has the mechanical properties required for practical use as a foam, such as flexibility that prevents the foam from cracking easily even when deformed and excellent cushioning properties, as well as heat resistance that can resist use at high temperatures.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: July 1, 2014
    Assignee: UBE Industries, Ltd.
    Inventors: Yukio Kaneko, Hiroaki Yamaguchi, Masafumi Kohda
  • Publication number: 20140179819
    Abstract: The present specification discloses porous materials, methods of forming such porous materials, biocompatible implantable devices comprising such porous materials, and methods of making such biocompatible implantable devices.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: Allergan, Inc.
    Inventors: Futian Liu, Nicholas J. Manesis, Alexei Goraltchouk, Dimitrios Stroumpoulis
  • Publication number: 20140178455
    Abstract: The present invention provides gradient porous scaffolds for bone regeneration and osteochondral defect repair, methods for making such gradient porous scaffolds, and methods for using the gradient porous scaffolds.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Inventors: Syam P. Nukavarapu, Cato T. Laurencin, Ami R. Amini, Deborah L. Dorcemus
  • Publication number: 20140170922
    Abstract: Fibers that are formed from a thermoplastic composition that contains a polymer and high surface area nanostructures are provided. The fibers have a voided structure and low density while maintaining good strength characteristics. To achieve such a structure, a blowing agent in the thermoplastic composition is activated during extrusion to form bubbles in the fibers. The high surface area nanostructures in the formed fibers can be formed of or carry the blowing agent and can enhance the strength of the fibers and compensate for the non-load bearing voids of the fibers.
    Type: Application
    Filed: November 12, 2013
    Publication date: June 19, 2014
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Simon K. Poruthoor, Charles W. Colman, Jeffrey J. Krueger, Ryan J. McEneany, Bryan D. Haynes, Wing-Chak Richard Ng
  • Publication number: 20140163127
    Abstract: The present disclosure relates to the preparation of acrylate, alkacrylate, allyl, and polycarbonate derivatives of hydroxy ketal esters, and uses thereof.
    Type: Application
    Filed: November 1, 2013
    Publication date: June 12, 2014
    Applicant: SEGETIS, INC.
    Inventors: Sergey SELIFONOV, Brian Daniel MULLEN, Douglas Alan WICKS, Vivek BADARINARAYANA
  • Patent number: 8735459
    Abstract: Provided are a composition for preparing expandable polypropylene carbonate and an expandable polypropylene carbonate prepared therefrom, and more particularly, to a composition for preparing expandable polypropylene carbonate capable of using supercritical carbon dioxide as a foaming agent and producing a foam having excellent moldability by using an appropriate foaming method. By using the composition according to the present invention, highly magnificated expandable polypropylene carbonate capable of having excellent thermal stability and dimensional stability can be prepared.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: May 27, 2014
    Assignee: SK Innovations Co., Ltd.
    Inventors: Minho Jeon, Younghyo Park, Kwangjin Chung, Myungahn Ok
  • Patent number: 8722754
    Abstract: This invention provides an economical process for extruding a PLA resin into a low density foam with a high closed cell content. Excellent quality, low density foam is produced easily and reproducibly. The PLA resin in the foam has a weight average molecular weight of at least 500,000 and an intrinsic viscosity of at least 1.4 deciliters/gram.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: May 13, 2014
    Assignee: NatureWorks LLC
    Inventors: James Nangeroni, Jed Richard Randall
  • Patent number: 8715783
    Abstract: The present invention relates to a porous ABPBI (phosphoric acid doped poly(2,5-benzimidazole)) membrane and process of preparing the same. A stable porous ABPBI (Phosphoric Acid Doped Poly(2,5-benzimidazole)) membrane stable to acids, bases, solvents and autoclaving is disclosed. The membrane finds use for separation of solutes in solution in acids, bases and solvents.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: May 6, 2014
    Assignee: Council of Scientific and Industrial Research (CISR)
    Inventors: Ulhas Kharul, Harshada Lohokare
  • Publication number: 20140116702
    Abstract: A method of servicing a wellbore in a subterranean formation comprising placing a first wellbore servicing fluid comprising an expanded diverting material into the wellbore allowing the expanded diverting material to form a diverter plug diverting the flow of a second wellbore servicing fluid to a different portion of the wellbore; and removing the diverter plug. A method of servicing a wellbore in a subterranean formation comprising placing a wellbore servicing fluid into the subterranean formation at a first location; plugging the first location with a expanded diverting material such that all or a portion of the wellbore servicing fluid is diverted to a second location in the subterranean formation; placing the wellbore servicing fluid into the subterranean formation at the second location; and allowing the expanded diverting material to degrade to provide a flowpath from the subterranean formation to the wellbore for recovery of resources from the subterranean formation.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventor: Tingji TANG
  • Publication number: 20140107242
    Abstract: Disclosed are compositions useful in a wide variety of applications, including heat transfer fluids which possess a highly desirable and unexpectedly superior combination of properties, and heat transfer systems and methods based on these fluids. The preferred heat transfer fluid comprises from about 1 to about 40 percent, on a weight basis, of carbon dioxide (CO2) and from about 99 to about 60 percent, on a weight basis, of a compound having the Formula I XCFzR3-z (I), where X is a C2 or a C3 unsaturated, substituted or unsubstituted, alkyl radical, each R is independently Cl, F, Br, I or H, and z is 1 to 3. A preferred compound of Formula I is tetrafluoropropene, particularly 1,1,1,3-tetrafluoropropene and/or 1,1,1,3-tetrafluoropropene.
    Type: Application
    Filed: December 5, 2013
    Publication date: April 17, 2014
    Applicant: Honeywell International Inc.
    Inventors: RAJIV R. SINGH, HANG T. PHAM, IAN SHANKLAND
  • Patent number: 8691882
    Abstract: Provided are an organic-inorganic hybrid scaffold with surface-immobilized nano-hydroxyapatite, and a method for the fabrication thereof. The scaffold is fabricated by reacting an acid group present on a surface of nano-hydroxyapatite with a primary amine present on a surface of a polymer support in the presence of EDC (1-ethyl-3-dimethylaminopropyl carbodiimide) to immobilize nano-hydroxyapatite onto the surface of the polymer support. The surface of nano-hydroxyapatite is previously grafted with poly(ethylene glycol methacrylate phosphate) (PolyEGMP) having phosphonic acid functionality or with a polymer having carboxylic acid functionality.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: April 8, 2014
    Assignee: Korea Institute of Ceramic Engineering & Technology
    Inventors: Sang Cheon Lee, Jeong Ho Chang, Jin Hyung Lee, Kyung Ja Kim, Sung Eun Kim, Ho Chan Hwang, Ke-Won Kang, Seog-Jin Seo, Jin-Young Kim
  • Publication number: 20140051780
    Abstract: The present invention relates to aliphatic or aliphatic-aromatic polyesters and copolyesters comprised of biobased ?-hydroxyfatty acids or derivatives thereof, processes for the preparation thereof, and compositions thereof having improved properties. The copolyesters of the present invention may also contain additional components that can be selected from aliphatic or aromatic diacids, diols and hydroxyacids obtained from synthetic and natural sources. The biobased ?-hydroxyfatty acids that comprise the polyesters and copolyesters of the present invention are made using a fermentation process from pure fatty acids, fatty acid mixtures, pure fatty acid ester, mixtures of fatty acid esters, and triglycerides from various sources. The polyesters of the present invention may contain various amounts and types of ?-carboxyfatty acids depending on the engineered yeast strain used for the bioconversion as well as the feedstock(s) used.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 20, 2014
    Applicant: SyntheZyme LLC
    Inventor: Richard A. Gross
  • Publication number: 20140039075
    Abstract: A polycaprolactone fumarate copolymer useful as a material for a biocompatible scaffold for tissue engineering applications is disclosed. The copolymer includes at least one caprolactone unit, at least one fumarate unit, and at least one third unit selected from the group consisting of acrylate units and styrenic units. A linking moiety forms a link between the third unit and at least one caprolactone unit or at least one fumarate unit. The linking moiety can be photodegradable. In one form, the third unit includes at least one methyl methacrylate unit. The copolymer can be used to form the wall of a nerve conduit.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 6, 2014
    Inventors: Michael Brett Runge, Michael J. Yaszemski
  • Patent number: 8637583
    Abstract: A process for the manufacture of a fiber or foil comprising at least one optionally functionalized polymer with a high Tg selected from the group consisting of poly(aryl ether sulfone) (PAES), poly(aryl ether ketone) (PAEK) and aromatic polyimide, comprising the steps of (aa) providing a solution comprising at least 45 wt. % of the polymer, and at least 20 wt. %, of at least one halogen-free organic solvent (S1) for the polymer, both wt % based upon the weight of the solution; (bb) pushing the solution through a nozzle; and (cc) introducing the solution into a coagulation bath comprising: (cc1) at least one liquid (L1) in which the polymer is insoluble, and optionally (cc2) at least one organic solvent (S2) for the polymer, identical to or different from the organic solvent (S1), to form a fiber or foil. A fiber or foil obtained by this process as well as to fibers or foils with specific porosity features and/or mechanical properties.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: January 28, 2014
    Assignee: Solvay Advanced Polymers, L.L.C.
    Inventors: Frank Hermanutz, Mark G. Reichmann
  • Publication number: 20140018460
    Abstract: A method for altering the melt characteristics of a polyester, such as the melt strength, the method comprising the step of melt mixing the polyester, with a tetracarboxylic dianhydride; across-linker and chain extender comprising at least two groups being able to react with a carboxy group and a phenolic hydroxyl group; and a poly functional compound comprising at least two groups selected from the group consisting of non-sterically hindered phenolic hydroxyl groups, and carboxy groups.
    Type: Application
    Filed: March 12, 2012
    Publication date: January 16, 2014
    Applicant: NEXAM CHEMICAL AB
    Inventors: Daniel Rome, David Persson, Jan-Erik Rosenberg, Dane Momcilovic
  • Publication number: 20130345332
    Abstract: A filler composition for use in a casting formulation, where the filler composition includes a mineral filler, hollow plastic microspheres, and a food grade and non-flammable liquid, and where when the filler composition is mixed with a casting resin an OSHA 8-hour Permissible Exposure Limit set for Particulates Not Otherwise Regulated is not exceeded.
    Type: Application
    Filed: June 26, 2013
    Publication date: December 26, 2013
    Inventors: Gregory S. Novak, John P. Simmons, II, Stephen Gleason
  • Patent number: 8586643
    Abstract: A composition used for preparing foaming material comprising a polyhydroxyalkanoate, a polylactic acid and a foaming agent, which posses certain tensile strength, elongation in break and expansion ratio as well as full bio-degradability, thus can be used in packaging industry.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: November 19, 2013
    Inventors: Weichuan Lu, Mei Li
  • Publication number: 20130303645
    Abstract: Methods of forming polymeric foams are provided. The methods may involve co-extruding a foam layer along with one or more skin layers. In some embodiments, the skin layer(s) may be removed (e.g., in a peeling operation); while, in other embodiments, the skin layer(s) may form part of the final article. The methods are particularly well suited for producing polymeric foams from polymeric materials that are considered to be difficult to foam by those of skill in the art.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 14, 2013
    Applicant: MuCell Extrusion, LLC
    Inventor: MuCell Extrusion, LLC
  • Publication number: 20130288056
    Abstract: Polylactic acid resin expanded beads exhibiting excellent fusion bonding at the time of in-mold molding have such a crystal structure that gives a first time DSC curve when heated according to heat flux differential scanning calorimetry referenced in JIS K7122(1987) and a second time DSC curve when thereafter cooled and then again heated, the second time DSC curve having a fusion peak having a reference peak temperature and the first time DSC curve having at least one fusion peak with a peak temperature higher than the reference peak temperature and another at least one fusion peak with a peak temperature not lower temperature than the reference peak temperature.
    Type: Application
    Filed: October 21, 2011
    Publication date: October 31, 2013
    Applicant: JSP CORPORATION
    Inventors: Mitsuru Shinohara, Masaharu Oikawa
  • Publication number: 20130273284
    Abstract: The invention relates to a biodegradable multi-block copolymer, comprising at least two hydrolysable segments derived from pre-polymers A and B, which segments are linked by a multi-functional chain-extender and are chosen from the pre-polymers A and B, and triblock copolymers ABA and BAB, wherein the multi-block copolymer is amorphous at physiological (body) conditions. The invention further relates to a process for preparing said copolymer and to its use as a medical implant, a coating for a medical device or a drug delivery vehicle.
    Type: Application
    Filed: June 6, 2013
    Publication date: October 17, 2013
    Applicant: INNOCORE TECHNOLOGIES BV
    Inventors: Catharina Everdina HISSINK, Rob STEENDAM, Ronald MEYBOOM, Theodorus Adrianus Cornelius FLIPSEN